Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu

Katedra i Zakład Chemii Nieorganicznej i Analitycznej

Łukasz Sobotta

Ocena fotochemiczna porfirazyn i ftalocyjanin z podstawnikami heterocyklicznymi i alkoksylowymi o potencjalnym zastosowaniu w terapii fotodynamicznej

Rozprawa doktorska

Promotor: prof. dr hab. Jadwiga Mielcarek

2014

Słowa kluczowe:

Porfirynoidy

Ftalocyjaniny

Porfirazyny

Fotouczulacze

Terapia fotodynamiczna

PACT

Część pracy została wykonana w ramach projektów badawczych finansowanych przez Ministerstwo Nauki i Szkolnictwa Wyższego:

- "Koniugaty porfirazynowo-nitroimidazolowe, jako fotosensybilizatory dla terapii fotofotodynamicznej", nr N401 067 238
- 2. "Modyfikowane porfirynoidy o potencjalnym zastosowaniu w terapii oraz diagnostyce chorób nowotworowych i infekcji wirusem grypy", nr N404 069440

Doktorant był stypendystą w ramach:

- Wsparcia stypendialnego dla doktorantów na kierunkach uznanych za strategiczne z punktu widzenia rozwoju Wielkopolski", Poddziałanie 8.2.2 Programu Operacyjnego Kapitał Ludzki, w latach 2012/2013, 2013/2014
- Programu "Etiuda 1" finansowanego przez Narodowe Centrum Nauki na podstawie decyzji numer DEC- 2013/08/T/NZ7/00242

Praca została wykonana we współpracy z:

- Katedrą i Zakładem Technologii Chemicznej Środków Leczniczych Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu
- Rega Institute for Medical Research, Katholieke Universiteit Leuven (Belgia) w zakresie badań aktywności przeciwnowotworowej na liniach komórkowych oraz fotodynamicznej inaktywacji wybranych wirusów

Wybrane fragmenty materiału przedstawionego w części teoretycznej oraz część wyników badań uzyskanych podczas realizacji pracy doktorskiej została opublikowana w czasopismach naukowych i przedstawiona podczas konferencji w formie prezentacji ustnych i plakatowych oraz zawarta w zgłoszeniu patentowym:

Zgłoszenie patentowe:

Wierzchowski M., Gośliński T., Konopka K., Kruk J., Mierzwicki M., **Sobotta Ł.**, Düzgüneş N., Mielcarek J., "Polieterowe, nitroimidazolowe i polieterowo - nitroimidazolowe i pochodne ftalocyjanin, sposób ich otrzymywania oraz zastosowanie" nr zgłoszenia P-402264

Publikacje w czasopismach naukowych o zasięgu międzynarodowym:

- Wierzchowski M., Sobotta Ł., Skupin-Mrugalska P., Kruk J., Jusiak W., Yee M., Konopka K., Düzgüneş N., Tykarska E., Gdaniec M., Mielcarek J., Gośliński T., 2013, Phthalocyanines functionalized with 2-methyl-5-nitro-1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity, J. Inorg. Biochem., 127, 62-72.
 IF = 3,191 MNISW = 35
- Sobotta L., Fita P., Szczołko W., Wrotyński M., Wierzchowski M., Gośliński T., Mielcarek J., 2013, Functional singlet oxygen generators based on porphyrazines with peripheral 2,5-dimethylpyrrol-1-yl and dimethylamino groups, J. Photochem. Photobiol. A, 269, 9-16.
 IF = 2,416 MNISW = 25
- Szczołko W., Sobotta Ł., Fita P., Koczorowski T., Mikuś M., Gdaniec M., Orzechowska A., Burda K., Sobiak S., Wierzchowski M., Mielcarek J., Tykarska E., Gośliński T., 2012, Synthesis, characteristics and photochemical studies of novel porphyrazines possessing peripheral 2,5-dimethylpyrrol-1-yl and dimethylamino groups, Tetrahedron Lett, 53, 2040-2044 IF = 2,397 MNISW = 30
- ^{4.} Sobotta L., Skupin-Mrugalska P., Mielcarek J., Gośliński T., Balzarini J., 2014, Photosensitizers Mediated Photodynamic Inactivation Against Virus Particles, Mini Rev Med Chem – wysłane do druku

Prezentacje na konferencjach:

- Wierzchowski M., Lijewski S., Sobotta Ł., Konopka K., Lee M., Düzgüneş N., Tykarska E., Mielcarek J., Gośliński T., 2013, Synthesis and biological activity of novel phthalocyanines with dietheroxy and nitroimidazolylethoxy moieties, 15th JCF-Frühjahrssymposium, Berlin, s. 279
- 2. **Sobotta L.**, Wierzchowski M., Gośliński T., Mielcarek J., 2013, Novel phthalocyanine derivatives possessing dietheroxy substituents at non-peripheral positions as singlet oxygen generators, 15th JCF-Frühjahrssymposium, Berlin, s. 272
- 3. **Sobotta Ł.**, Szczołko W., Wrotyński M., Wierzchowski M., Gośliński T., Mielcarek J., 2012, Physical-Chemical Studies on the Newly Synthesized Porphyrazines Possessing Peripheral

2,5-Dimethylpyrrol-1-yl and Dimethylamino Groups, V Konwersatorium Chemii Medycznej, Lublin, P-17

- 4. Sobotta Ł., Sarzyńska A., Wrotyński M., Szczołko W., Gośliński T., Wierzchowski M., Mielcarek J., 2011, Novel porphyrazines possessing peripheral pyrrolyl groups, comparative studies of their photochemical properties, 6th Polish-German Symposium on Pharmaceutical Sciences "Perspectives for a new decade", Düsseldorf, P075
- Kruk J., Mikuś M., Szczołko W., Sobotta Ł., Mielcarek J., Wierzchowski M., 2010, Physical Properties of Porphyrazines Possessing in the Core the Following Cations Mg²⁺, Zn²⁺, Cu²⁺, Mn³⁺, Fe³⁺, III Konwersatorium Chemii Medycznej, Lublin, P-33
- Sobotta Ł., Kryjewski M., Sarzyńska A., Koczorowski T., Mikuś M., Szczołko W., Gośliński T., Wierzchowski M., Mielcarek J., 2010, Photochemical assessment of pyrrole porphyrazines as potential PDT agents, III Konwersatorium Chemii Medycznej, Lublin, P-44

Pani Profesor **Jadwidze Mielcarek** za przekazaną wiedzę, opiekę naukową, liczne rady i konsultacje, mnóstwo poświęconego czasu, wyrozumiałość oraz cenną pomoc podczas realizacji pracy – serdecznie dziękuję.

Panu Profesorowi **Zenonowi Kokotowi** za umożliwienie realizacji pracy doktorskiej w Katedrze i Zakładzie Chemii Nieorganicznej i Analitycznej – serdecznie dziękuję.

Panu Doktorowi habilitowanemu **Tomaszowi Goślińskiemu** za przekazanie związków do badań, pomoc w realizacji pracy oraz umożliwienie odbycia stażu naukowego w Rega Institute for Medical Research, Katholieke Universiteit Leuven (Belgia), motywację i życzliwość – serdecznie dziękuję.

Panu Profesorowi **Janowi Balzariniemu** za umożliwienie i pomoc w przeprowadzeniu badań biologicznych oraz interpretacji wyników tych badań – serdecznie dziękuję.

Panu Doktorowi **Marcinowi Wierzchowskiemu** oraz Panu Doktorowi **Wojciechowi** Szczołko za udostępnienie związków do badań – serdecznie dziękuję.

Panu Doktorowi **Piotrowi Fita** za owocne dyskusje i cenną pomoc podczas realizacji pracy – serdecznie dziękuję.

Pani *Lizette Van Berckelaer* oraz Pani *Leentje Persoons* za pomoc w przeprowadzeniu badań biologicznych – serdecznie dziękuję.

Pracownikom Katedry i Zakładu Chemii Nieorganicznej i Analitycznej, Katedry Technologii Chemicznej Środków Leczniczych, a w szczególności **Paulinie Skupin-Mrugalskiej, Michałowi Kryjewskiemu** i **Jarosławowi Piskorzowi** dziękuję za życzliwość, miłą atmosferę oraz pomoc podczas wykonywania badań.

Pracę dedykuję

Rodzicom i Markowi

Arlecie

SPIS TREŚCI

I.	WSTĘP								
II.	CZĘ	ŚĆ LITERATUROWA	6						
1.	1. Fotoinaktywacja wirusów								
2.	2. Fotouczulacze wykazujące aktywność przeciwwirusową								
2.	.1.	Fotouczulacze z trójcyklicznym układem heteroaromatycznym	8						
2.	.2.	Porfiryny i chloryny	- 10						
2.	.3.	Chloryny	- 17						
2.	.4.	Chlorofile	- 17						
2.5.		Ftalocyjaniny i naftalocyjaniny	- 18						
2.	.6.	Pochodne fulerenów	- 20						
2.	.7.	Fotouczulacze pochodzenia naturalnego	- 22						
III.	CEI	PRACY	. 27						
IV.	CZĘ	ÇŚĆ DOŚWIADCZALNA	. 29						
1.	Apa	ratura, odczynniki, materiał do badań	. 29						
1.	.1.	Aparatura	- 29						
1.	.2.	Odczynniki	- 29						
1.	.3.	Substancje do badań	- 30						
2.	Met	odyka i wyniki badań	. 36						
2.	.1.	Czystość chemiczna porfirazyn i ftalocyjanin	- 36						
2.	.2.	Molowe współczynniki absorpcji	- 50						
2.	.3.	Właściwości absorpcyjne	- 54						
2.	.4.	Zdolność agregacji	- 59						
2.	.5.	Właściwości emisyjne	- 88						
2.	.6.	Ocena fototrwałości	- 91						
2.	.7.	Zdolność generowania tlenu singletowego	- 98						
2.	.8.	Ocena aktywności biologicznej	107						
V.	OM	ÓWIENIE WYNIKÓW	113						
1.	Czys	stość chemiczna porfirazyn i ftalocyjanin	113						
2.	Wła	ściwości absorpcyjne	114						
3.	Zdo	lność agregacji	117						
4.	Wła	ściwości emisyjne	122						
5.	5. Ocena fototrwałości 124								
6.	Zdo	lność generowania tlenu singletowego	127						
7.	Oce	na aktywności biologicznej	130						
7.	.1.	Ocena aktywności przeciwnowotworowej	130						
7.	.2.	Ocena aktywności przeciwwirusowej	133						
VI.	POI	OSUMOWANIE I WNIOSKI	135						
VII.	VII. STRESZCZENIE 137								
VIII	VIII.ABSTRACT								
IX.	WY	KAZ SKRÓTÓW	141						
X.	PIŚI	MIENNICTWO	143						

I. WSTĘP

Porfirazyny i ftalocyjaniny są związkami syntetycznymi, które należą do grupy porfirynoidów – związków strukturalnie wywodzących się z porfiryn. Do porfirynoidów zalicza się między innymi: porfiryny (**I**), chloryny (**II**), bakteriochloryny (**III**), porfirazyny (**IV**), ftalocyjaniny (**V**), teksafiryny (**VI**), chlorofile (**VII**), korolazyny (**VIII**) – ryc. 1. Porfirynoidy zbudowane są z czterech cząsteczek pirolu, które w przypadku porfiryn połączone są w pierścień makrocykliczny mostkami metinowymi (=**CH**–), a w porfirazynach i ftalocyjaninach mostkami azametinowymi (=**N**–) [1]. Utworzony pierścień posiada zdelokalizowane wiązania podwójne w tym układ 18π elektronów (wywodzący się z aromatycznego [18]anulenu), który warunkuje aromatyczność porfirynoidów [2,3] (ryc. 1).

Ryc. 1. Struktury chemiczne porfirynoidów I – VIII, pogrubioną linią zaznaczono układ 18π elektronów.

Związki makrocykliczne, w tym również porfirynoidy, występują powszechnie w przyrodzie. Przykładem jest hem (**IX**, ryc. 2), wywodzący się od protoporfiryny IX, który jako grupa prostetyczna w cytochromie P-450 umożliwia reakcje utleniania-redukcji. Natomiast w katalazie uczestniczy w rozkładzie nadtlenku wodoru do wody i tlenu. Ponadto hem jest bardzo ważną grupą prostetyczną hemoglobiny i mioglobiny [4].

Ryc. 2. Struktury chemiczne naturalnych porfirynoidów IX – XII.

Porfirynoidy odpowiadają również za proces kluczowy dla życia na ziemi, a mianowicie za fotosyntezę. Najważniejszym przedstawicielem związków aktywnych fotosyntetycznie jest chlorofil a (**X**, ryc. 2). Zadaniem chlorofilu jest wytworzenie elektronu po absorpcji fotonu promieniowania, który zostaje następnie włączony w łańcuch reakcji prowadzących do utworzenia ATP [5]. Kolejnym przykładem bardzo ważnego związku, który wywodzi się od porfirynoidów, a dokładniej od struktury koryny (**XI**), jest witamina B₁₂ (cyjanokobalamina, **XII**). Cyjanokobalamina odpowiada w organizmie za dwie kluczowe reakcje enzymatyczne: remetylację homocysteiny do metioniny oraz izomeryzację metylomalonylo-CoA [4].

Porfirynoidy, ze względu na skomplikowaną budowę, wykazują interesujące właściwości, które z powodzeniem wykorzystywane są w wielu dziedzinach gospodarki, a szczególną uwagę skupiono na możliwości wykorzystania w medycynie. Porfirynoidy znalazły zastosowanie, jako fotouczulacze w terapii fotodynamicznej (PDT), nowatorskiej metodzie leczenia wielu schorzeń włączając również choroby cywilizacyjne, z których najważniejszą grupę stanowią nowotwory. Ponadto metoda ta

okazała się także skuteczna w leczeniu infekcji bakteryjnych, wirusowych i grzybiczych. Konwencjonalne leczenie nowotworów oparte jest na chirurgii onkologicznej, radioterapii, chemioterapii oraz terapii hormonalnej. na Najskuteczniejszą z wymienionych metod jest chirurgia, która pozwala często wyeliminować całkowicie zmianę nowotworową. Aby zwiększyć skuteczność leczenia stosuje się również połączenie wspomnianych metod. Terapia fotodynamiczna prężnie rozwija się jako metoda wspomagająca konwencjonalne leczenie, ale coraz częściej odnotowuje się przypadki zastosowania jako metody z wyboru. PDT w porównaniu z chemioterapią, czy radioterapią odznacza się porównywalną lub wyższą skutecznością. Zdecydowaną przewagą PDT są natomiast mniej poważne efekty uboczne, do których należą: (1) ból, świąd, pieczenie w miejscu naświetlania (2) ból w trakcie aplikacji fotouczulacza (3) uogólniona fotowrażliwość [6–8]. Poczatkowo zakładano, że terapia fotodynamiczna sprawdzi się tylko w przypadku nowotworów umiejscowionych powierzchniowo, łatwo dostępnych dla systemów naświetlających, tzn. na skórze czy błonach śluzowych. Jednak naukowcy poradzili sobie z tym problemem wprowadzając do użycia igły laparoskopowe zaopatrzone w światłowody, które zakończone są wielościennym dyfuzorem celem skierowania światła w zadanym kierunku. Dzięki powyższym rozwiązaniom zaczęto rozwijać śródmiąższową terapię fotodynamiczną iPDT (ang. interstitial PDT), która pozwala leczyć lite guzy nowotworowe położone głęboko pod skórą [9]. Obecnie w praktyce klinicznej badź w zawansowanych fazach badań klinicznych znajdują się fotouczulacze będące pochodnymi:

- i. porfiryny: Levulan®, Metvix®, Gliolan® jako pro-leki oraz Photofrin®;
- ii. chloryny: Foscan®, Photochlor®, Purlytin®, Photolon®, Laserphyrin®;
- iii. teksafiryny: Lutrin®, Xcytrin®;
- iv. ftalocyjaniny: Photosens®, Pc4 [10,11].

Mechanizm działania terapii fotodynamicznej polega na interakcji fotouczulacza, tlenu cząsteczkowego i światła, które występując osobno nie wykazują aktywności. W cząsteczce fotouczulacza po absorpcji kwantów promieniowania następuje wzbudzenie związku i reorganizacja struktury elektronowej. Następnie zgromadzona energia przeniesiona zostaje na tlen molekularny, który ulega wzbudzeniu i przekształca się w tlen singletowy. Powyższy mechanizm procesu fotodynamicznego określany jest jako mechanizm typu II. Natomiast typ I polega na przeniesieniu elektronu lub protonu ze wzbudzonego fotouczulacza na otaczające struktury, mogą to być: lipidy, białka, kwasy nukleinowe i inne biologicznie ważne molekuły. Substratem może być również tlen, a w wyniku takiej interakcji powstają reaktywne formy tlenu (RFT) m.in.: anionorodniki ponadtlenkowe czy rodniki hydroksylowe [6,8,12]. Z przeprowadzonych badań wynika, że w leczeniu metodą PDT przeważa typ II procesu fotodynamicznego. Wytworzony tlen singletowy niszczy komórki nowotworowe zlokalizowane tylko wokół fotouczulacza, ponieważ czas życia tlenu singletowego określa się na 10 - 320 nanosekund, a zasięg jego działania od 10 do 55 nm [8]. Śmierć komórek następuje na drodze apoptozy (śmierć kontrolowana przez komórkę) lub nekrozy (niekontrolowana martwica) [6]. Terapia fotodynamiczna umożliwia wybiórcze niszczenie zmian nowotworowych. Selektywność metody wynika z kumulacji fotouczulacza w chorych tkankach, ponadto proces fotodynamiczny "uruchamiany" jest poprzez selektywne naświetlanie zmiany chorobowej. Kumulacja fotouczulaczy W tkankach nowotworowych możliwa jest dzięki tzw. efektowi EPR (ang. enhanced permeability and retention). Istotą efektu EPR jest zwiększona przepuszczalność naczyń guza dla związków o dużej masie cząsteczkowej. Ponadto odpływ limfy z tkanek nowotworowych jest utrudniony, co powoduje zmniejszenie odprowadzania porfirynoidów [12,13].

Pomimo, że do lecznictwa sukcesywnie wprowadza się nowe fotouczulacze, dotychczas żaden nie spełnia wszystkich stawianych wymagań (rozdz. V). Z tego względu uzasadnione jest prowadzenie poszukiwań idealnego fotouczulacza, głównie na drodze syntezy organicznej, która pozwala otrzymać porfirynoidy z rozbudowanym warunkującym oczekiwane układem peryferyjnym, właściwości. Przykładem obrazującym możliwości modyfikacji peryferium makrocykla jest struktura dendrymeru (XIII, ryc. 3). Właściwości fotouczulaczy można również modyfikować dzięki zastosowaniu nanotechnologii. W piśmiennictwie znajdują się liczne doniesienia dotyczace zwiekszenia selektywności fotouczulaczy poprzez połaczenie Ζ przeciwciałami ukierunkowanymi na dany typ nowotworu lub przez zastosowanie nośników w tym liposomów, polietylenoglikoli oraz frakcji LDL. Bardzo ciekawym podejściem diagnostyczno-terapeutycznym są nanoplatformy, na których umieszcza się fotouczulacz oraz np. tlenki żelaza. Taka nanoplatforma umożliwia diagnostykę metodą MRI (ang. magnetic resonanse imaging), a po zdiagnozowaniu podczas tej samej procedury medycznej leczenie za pomocą PDT [13–15].

Ryc. 3. Struktura chemiczna porfirynoidowego dendrymeru XIII (kolor czerwony – pierścień makrocykliczny; kolor niebieski – rozbudowane peryferium).

II. CZĘŚĆ LITERATUROWA

1. Fotoinaktywacja wirusów

Wirusy są przyczyna łagodnych infekcji określanych powszechnie przeziębieniem, ale również tych zagrażających życiu. Działania uboczne standardowej farmakoterapii skierowanej przeciw wirusom, wzrastająca oporność na najnowsze leki przeciwwirusowe oraz liczne pandemie infekcji wirusowych skłaniają do poszukiwania nowych, alternatywnych metod terapii. Jednym z kierunków badań jest terapia fotodynamiczna skierowana przeciw mikroorganizmom *Photodynamic* (ang. Antimicrobial Chemotherapy, PACT), zastosowana po raz pierwszy ponad 40 lat temu [16]. We wczesnych badaniach klinicznych prowadzonych na wirusie opryszczki (Herpes simplex virus, HSV), użyto fotouczulacza z grupy trójcyklicznych związków heteroaromatycznych, a mianowicie czerwieni obojętnej (XIV), który po naświetleniu powodował inaktywację wirusów [17]. Kolejne przeprowadzone badania dotyczyły oceny aktywności innych pochodnych trójcyklicznych związków heteroaromatycznych (ryc. 4), tj. błękitu metylenowego (XV), błękitu toluidynowego (XVI) i proflawiny (XVII) – przeciwko wirusowi polio. Wyniki badań wykazały zależność między cyklem życiowym wirusa *polio*, a skutecznością jego fotodeaktywacji. Odkryto, że dojrzałe formy wirusa są mniej podatne na działanie terapii [16–18].

Ryc. 4. Struktury chemiczne fotouczulaczy XIV – XVII.

Ponadto PACT okazała się również skuteczna w inaktywowaniu wirusa MVM (*Minute virus of mice*), wirusa Semliki forest (*Semliki forest virus*, SFV), wirusa pęcherzykowatego zapalenia jamy ustnej (*Vesicular stomatitis virus*, VSV), ludzkiego wirusa niedoboru odporności (*Human immunodeficiency virus*, HIV), ludzkiego rinowirusa (*Human rhinovirus*, HRV), wirusa gorączki Zachodniego Nilu (*West Nile virus*, WNV), małpiego wirusa niedoboru odporności (*Simian immunodeficiency virus*, SIV), wirusa grypy A (*Influenza virus A*, INF), wirusa brodawczaka ludzkiego (*Human*)

papilloma virus, HPV) [19]. Działanie PACT opiera się na fotodynamicznej reakcji między nietoksycznym fotouczulaczem, a tlenem cząsteczkowym po ekspozycji fotouczulacza na promieniowanie o odpowiedniej długości fali. W wyniku interakcji fotouczulacz - tlen cząsteczkowy - światło, powstają reaktywne formy tlenu (RFT), z których tlen singletowy jest głównym czynnikiem odpowiedzialnym za skuteczność terapii. Tlen singletowy, jako wysoce reaktywna forma tlenu, reaguje z biomolekułami wirusa powodując jego inaktywację. Z licznie prowadzonych na ten temat badań wynika, że tlen singletowy powoduje destrukcję takich wirusowych struktur jak: białka osłonek lipidowych wirusa, ale również kwasów nukleinowych kapsydu, [20-24]. Z uwagi na brak specyficznego celu molekularnego dla tlenu singletowego, można zakładać, że wytworzenie oporności przez mikroorganizmy na PACT wydaje się mało prawdopodobne. Pomimo, że znane sa enzymy eliminujące wolne rodniki z organizmów żywych takie jak – dysmutaza ponadtlenkowa, katalaza i peroksydaza – tlen singletowy, jako główny czynnik generowany w procesie fotodynamicznym, nie jest przez nie neutralizowany [25]. Ponadto m.in. Kim i wsp. udowodnili, że tlen singletowy może inaktywować wymienione enzymy [26]. Badania oporności wirusów na leczenie metodą PACT prowadzili także m.in. Costa i wsp., którzy jako model wirusa wykorzystali bakteriofag T4, a jako fotouczulacze zastosowali pochodne kationowe porfiryny. Doświadczenie udowodniło, że po kilkukrotnym powtórzeniu procedury fotodynamicznej, wirusy nie są zdolne do wytworzenia oporności przeciwko metodzie PACT [24].

Istotnym problemem, jaki wiąże się z zastosowaniem terapii fotodynamicznej jest sposób dostarczania światła do fotouczulacza znajdującego się w pobliżu wirusa. Infekcje wirusowe mają zazwyczaj charakter ogólnoustrojowy, dlatego naświetlanie tkanek wewnętrznych stwarza duże problemy. Z tego względu rozpoczęto badania nad wykorzystaniem tej metody w sterylizacji preparatów krwiopochodnych. Pomimo, że honorowi dawcy krwi są poddawani wnikliwym badaniom pod kątem infekcji wirusowych, ryzyko transmisji wirusa wśród krwiodawców jest nadal aktualne. Okazuje się bowiem, że w przypadku nowo zainfekowanych dawców krwi, stosowane testy na obecność wirusa wykazują wyniki negatywne, pomimo istnienia zakażenia. Największe zagrożenie niesie zakażenie jednostek krwi: cytomegalowirusem (*Cytomegalovirus*, CMV), wirusem zapalenia wątroby typu B (*Hepatitis B virus*, HBV), wirusem zapalenia wątroby typu C (*Hepatits C virus*, HCV) oraz wirusem niedoboru odporności (*Human immunodeficiency virus*, HIV). Obecnie preparaty krwi sterylizuje się m.in. metodami

termicznymi, które pozwalają na eliminację wirusów u nowo zainfekowanych dawców. Jednak niestety taki sposób sterylizacji, powoduje nieodwracalne zmiany we frakcji białkowej (np. albuminach, czynnikach krzepnięcia krwi), co znacznie ogranicza zastosowanie tej metody [17,22,27,28].

Dotychczas oceniono aktywność przeciwwirusową licznych fotouczulaczy, zarówno związków syntetycznych np. porfiryn, chloryn, ftalocyjanin, merocyjaniny 540 (MC 540, **XVIII**) oraz fotouczulaczy pochodzenia naturalnego – hiperycyny, ryboflawiny (**XIX**) i psoralenów (ryc. 5) [29].

Ryc. 5. Struktury chemiczne fotouczulaczy XVIII i XIX.

Z przeprowadzonych doświadczeń *in vitro* oraz *in vivo* wynika, że PACT wykazuje wysoką skuteczność przeciw wirusom, które nie wniknęły jeszcze do komórki, natomiast dużo mniejszą w stosunku do wirusów usytuowanych wewnątrz komórek gospodarza [30]. Ograniczenia stosowania PACT są analogiczne jak w przypadku PDT i uwarunkowane głównie właściwościami związków fotouczulających.

2. Fotouczulacze wykazujące aktywność przeciwwirusową

2.1. Fotouczulacze z trójcyklicznym układem heteroaromatycznym

Do tej grupy należą fenotiazyny z najważniejszym ich przedstawicielem – błękitem metylenowym (*methylene blue*, **XV**), który został dokładnie oceniony jako fotouczulacz zdolny do inaktywacji wirusów. Pierwsze doniesienia, które wskazują na użyteczność w sterylizacji jednostek krwi, datują się w początkach lat 90-tych XX wieku [18,31]. Błękit metylenowy działa inaktywująco na wirusy RNA, powodując destrukcję białek w osłonce wirusa oraz zakłócając funkcjonowanie polimerazy, co wywołuje zahamowanie syntezy kwasów nukleinowych. Z uwagi na długi czas życia wzbudzonego stanu trypletowego może reagować z biomolekułami bezpośrednio (typ I) lub pośrednio, poprzez wydajne generowanie tlenu singletowego (typ II). Błękit metylenowy silnie

wiąże się z DNA lub RNA, szczególnie z guaniną i cytozyną, a po ekspozycji takiego połączenia na promieniowanie o długości fali $\lambda = 665$ nm, wytwarza się tlen singletowy i DNA zostaje utleniony. Głównym produktem interakcji DNA lub RNA z błękitem metylenowym przy udziale światła jest 8-hydroksyguanina. Ponadto zaobserwowano również tworzenie się wiązań krzyżowych pomiędzy łańcuchami kwasów nukleinowych wirusa [17,19,31]. Owada i wsp. udowodnili, że efekt przeciwwirusowy **XV** w PACT jest uwarunkowany głównie destrukcją kwasów nukleinowych, a tylko w niewielkim stopniu niszczeniem białek strukturalnych [32]. Pomimo licznych zalet, kliniczne stosowanie tego fotouczulacza zostało zakwestionowane, ponieważ pochodne fenotiazyny posiadają możliwość tworzenia adduktów z DNA, również w zdrowych komórkach organizmu, co powoduje wystąpienie genotoksyczności. Jednak w przypadku sterylizacji produktów krwiopochodnych, które nie zawierają DNA (czerwone krwinki, osocze), błękit metylenowy ma duże znaczenie ze względu na preferencyjne wiązanie się z kwasami nukleinowymi wirusów. Największą zaletą opisanej metody jest udokumentowana licznymi badaniami skuteczność w inaktywowaniu nie tylko wielu wirusów, w tym WNV i HIV, ale również działanie bójcze przeciw bakteriom i pierwotniakom [19,33–35]. Metoda wykorzystująca błękit metylenowy i światło widzialne do pozyskiwania osocza wolnego od wirusów została zatwierdzona przez Światową Organizację Zdrowia (World Health Organization, WHO) [36]. Zaproponowana metoda oparta jest na wynikach badań z lat 90-tych XX wieku [18,30,37–42]. Jednak ze względu na istotność problemu nadal trwają intensywne studia dotyczące tego tematu. Garwood i wsp. ocenili skuteczność fotosterylizacji świeżego i mrożonego osocza przy użyciu błękitu metylenowego, a także możliwości jego usuwania po zakończeniu procedury PDT. Do usuwania fotouczulacza po sterylizacji użyto dwóch filtrów, filtra PallMB1 i MacoPharma Bluflex. Okazało się, że zastosowanie obu filtrów powoduje tylko nieznaczne obniżenie stężenia czynników krzepnięcia krwi [38]. Z uwagi na dobrze poznaną genotoksyczność błękitu metylenowego, zwalidowano stosowanie określonych procedur podczas sterylizacji jednostek krwi, a także udoskonalono filtry eliminujące barwnik po zabiegu. Na przykład francuska firma MacoPharma wprowadziła do użytku klinicznego nowe systemy transfuzyjne, oparte na sterylizacji produktów krwiopochodnych przy użyciu światła i błękitu metylenowego tj. Theraflex Błękit metylenowy-plasma, Theraflex UV-Platelets and P-Capt filter (MacoPharma, France) [43]. Bardzo ciekawe badania aktywności z użyciem błękitu metylenowego w PACT przeprowadzili w 2009 roku

Marotti i wsp., w których zastosowano 0,01% roztwór fotouczulacza w leczeniu skórnych symptomów infekcji wirusem HSV. Okazało się, że zmiany skórne zniknęły i nie zaobserwowano objawów infekcji przez 6 – 10 miesięcy od zakończenia leczenia. Z przeprowadzonych badań wynika również, że dozymetria (warunki naświetlania i zastosowane dawki fotouczulacza) jest niezwykle ważnym czynnikiem warunkującym sukces terapii. Marotti i wsp. ustalili, że w celu uzyskania jak najlepszych efektów leczniczych infekcji wirusem HSV, do leczenia zmian pęcherzykowatych należy użyć światła wysokoenergetycznego (UV), a dla zmian o charakterze wykwitu (strupy) najlepsze jest światło niskoenergetyczne (czerwone) [44]. Błękit metylenowy wykazał również skuteczność w inaktywowaniu wirusów zlokalizowanych na powierzchniach szpitalnych. W 2010 roku Wong i wsp. przeprowadzili doświadczenia na Enterowirusie 71 (EV71), znanym z wysokiej oporności na inaktywacje. Okazało się, że optymalny efekt uzyskano stosując fotouczulacz o stężeniu 0,1 mM oraz całkowitą dawkę promieniowania 200 J/cm². Efekt inaktywacji był porównywalny na modelowej powierzchni i w zawiesinie komórkowej. Z wykorzystaniem technik reakcji łańcuchowej polimerazy w czasie rzeczywistym (RT-PCR) i Western-blot, stwierdzono zniszczenie zarówno kwasów nukleinowych, jak również protein wirusa [45].

Do grupy trójcyklicznych związków heteroaromatycznych można również zaliczyć związek naturalny, a mianowicie ryboflawinę (**XIX**, witamina B₂). Już w 1965 roku zostały opublikowane dane dotyczące witaminy B₂ i jej potencjału w inaktywacji wirusów oraz bakterii, po ekspozycji na promieniowanie widzialne lub UV [46]. Działanie ryboflawiny w PACT polega na fotodynamicznym utlenianiu guaniny w kwasach nukleinowych patogenów, uniemożliwiona zostaje w ten sposób replikacja DNA [47,48]. W przeciwieństwie do błękitu metylenowego, ryboflawina inaktywuje wirusy zarówno wewnątrz- jak i zewnątrzkomórkowe (np. HSV) oraz zabija szerokie spektrum bakterii. Niestety – jak wynika z badań wielu autorów – pewne wirusy pozostają oporne na fotodynamiczne działanie ryboflawiny np. *Porcine parvovirus*, jednak z drugiej strony jest ona bardzo silnym dezaktywatorem wirusa Zachodniego Nilu (WNV), wykazując log redukcji 5,19 [23,48,49].

2.2. Porfiryny i chloryny

Najpopularniejszą porfiryną stosowaną w PDT jest związek endogenny – protoporfiryna IX (**XX**, PPIX, ryc. 6), którego biosyntezę można znacznie przyspieszyć

poprzez podaż do organizmu kwasu 5-aminolewulinowego (**XXI**, ALA), który w tym przypadku jest pro-lekiem. W 2012 roku ukazała się praca Harrisa i Pierpointa zawierająca przegląd piśmiennictwa, w której wykazano duży potencjał PPIX w badaniach *in vitro* w inaktywacji wirusów otoczkowych HIV, HSV oraz HPV [50].

Ryc. 6. Struktura chemiczna fotouczulaczy pochodnych porfiryn XX – XXIII.

W 2008 roku Yin i wsp. przedstawili działanie eteru monometylowego hematoporfiryny (HMME), którego aktywność została oceniona przeciw wołowemu wirusowi niedoboru odporności, stanowiącego zastępczy model wirusa HIV. Okazało się, że zastosowana procedura PDT z wykorzystaniem HMME jako fotouczulacza inaktywuje wirusa w zainfekowanych komórkach [51]. Autorzy kontynuowali prace badawcze i w 2012 roku opublikowali wyniki badań na wirusie HIV, w których wykazali skuteczną fotoinaktywację wirusa poprzez zastosowanie HMME [52]. Równocześnie aktywność przeciwwirusową związku HMME analizowała grupa badawcza Li i wsp. [33]. Z przeprowadzonych doświadczeń wynika, że HMME hamuje HIV wnikanie do ludzkich komórek, ale również inaktywuje wirusy zewnątrzkomórkowe. Ponadto Li i wsp. stwierdzili, że w warunkach in vitro, metoda fotodynamicznej inaktywacji wirusa HIV z wykorzystaniem HMME jako fotouczulacza wywiera mniej toksycznych efektów na komórki w porównaniu z błękitem metylenowym [33]. Porfiryny są zdolne do inaktywacji wirusa HIV na dwa sposoby. Pierwszy polega na niszczeniu poprzez proces fotodynamiczny cholesterolu, kwasów tłuszczowych, co powoduje dezintegrację i destrukcję otoczki wirusa [53]. Drugi – na hamowaniu wnikania wirusa HIV do komórki, dzięki wiązaniu porfiryn anionowych z glikoproteiną wirusa (gp120). Interakcja porfiryn z gp120 powoduje zmiany konformacyjne glikoproteiny, co skutecznie blokuje interakcję gp120 z receptorem CD4 limfocytów gospodarza [54]. Wiązanie porfiryn z gp120, a dokładniej z petla V3, jest uwarunkowane przez oddziaływania elektrostatyczne, ponieważ pętla V3 jest naładowana dodatnio. Eksperymenty inaktywacji wirusa HIV-1 przez związki makrocykliczne prowadzili Dairou i wsp. [54]. Zaobserwowano, że porfiryny zawierające grupy sulfonowe (XXII), jako związki anionowe, silnie wiążą się konkurencyjnie do pętli V3 gp120. Zauważono, że wydajność tego procesu znacznie wzrasta w ciemności w przypadku porfiryn zawierających dwa ładunki ujemne w cząsteczce. Ponadto badania wykazały, że naświetlanie nie wpływa znacząco na hamowanie łączenia się wirusa z receptorem CD4 limfocytów. Zaobserwowano natomiast proces destrukcji struktur pętli V3, przez wygenerowany tlen singletowy po naświetleniu makrocykla [54]. Podobne wyniki otrzymali Vzorov i wsp., którzy badali aktywność przeciwwirusową pochodnych sulfonowych tetraaryloporfiryn (XXIII). Związki te wykazały dużą aktywność dzięki możliwości wiązania się z gp120. Stosunkowo niewielka cząsteczka XXIII stwarza możliwość otrzymania żeli dopochwowych, których zadaniem będzie hamowanie infekcji wirusem HIV drogą płciową [55].

Pochodne porfiryn okazały się zdolne do fotoinaktywacji wirusa HSV. Inaktywację tego wirusa przy wykorzystaniu pochodnych porfiryn badali Tomé i wsp., którzy otrzymali na drodze syntezy koniugaty tripirydyloporfiryn z D-galaktozą o charakterze obojętnym (**XXIV**) i kationowym (**XXV**, ryc. 7a). Badania wykazały, że naświetlanie koniugatów powoduje znaczny wzrost inaktywacji wirusa. Stwierdzono, że związek **XXV** charakteryzował się pewną aktywnością już w ciemności, w odróżnieniu od **XXIV**. Natomiast obie pochodne eksponowane w czasie 15 min na światło białe (50 mW/cm²) wykazywały skuteczność w stężeniu 0,02 μM. Ponadto autorzy stwierdzili, że obojętna forma fotouczulacza jest aktywna w późniejszych fazach infekcji [56]. Wysoki stopień inaktywacji wirusa HSV przez związki o właściwościach kationowych stwierdzili również Silva i wsp., którzy badali aktywność kationowej pochodnej mezo-tetrafenyloporfiryny (**XXVI**, ryc. 7b). Wykazano, że po 15 min naświetlania z zastosowaniem analogicznej dawki promieniowania jak w przypadku badań Tomé i wsp. [56], stopień inaktywacji wirusa wynosił 99% [57].

Ryc. 7. Struktura fotouczulaczy pochodnych porfiryn **XXIV** – **XXVI**; a) koniugaty porfiryn z D-galaktozą, b) kationowa pochodna tetrafenyloporfiryny.

Natomiast Ayala i wsp. ocenili zdolność inaktywacji wirusa HSV przez ALA, który jest naturalnym prekursorem PPIX. Przeprowadzając badania na keratynocytach, jako modelu komórkowym stwierdzili, że zastosowanie ALA jako fotouczulacza hamuje rozprzestrzenianie się wirusa. Dodatkowo zaobserwowali, że dla efektywnej fotoinaktywacji niezbędne jest przeprowadzenie leczenia w pierwszej fazie infekcji HSV [58]. Większość badań fotoinaktywacji wirusów wykonano w warunkach in vitro, jednak dostępne są nieliczne doniesienia, w których przedstawia się wyniki badań in vivo. Przykładem są doświadczenia wykonane na świnkach morskich, które wskazały na wysoki stopień fotoinaktywacji wirusa opryszczki przez ALA szczególnie w przypadkach, gdy aplikowano kwas 5-aminolewulinowy natychmiast lub do 6 h po infekcji [59,60]. Z kolei bardzo ciekawy przypadek kliniczny opublikowali w 2011 roku Nobbe i wsp., którzy opisali leczenie 81-letniego pacjenta, cierpiącego na nawracające infekcje skórne wirusem HSV, występujące po leczeniu rogowacenia słonecznego metodą PDT. Tego rodzaju infekcja jest rzadkim efektem ubocznym leczenia słonecznego metoda PDT. Powodem rogowacenia zakażenia jest lokalna immunosupresja, co prowadzi do większej podatności leczonych miejsc na infekcje. Zastosowana procedura przeciw wirusowi HSV odznaczała się wysoką skutecznością eliminacji objawów skórnych, a także obserwowano doskonałe efekty kosmetyczne [61]. Niestety nie wszystkie fotouczulacze aktywne w fotoinaktywacji wirusów na

modelach *in vitro* wykazują aktywność w warunkach *in vivo*. Przykładem jest przeprowadzona z sukcesem w warunkach *in vitro* ocena aktywności hematoporfiryny przeciw wirusowi HSV na modelu komórkowym VERO. Jednak niestety w tym przypadku fotouczulacz okazał się nieaktywny w badaniach *in vivo* na królikach [17,62].

Ryc. 8. Struktura fotouczulaczy XXVII – XXXI.

Metoda fotoinaktywacji może wkrótce stać się metodą uzupełniającą w leczeniu wirusów opornych na konwencjonalne środki. Ostatnie pandemie wirusa grypy wymusiły intensyfikację badań nad nowymi strategiami walki z tym wirusem. W 2009 roku Wen i wsp. przedstawili nowatorską metodę, polegającą na wykorzystaniu aktywności połączenia porfiryny z inhibitorem neuraminidazy – zanamivirem (**XXVIII**, ryc. 8). Okazało się, że koniugat słabo hamuje aktywność neuraminidazy, ale jednocześnie zaobserwowano bardzo dużą aktywność (od 10 do 100 razy silniejszą niż w przypadku porfiryny lub zanamiviru) w inaktywacji samego wirusa. Wzrost aktywności przeciwwirusowej koniugatu przypisano tlenowi singletowemu generowanemu przez ugrupowanie porfirynowe po ekspozycji na promieniowanie [63].

Ważnym problemem współczesnego społeczeństwa jest również infekcja wirusem wirusowego zapalenia wątroby (HAV, HBV, HCV), zwłaszcza typu C. Aktualnie medycyna nie dysponuje lekiem, który byłby skuteczny w leczeniu infekcji, dlatego poszukiwania ciągle trwają. Badania w tym kierunku prowadzili m.in. Casteel i wsp., którzy ocenili zdolność inaktywacji wirusa HAV, przez kationowe i anionowe

pochodne tetrafenylowych demetalowanych porfiryn (**XXIX**). Stwierdzono, że pochodne kationowe działały szybciej i wykazywały szersze spektrum niż pochodne anionowe. Obserwowane zależności autorzy uzasadnili wzajemnym elektrostatycznym przyciąganiem, ujemnie naładowanych protein kapsydu wirusa z dodatnio naładowanymi porfirynami. Dzięki tym oddziaływaniom, po naświetleniu tlen singletowy jest generowany w bezpośrednim sąsiedztwie kapsydu, co przekłada się na dużą efektywność inaktywacji. Natomiast zdolność inaktywacji wirusa HAV w osoczu, była nieco osłabiona w wyniku niekowalencyjnego wiązania fotouczulacza przez białka osocza [64].

Innym również stwarzającym poważne problemy epidemiologiczne wirusem, który można inaktywować metodą fotodynamiczną przy użyciu pochodnych porfiryn jest wirus HPV. Z punktu widzenia aplikacyjności najkorzystniejsze właściwości posiada ALA, który doskonale nadaje się do nanoszenia na skórne i śluzówkowe zmiany chorobowe w postaci kremów lub żeli. Badania w tym kierunku prowadzili m.in. Szeimies i wsp., którzy stwierdzili, że wykorzystanie ALA w PACT nie tylko powoduje inaktywację wirusa w procesie fotodynamicznym, ale również stymuluje układ immunologiczny, co intensyfikuje terapię i pozwala usunąć formy utajone wirusa. Z tego względu po zastosowaniu procedury fotodynamicznej z wykorzystaniem ALA można zmniejszyć ryzyko wystąpienia nawrotów skórnych jako symptomów infekcji. Odnotowano również, iż leczenie metodą fotodynamiczną brodawek i infekcji wirusowych HPV powoduje ból towarzyszący naświetlaniu, który ustępuje po zabiegu [65]. Intensywne badania fotoinaktywacji wirusa HPV przez ALA pozwoliły sformułować wnioski, że zastosowanie światła białego daje lepsze rezultaty niż niebieskiego lub czerwonego. Metoda fotodynamiczna z wykorzystaniem ALA okazała się również skuteczniejsza od standardowej krioterapii [66]. W 2000 roku Stender i wsp. przeprowadzili randomizowane badania kliniczne z podwójną ślepą próbą dotyczące skuteczności ALA w leczeniu opornych na konwencjonalne zabiegi medyczne brodawek stóp i rąk. Kwas 5-aminolewulinowy zastosowano w postaci opatrunku okluzyjnego jako 20% krem, natomiast próbę odniesienia stanowił krem zawierający placebo. Po 4 h od nałożenia opatrunku na brodawki, zmiany eksponowano na światło czerwone stosując dawkę promieniowania 70 J/cm² i procedurę powtarzano odstępach tygodniowych. Okazało się, że u 56% pacjentów leczonych W fotodynamicznie z ALA jako pro-lekiem, wszystkie brodawki zniknęły, a w przypadku grupy placebo wskaźnik ten kształtował się na poziomie 42% [67]. Inada i wsp. w

opublikowanej w 2012 roku pracy podkreślają bardzo dobre efekty kosmetyczne leczenia brodawek (zakażeń wirusem HPV) za pomocą PDT, w porównaniu z konwencjonalnymi technikami takimi jak zabieg chirurgiczny, czy krioterapia [68]. ALA okazał się również przydatny we wczesnym diagnozowaniu zakażeń wirusem brodawczaka. Wydaje się, że kluczową rolę w leczeniu brodawek odgrywa całkowita eradykacja wirusa, co niestety nie zawsze jest możliwe. Obecnie stosowane testy diagnostyczne nie są w stanie wykryć infekcji utajonych. Pilotażowe badania mające na celu ustalenie użyteczności diagnostyki fluorescencyjnej do wykrywania infekcji HPV przeprowadzili Wang i wsp. w 2008 roku [69]. Próby skuteczności diagnostyki podjęto na zewnętrznych organach płciowych, w tym celu naniesiono 20% krem ALA pacjentom, u których zdiagnozowano brodawki narządów płciowych. Po 2 h inkubacji krem został usuniety, powstała PPIX wzbudzono światłem i obserwowano czerwona fluorescencję w obrębie zmian chorobowych. W przypadku wszystkich HPV pozytywnych pacjentów, w obrębie zainfekowanych obszarów zauważono czerwoną fluorescencję. Dodatkowo u 14 spośród 30 pacjentów zaobserwowano czerwoną fluorescencję (zmiany chorobowe) w miejscach, w których standardowo stosowany test dał wynik negatywny [68-70]. Ciekawy efekt opisali Trushina i wsp. w 2008 roku, którzy prowadzili terapię metodą PDT nieinwazyjnych nowotworów szyjki macicy. Okazało się, że w 94,4% przypadków wirus HPV współtowarzyszący nowotworom został inaktywowany [71]. Wirus HPV jest zdolny również do infekowania dróg oddechowych, dlatego zbadano skuteczność hematoporfiryny i dihematoporfiryny w eradykacji wirusa z tych tkanek. Fotouczulacz został podany pacjentom dożylnie. Okazało się, że zastosowane leczenie spowodowało znaczące obniżenie wzrostu brodawek w okresie do 3 lat po zabiegu. Należy podkreślić, że wykorzystanie metody PDT nie spowodowało wystąpienia nowotworu (w szczególności powiązanego z wirusem HPV) [17,72].

Przedstawione powyżej badania aktywności porfiryn skupione były na wirusach z otoczką tj. HIV, HSV i HPV. Natomiast Egyeki i wsp. przeprowadzili badania na modelu wirusa bezotoczkowego. W badaniach wykorzystano fag T7 jako model wirusa DNA bez otoczki i określono aktywność przeciwwirusową pochodnej cukrowej tetrafenylowej porfiryny (**XXVII**, ryc. 8), zastosowanej jako fotouczulacz. Okazało się, że związek był całkowicie nieaktywny w ciemności, natomiast efekt fotodynamiczny inaktywujący wirusy po naświetleniu był znaczący. Dodatkowo stwierdzono synergizm między działaniem tlenu singletowego i innych rodników tlenowych, które powodowały

destrukcję protein kapsydu wirusa. Dzięki zniszczeniom powodowanym przez RFT w otoczce/kapsydzie wirusa (pełni ona decydującą rolę we wczesnych fazach infekcji), wirusy stają się niezdolne do infekowania komórek pomimo nienaruszonego materiału genetycznego [73].

2.3. Chloryny

Chloryny jako pochodne porfiryn również wykazują aktywność przeciwwirusową. Jednak badania dotyczące zastosowania tej grupy porfirynoidów w PACT nie są zaawansowane. W piśmiennictwie można znaleźć nieliczne doniesienia dotyczące fotoinaktywacji wirusów przy udziale chloryn, a przykładem jest określenie fotodynamicznej aktywności pochodnych chloryn (**XXX**) w odniesieniu do wirusa HIV-1. Wykazano, że związki te powodują uszkodzenia w otoczce wirusa poprzez specyficzne łączenie się grupami anionowymi i hydrofobowymi z dodatnio naładowaną glikoproteiną gp120 (pętla V3). Po zadokowaniu się pochodnej chloryny w pętli V3, w wyniku naświetlania następuje uruchomienie procesu fotodynamicznego i zniszczenie pętli przez tlen singletowy. W ten sposób struktury odgrywające decydującą rolę w procesie wnikania wirusa do komórki ulegają rozkładowi [27].

2.4. Chlorofile

Grupą fotouczulaczy o podobnej strukturze do chloryn i porfiryn są chlorofile, które również analizuje się w kierunku zastosowania w PACT. Badania na ten temat prowadzili Lim i wsp., którzy wyizolowali chlorofilowe metabolity jedwabników (XXXI, ryc. 8) i ocenili skuteczność w inaktywacji wirusa pęcherzykowatego zapalenia jamy ustnej (VSV). Zawiesinę wirusa potraktowano różnymi dawkami XXX i naświetlono światłem czerwonym. Do określania zdolności replikacyjnych wirusów zastosowano metodę RT-PCR, która wykazała, że pojedyncza dawka 30 µg/ml XXX po naświetleniu powoduje całkowite zahamowanie syntezy wirusowego RNA w zainfekowanych komórkach. Metoda PACT spowodowała spadek aktywności polimerazy RNA wirusa o 85%, dodatkowo stwierdzono powstawanie wiązań krzyżowych w białkach wirusa. Skuteczność metody PACT przeciw VSV z wykorzystaniem XXX wyjaśniono fotoinaktywacją proteiny M wirusa i zniszczeniem wirusowego RNA i/lub polimerazy RNA [74].

2.5. Ftalocyjaniny i naftalocyjaniny

Aktywność fotodynamiczna ftalocyjanin i naftalocyjanin wykorzystywana jest głównie w badaniach dotyczących leczenia nowotworów. Niektóre pochodne tych związków oceniano również jako fotouczulacze inaktywujące wirusy [75,76]. Ftalocyjaniny wykazują zadowalającą zdolność generowania tlenu singletowego, podczas wzbudzania promieniowaniem niskoenergetycznym, dlatego też spodziewano się korzystnych efektów w fotodynamicznym inaktywowaniu wirusów. Tematem tym zajmowali się Smetana i wsp., którzy wykonali doświadczenia z wirusem HSV, wykorzystując pochodną kationową i obojętną ftalocyjaniny. Związki wykazały dużą aktywność w fotoinaktywowaniu wirusów otoczkowych, szczególnie pochodne amfifilowe, które posiadają największą zdolność do penetracji błon komórkowych i inaktywacji wirusów wewnątrzkomórkowych. Pochodne ftalocyjanin po aktywacji światłem powodują destrukcję otoczki wirusowej, a także niszczą glikoproteinę D wirusa [76].

Natomiast o wiele mniej aktywne okazały się trisulfonaftoftalocyjanina glinowa (XXXII, ryc. 9) oraz ftalocyjanina cynkowa z podstawnikami metylopirydoksylowymi (XXXV), które były oceniane przez Gaspard i wsp. z wykorzystaniem wirusa bez otoczki, a mianowicie rinowirusa. Zauważono również, że ftalocyjaniny, których cząsteczki obdarzone były czterema ładunkami dodatnimi, wykazały dużą aktywność przeciw ludzkiemu rinowirusowi, jednak nie działały wg mechanizmu fotodynamicznego [75]. Badania aktywności przeciwwirusowej sulfonowych pochodnych ftalocyjanin z inkorporowanymi jonami różnych metali w centrum makrocykla, kontynuowali Vzorov i wsp., którzy analizowali sulfonowe i karboksylowe pochodne ftalocyjanin z inkorporowanymi jonami Cu^{2+} , Al^{3+} , Zn^{2+} w centrum makrocykla na modelu linii komórkowej HeLa z ekspresją białka CD4. Wymienieni badacze stwierdzili, że są to związki zdolne do zapobiegania zakażeniom wirusem HIV, poprzez blokowanie wiązania glikoproteiny gp120 wirusa do receptorowego białka CD4 [77].

W 2012 roku nową strategię fotodynamicznej inaktywacji wirusów zaproponowali Lim i wsp., którzy otrzymali nanoukład składający się z ftalocyjaniny cynkowej (**XXXIII**), nanokryształów fluorku sodu i itru domieszkowanych jonami iterbu i erbu. Wszystkie składniki zostały osadzone na matrycy zbudowanej z polietylenoiminy.

Ryc. 9. Struktury fotouczulaczy XXXII – XXXV.

Podczas ekspozycji wymienionego nanoukładu na promieniowanie z zakresu NIR $(\lambda = 980 \text{ nm})$ następowała konwersja promieniowania NIR na światło widzialne, które następnie było emitowane i kolejno absorbowane przez związek XXXIII, generujący tlen singletowy. Zdolność opisanego nanoukładu do inaktywacji wirusów zbadano in *vitro* (w zawiesinie) wykorzystując wirus Dengi serotyp 2 (model wirusa otoczkowego) oraz adenowirus typ 5 (model wirusa bezotoczkowego). W badaniach in vitro wykazano, że najskuteczniejsze stężenia nanoukładu w fotoinaktywacji mieściły się w zakresie od 4,4 do 440,0 µg/ml. Kolejnym etapem badań były testy *in vivo* na myszach. W tym celu inokulowano zwierzętom zawiesinę wirusów poddaną uprzednio procedurze fotodynamicznej inaktywacji. Autorzy nie odnotowali wystąpienia infekcji po aplikacji zawiesin wirusów myszom. Wyniki uzyskane przez Lim i wsp. wskazały na duży potencjał zaproponowanej strategii [78], potwierdzonej następnie przez Ben-Hur i wsp., którzy podjęli próby sterylizacji produktów krwiopochodnych [79]. Niestety podczas testów oprócz inaktywacji wirusów zaobserwowano, również niszczenie czerwonych krwinek. Jako rozwiązanie powyższego problemu wskazano dodatkowe zastosowanie antyoksydantów np. witaminy E, lub odpowiednią dozymetrię światła tj. duże dawki promieniowania i niskie stężenia fotouczulacza [80,81]. Autorzy kontynuowali badania fotoinaktywacji wirusów wykorzystując ftalocyjaninę krzemową (XXXIV, ryc. 9), która absorbuje promieniowanie z zakresu 690 – 700 nm. Okazało się, że związek **XXXIV** inaktywuje wirusy, wykazując jednocześnie minimalny negatywny wpływ na krwinki czerwone [81]. Dalsze prace przeprowadzone przez Ben-Hur i wsp. z HIV wskazały, wykorzystaniem wirusa że XXXIV poprzez mechanizm fotodynamiczny, powodował apoptoze komórek zainfekowanych wirusem HIV. Największą skuteczność uzyskano dla komórek z utajoną infekcją HIV, a nieco mniejszą dla komórek, które replikowały wirusowe DNA [82]. Natomiast Moor i wsp. z kolei badali zdolność inaktywacji wirusa VSV przy użyciu ftalocyjaniny XXXIV oraz tetrasulfonowej pochodnej ftalocyjaniny glinowej. Z przeprowadzonych badań wynika, że niepodstawiona ftalocyjanina z inkorporowanym jonem glinu(III) wzbudzona światłem czerwonym, działa na wirusowe RNA i polimerazę RNA. W przypadku użycia jako fotouczulacza związku XXXIV, inaktywacja polegała na uniemożliwieniu fuzji wirusa z błoną komórkowa, poprzez zniszczenie ważnych w tym procesie struktur wirusa [83].

Wirus, który jest przyczyną przeziębienia, a mianowicie 20inowirusa typ 5 (RV5) okazał się również podatny na inaktywację przez pochodne ftalocyjanin. Najaktywniejszym związkiem inaktywującym wirus RV5 okazała się trisulfonowa naftobenzoporfirazyna glinowa (**XXXII**), zarówno w testach na wolnym wirusie, jak również na modelu komórkowym VERO. Oceniona została również kationowa pochodna ftalocyjaniny cynkowej **XXXV**, która wykazała właściwości cytoprotekcyjne względem komórek VERO. Komórki po inkubacji ze wspomnianym fotouczulaczem stały się odporne na infekcje wirusem RV5, a efekt cytoprotekcyjny nie zależał od obecności światła. Mechanizm działania cytoprotekcyjnego **XXXV** nie został dotychczas wyjaśniony, dlatego zjawisko to wymaga dalszych badań [75].

2.6. Pochodne fulerenów

Fuleren C_{60} (**XXXVI**, ryc. 10) jest alotropową odmianą węgla odkrytą ok. 30 lat temu. Z licznych doniesień literaturowych wynika, że fulereny posiadają duży potencjał biomedyczny.

Ryc. 10. Struktury fotouczulaczy XXXVI – XLIII.

Najpowszechniejszą formą fulerenu jest fuleren C₆₀ (Buckminster`a), który stanowi sferyczną strukturę składającą się z 12 pentagonów i 20 heksagonów [84]. Fulereny są substancjami wysoce hydrofobowymi, co powoduje bardzo słabą rozpuszczalność w rozpuszczalnikach polarnych. Właściwość ta znacznie utrudnia biomedyczne zastosowanie, jednak unikalne właściwości fotochemiczne skłaniają do modyfikacji fulerenów i opracowywania technik mających na celu zwiększenie rozpuszczalności w wodzie. Fulereny odznaczają się długimi czasami życia wzbudzonych stanów trypletowych, zdolnością wydajnego generowania tlenu singletowego oraz dużą fotostabilnością. Wymienione właściwości warunkują potencjalną wysoką aktywność fotodynamiczną przeciw wirusom [84–87]. Dotychczas oceniono zdolność fotodynamicznej inaktywacji wirusów przez fuleren C₆₀ (Buckminster'a), na wirusach otoczkowych (wirus Semliki Forest, wirus pęcherzykowatego zapalenia jamy ustnej) oraz na wirusach bez otoczki. Kasermann i wsp. przeprowadzili badania z wykorzystaniem fulerenu na zawiesinie wirusów w surowicy wołowej i medium komórkowym, które wskazały znaczny stopień inaktywacji wirusów [86]. Badania dotyczące tego tematu kontynuowali Mashino i wsp., którzy udowodnili zdolność fulerenów do hamowania aktywności enzymów niezbędnych w replikacji wirusa, tj. odwrotnej transkryptazy i proteazy w przypadku wirusa HIV, a polimerazy RNA w możliwość przypadku wirusa HCV [88]. Inne doświadczenia oceniające fotodynamicznego inaktywowania wirusów przy udziale fulerenu Buckminster'a,

wykazały wysoką aktywność przeciwko wirusowi grypy typu A, podtypowi H1N1, który wywołał pandemię w 2009 roku. Stwierdzono, że w wyniku procesu fotodynamicznego następuje destrukcja zewnętrznej otoczki wirusa, co prowadzi do utraty możliwości infekcji komórek gospodarza [89]. Bardzo ciekawą strategię w inaktywowaniu wirusów zaprezentowali Ion i Calin, którzy zaprojektowali fotouczulacz złożony z fulerenu C₆₀, pokrytego warstwą pochodnej porfiryny **XXXVII**. Okazało się, że w inaktywacji wirusa opryszczki pospolitej, nanoukład Ion'a i Calin'a jest bardziej aktywny od składników zastosowanych indywidualnie i odznacza się dużo większą fotostabilnością [90]. Badania nad fotodynamiczną aktywnością przeciwwirusową fulerenów są kontynuowane, a najnowsze doniesienia z 2011 roku grupy badawczej Rud'a przedstawiają możliwość fotoinaktywacji irydowirusów przez C₆₀. Irydowirusy są to duże wirusy DNA wyizolowane z insektów, ryb, płazów i gadów [91].

2.7. Fotouczulacze pochodzenia naturalnego

Psoraleny (XXXVIII - XL, ryc. 10) wykazują wybiórcze powinowactwo do kwasów nukleinowych, zarówno do DNA, jak i RNA. W ciemności interkalują nici kwasów nukleinowych na drodze niekowalencyjnych oddziaływań. Dopiero po ekspozycji na światło UV psoraleny i zasady pirymidynowe kwasów nukleinowych, tworzą wiązania kowalencyjne a wynikiem są mono- i diaddukty. Dzięki tym właściwościom psoraleny zostały poddane wnikliwym badaniom zdolności inaktywacji wirusów [92-95]. Niestety niektóre psoraleny po wzbudzeniu światłem UV, okazały się mutagenne, co przyczyniło się do uzyskania nowych metylowych pochodnych psoralenów, które silniej wiążą się z kwasami nukleinowymi i wykazują zwiększoną rozpuszczalność w wodzie. Okazało się, że te związki charakteryzują się małą mutagennością, a przykładem może być pochodna aminometylowa psoralenu (XXXIX, AMT) [23,31]. Inny z psoralenów – 8-metoksypsoralen (8-MOP) – okazał się skuteczny w badaniach in vitro przeprowadzonych przez Eble i Corash'a z wykorzystaniem wirusa wirusowego zapalenia wątroby typu B kaczki, który użyto jako model ludzkiego wirusa wirusowego zapalenia watroby typu B. Z badań wynika, że 8-MOP był nieaktywny w ciemności, a po ekspozycji na promieniowanie UVA efektywnie inaktywował wirusy [96]. Pochodne psoralenów doskonale nadają się do sterylizacji produktów krwiopochodnych. Z opublikowanych badań przez Singh i wsp. wynika, że pochodna psolarenu – amotosalen (XL) po ekspozycji na światło UV wydajnie inaktywuje wirusy

HBV i HCV; zanotowano log redukcji powyżej 4,5 [97]. Intensywne badania w kierunku fotoinaktywacji wirusów w jednostkach krwi i produktach krwiopodobnych, zaowocowały opracowaniem komercyjnie dostępnych systemów pozwalających sterylizować płytki krwi. Przykładem takiego systemu jest InterceptTM Blood System produkowany przez Cerus Corporation/Baxter Healthcare Corporation. Układ ten zawiera jako fotouczulacz amotosalen, który posiada wysoką zdolność do inaktywacji wirusów, włączając wirusa HIV, WNV i cytomegalowirusa. System InterceptTM został zatwierdzony do sterylizacji jednostek krwi przez ponad 100 centrów krwiodawstwa w 20 krajach [97,98].

Natomiast hiperycyna (XLI) wykazuje szerokie spectrum działania przeciw wirusom otoczkowym, włączając także retrowirusy. Z przeprowadzonych badań wynika, że hiperycyna i jej pochodne wiąża się z otoczka wirusa hamując fuzję z komórka gospodarza. Doświadczenia przeprowadzone na kulturach tkankowych zainfekowanych wirusem HIV, wykazały aktywność hiperycyny w fotoinaktywacji wirusa HIV [99,100]. Bardziej szczegółowe badania przeprowadzili Yip i wsp., którzy sprawdzili aktywność przeciwwirusową hiperycyny i jej pochodnych na cytomegalowirusie, wirusie Sindbis oraz wirusie polio. Okazało się, że pochodna hiperycyny XLII, 2,5,9,12-tetra(karboksyetylotiometylo)hiperycyna, wykazuje wysoką aktywność zbliżoną do hiperycyny i działa destrukcyjnie na otoczki wirusów poprzez mechanizm fotodynamiczny. Związek XLII okazał się aktywny tylko przeciw wirusom otoczkowym (wirus Sindbis, cytomegalowirus mysi), a nie wykazywał aktywności w przypadku inaktywowania bezotoczkowego wirusa polio. Przeprowadzone badania wskazały na silną zależność między fotodynamiczną aktywnością przeciwwirusową, a budową szkieletu naftodiantronu [101].

Perylenochinony to związki naturalne wyizolowane z grzybów, są pigmentami o zdolności generowania tlenu singletowego, a jako przykład można wymienić m.in. cerkosporynę (**XLIII**) oraz hipokrelinę. Hudson i wsp. zbadali aktywność przeciwwirusową perylenochinonów w PACT przeciw wirusom zawierającym dwie membrany (HSV). Z przeprowadzonych badań wynika, że nie tylko wydajność kwantowa generowania tlenu singletowego ma znaczenie w efektywności inaktywowania wirusów, ale również należy uwzględniać inne właściwości np.: lipofilność, zdolność wiązania do struktur wirusa oraz generowanie wolnych rodników [102,103]. Ponadto w 2005 roku ukazała się praca, w której Daub i wsp. wykazali zdolność inaktywacji wirusa HIV przez hypokrelinę po ekspozycji na światło [104].

Obserwowana tendencja do globalizacji, nasilająca się corocznie migracja ludzi na całym świecie powoduje wzrost ryzyka przenoszenia wielu chorób, w tym infekcji wirusowych. Standardowa farmakoterapia przeciwwirusowa nie zawsze przynosi pożądane efekty lecznicze, obserwuje się ponadto wzrost oporności na standardowe leki. Z tych powodów poszukuje się nowych strategii leczenia infekcji. Metoda fotodynamicznej inaktywacji wirusów (PACT) rozwijana jest stosunkowo wolno, gdyż stanowi wielkie wyzwanie wymagające jeszcze wielu wstępnych badań.

W tab. 1 i 2 zestawiono objawy infekcji określonym wirusem, standardową farmakoterapię w leczeniu infekcji oraz fotouczulacze inaktywujące wirusa w procesie fotodynamicznym *in vitro*.

Tab. 1. Objawy infekcji wirusami: HIV, HSV, HPV, VSV, HRV, metoda diagnostyczna,
standardowa farmakoterapia oraz fotouczulacze inaktywujące wirusa w badaniach in
<i>vitro</i> – część 1 [105–112].

Ludzki rinowirus	Wirus pęcherzykowatego zapalenia jamy ustnej Ludzki rinowirus		Wirus opryszczki pospolitej	Ludzki wirus upośledzenia odporności	Wirus
HRV	VSV	HPV	HSV	HV	Skrót
	Multiplex, RT-PCR	test Papanicolaou (Pap) , test HPV DNA , test aceto- wybielania	Western blot test, PCR test (anti-HSV- 1, anti-HSV-2)	Test western blot (anty-HIV), ELISA, test HIV RNA	Diagnostyka
wyciek z nosa, przekrwienie błony śluzowej nosa, ból gardła, ból głowy, kaszel, ogólne złe samopoczucie, stany podgorączkowe	naturalnie występujące ludzkie infekcje VSV są rzadkie, VSV jest używany jako szczepionka wektorowa i "narzędzie laboratoryjne"	brodawki, zakażenie HPV jest przyczyną śródnabłonkowej neoplazji szyjki macicy (CIN) i gruczolakoraka in situ (AIS)	HSV ust: ból, pieczenie, mrowienie, swędzenie; HSV narządów płciowych: grudki, dysuria, złe samopoczucie, gorączka; HSV noworodków: martwicze zapalenie wątroby, trombocytopenia, zapalenie mózgu, rozsiana koagulopatia; HSV mózgu: zapalenie opon mózgowych, zapalenie rdzenia mózgowego, zapalenie korzonków nerwowych	gorączka, zmęczenie, powiększenie węzłów chłonnych, bóle mięśni, nudności, biegunka, wysypka, bóle głowy, światłowstręt, bóle stawów, zapalenie gardła, wymioty	Objawy infekcji
pleconaril, pirodawir, rupintriwir, rybawiryna			walacyklowir, famcyklowir, pencyklowir, acyklowir	indinawir, ritonawir, zydowudyna, lamiwudyna, stawudyna, zalcytabina, newirapina	Standardowa farmak oterapia
trisulfonowa naftobenzoporfirazyna krzemowa	pochodne chlorofilu, hiperycyna, róż Bengalski, błękit metylenowy	dihematoporfiryna, m-THPC, ALA, PPIX	czarwień obojętna, proflawina, dibenzodisulfoftalocyjanina glinu, hematoporfiryna, ALA	błękit metylenowy, protoporfiryna IX	Fotouczulacz skuteczny w inaktywacji wirusa

Enterovirus 71	Wirus zapalenia wątroby	Wirus Dengi	Wirus Zachodniego Nilu	Wirus
EV71	HAV, HBV,HCV		WNV	Skrót
RT-PCR, test immunofluorescencj i pośredniej, enterovirus71-lgM- capture ELISA	RTq-PCR	MAC-ELISA, (RT)- PCR	Całkowita liczba leukocytów, ocena płynu mózgowo- rdzeniowego, rezonans magnetyczny mózgu	Diagnostyka
Stany zapalne ośrodkowego układu nerwowego, obrzęki płuc, nadciśnienie płucne, miocytoliza, apoptoza kardiomiocytów	ostre lub przewlekłe zapalenie wątroby, marskość wątroby	gorączka, wysypka grudkowo- plamista, bóle głowy, bóle pozagałkowe, ból stawów, ból mięśni, gorączka krwotoczna, szybki puls, niedociśnienie, rozproszone wybroczyny na tułowiu, kończynach	łagodne przypadki: gorączka, złe samopoczucie, brak apetytu, nudności, ból głowy, wysypka; przypadki neurologiczne: zapalenie mózgu, parkinsonizm, drżenie, mioklonie	Objawy infek cji
	interferon α, lamiwudyna, entecawir, telbiwudyna, adefowir	leczenie objawowe: paracetamol, heparyna, przetaczanie krwi, kortykosteroidy	rybawiryna, interferon α	Standardowa farmak oterapia
błękit metylenowy	8-metoksypsoralen, porfiryny kationowe	błękit metylenowy	błękit metylenowy	Fotouczulacz skuteczny w inaktywacji wirusa

Tab. 2. Objawy infekcji wirusami: WNV, HAV, HBV, HCV, EV71, metody diagnostyczne, standardowa farmakoterapia oraz fotouczulacze inaktywujące wirusa w badaniach *in vitro* – część 2 [45,113–118].
III. CEL PRACY

W ostatnich latach jednym z największych wyzwań nauk medycznych jest leczenie chorób nowotworowych, pandemii wirusowych oraz zwalczanie szczepów bakteryjnych opornych na znane antybiotyki. Z tego względu aktualne jest poszukiwanie nowych metod terapii, a jedną z najnowszych jest terapia fotodynamiczna (PDT), która znalazła zastosowanie w terapii nowotworów, infekcji bakteryjnych i wirusowych, a także zmian skórnych. PDT charakteryzuje się wysoką skutecznością działania, a w przypadku leczenia zmian skórnych obserwuje się doskonałe efekty kosmetyczne. Ze względu na nieswoisty mechanizm działania terapia fotodynamiczna wydaje się być idealnym narzędziem do inaktywacji wirusów. Wspomniane wielokierunkowe działanie PDT poprzez tlen singletowy uniemożliwia wytworzenie oporności przez mikroorganizmy oraz wirusy. Mając powyższy fakt na uwadze, w części literaturowej postanowiono przedstawić aktualny stan wiedzy na temat fotodynamicznej inaktywacji wirusów.

Największymi zaletami PDT jest wysoka skuteczność oraz towarzyszące leczeniu mniej uciążliwe w porównaniu z innymi metodami leczenia efekty uboczne. Mając powyższe na uwadze sukcesywnie wprowadza się do lecznictwa nowe fotouczulacze. Z tego powodu wiele grup badawczych prowadzi intensywne poszukiwania nowych związków chemicznych, zarówno tych pochodzenia naturalnego, jak i syntetycznych. Z piśmiennictwa wynika, że pochodne porfirynoidów posiadają najkorzystniejsze właściwości, warunkujące ich potencjalne zastosowanie w PDT, a szczególne nadzieje pokładane są w porfirynoidach syntetycznych tj. ftalocyjaninach i porfirazynach.

Podsumowując dotychczasowy stan badań odnośnie PDT, jako cel pracy doktorskiej założono kompleksową ocenę właściwości spektralnych, fotochemicznych oraz aktywności biologicznej nowych porfirazyn i ftalocyjanin. Przedmiotem badań zostały związki autorskie z grupy porfirazyn i ftalocyjanin otrzymane w Katedrze i Zakładzie Technologii Chemicznej Środków Leczniczych Uniwersytetu Medycznego w Poznaniu, które zawierają inkorporowane jony Mg²⁺, Zn²⁺, Cu²⁺, Co²⁺, Mn³⁺ oraz ich formy demetalowane.

W celu realizacji założeń sformułowano kilka celów szczegółowych, obejmujących:1. Ustalenie czystości chemicznej analizowanych porfirynoidów

- 2. Analizę właściwości absorpcyjnych, zlokalizowanie charakterystycznych pasm absorpcji
- 3. Ocenę właściwości emisyjnych, wyznaczenie wydajności kwantowych fluorescencji
- 4. Określenie tendencji do agregacji
- 5. Wyznaczenie wydajności kwantowej generowania tlenu singletowego
- 6. Ocenę fotostabilności nowych makrocykli
- 7. Ocenę aktywności przeciwnowotworowej *in vitro* nowych porfirynoidów, jako potencjalnych fotouczulaczy w PDT
- 8. Ocenę aktywności fotodynamicznej makrocykli przeciw wybranym wirusom.

IV. CZĘŚĆ DOŚWIADCZALNA

1. Aparatura, odczynniki, materiał do badań

1.1. Aparatura

- wysokosprawny chromatograf cieczowy Agilent 1200 wyposażony w detektor DAD, Agilent Technologies
- spektrofotometr UV-160A, Shimadzu
- wysokociśnieniowa lampa ksenonowa z palnikiem *XBO-150 W/1*, Optel
- monochromator M 250, Optel
- radiometr *RD 0,2/2* z sondą *TD*, Optel
- luksometr TES 1335, TES Electrical Electronic Corp.
- spektrofluorymetr Jasco FP-6200
- filtr szklany odcinający promieniowanie poniżej 450 nm HCC-16
- kuwety kwarcowe spektrofotometryczne i spektrofluorymetryczne (l = 1 cm), Hellma
- cylindryczne kuwety kwarcowe (l = 1 cm), Hellma
- waga Mettler-Toledo UMT-2 oraz waga Sartorius M2P Pracownia Analizy Elementarnej, Środowiskowe Laboratorium Unikalnej Aparatury Chemicznej, Wydział Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu.
- diody LED wysokiej mocy (*LED MultiChip Emitter 60 high efficiency AlGaAs* chipy diodowe, Roithner LaserTechnik GmbH, Wiedeń, Austria) emitujące promieniowanie o długości fali λ_{max}=735 nm
- Z[™] Series COULTER COUNTER® Cell and Particle Counter

1.2. Odczynniki

Charakterystykę substancji chemicznych (MSDS) uzyskano pod adresem internetowym: www.sigma-aldrich.com

- metanol, J. T. Baker, o czystości do HPLC
- dichlorometan, J. T. Baker, o czystości do HPLC

- trietyloamina, J. T. Baker
- n-heksan, POCH, o czystości do HPLC
- cykloheksan, POCH, o czystości do HPLC
- 1,4-dioksan, POCH, o czystości do HPLC
- toluen, POCH, o czystości do spektroskopii
- eter dietylowy, POCH, o czystości do HPLC
- dimetylosulfotlenek (DMSO), Fluka, o czystości do spektroskopii
- chloroform, Sigma Aldrich, o czystości do HPLC
- octan etylu, POCH, o czystości do HPLC
- tetrahydrofuran (THF), Sigma Aldrich, o czystości do spektroskopii
- pirydyna, Alfa Aesar
- izopropanol, POCH, o czystości do HPLC
- aceton, POCH, o czystości do HPLC
- N,N-dimetyloformamid (DMF), Sigma Aldrich, o czystości do spektroskopii
- acetonitryl, POCH, o czystości do HPLC
- N,N-dimetyloacetamid (DMA), POCH, o czystości do HPLC
- woda ultraczysta otrzymana przy zastosowaniu systemu Simplicity UV, Millipore
- 1,3-difenyloizobenzofuran (DPBF), Sigma Aldrich
- ftalocyjanina cynkowa (ZnPc), Sigma Aldrich.

1.3. Substancje do badań

Porfirynoidy będące przedmiotem badań są związkami autorskimi, które zostały zsyntetyzowane w Katedrze i Zakładzie Technologii Chemicznej Środków Leczniczych Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu. Związki otrzymano w wyniku reakcji makrocyklizacji odpowiednich maleodinitryli oraz ftalonitryli:

- 2-dimetyloamino-3-(2,5-dimetylo-1*H*-pirol-1-ilo)-(2*Z*)-buteno-1,4-dinitrylu w celu otrzymania porfirazyn Pz1 Pz3
- 3,6-bis(1,4,7-trioksanonylo)-1,2-benzenodikarbonitrylu w celu uzyskania ftalocyjanin Pc1 Pc6 [119–121].

Charakterystykę fizykochemiczną związków wykonano z wykorzystaniem metod jądrowego rezonansu magnetycznego (NMR), spektrometrii mas (MALDI-TOF) oraz poprzez ustalenie struktury krystalograficznej (X-ray).

1.3.1. Porfirazyna Pz1

Magnez(II) [2,7,12,17-tetrakis(dimetyloamino)-3,8,13,18-tetrakis(2,5-dimetylo-1*H*-pirolilo)porfirazyna] Masa molowa: 881,37 g/mol

1.3.2. Porfirazyna Pz2

Cynk(II) [2,7,12,17-tetrakis(dimetyloamino)-3,8,13,18-tetrakis(2,5-dimetylo-1*H*pirolilo)porfirazyna] Masa molowa: 922,47 g/mol

1.3.3. Porfirazyna Pz3

2,7,12,17-Tetrakis(dimetyloamino)-3,8,13,18-tetrakis(2,5-dimetylo-1*H*-pirolilo)-21H,23H-porfirazyna Masa molowa: 859,08 g/mol

1.3.4. Ftalocyjanina Pc1

Magnez(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioksanonylo)ftalocyjanina] Masa molowa: 1604,17 g/mol

1.3.5. Ftalocyjanina Pc2

Cynk(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioksanonylo)ftalocyjanina] Masa molowa: 1635,19 g/mol

1.3.6. Ftalocyjanina Pc3

1,4,8,11,15,18,22,25-Oktakis(1,4,7-trioksanonylo)-*29H,31H*-ftalocyjanina Masa molowa: 1571,80 g/mol

1.3.7. Ftalocyjanina Pc4

Chlorek mangan(III) [1,4,8,11,15,18,22,25-Oktakis(1,4,7-trioksanonylo)ftalocyjaniny]

Masa molowa: 1660,18 g/mol

1.3.8. Ftalocyjanina Pc5

Kobalt(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioksanonylo)ftalocyjanina] Masa molowa: 1628,72 g/mol

1.3.9. Ftalocyjanina Pc6

Miedź(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioksanonylo)ftalocyjanina] Masa molowa: 1633,33 g/mol

2. Metodyka i wyniki badań

2.1. Czystość chemiczna porfirazyn i ftalocyjanin

Czystość chemiczną analizowanych związków oceniono metodą wysokosprawnej chromatografii cieczowej (HPLC). Zastosowano wysokosprawny chromatograf cieczowy firmy Agilent serii 1200 wyposażony w: degazer, pompę poczwórną, autosampler i detektor diodowy (DAD). Czystość chemiczna każdego związku była analizowana z zastosowaniem trzech układów fazy ruchomej. Oznaczenia wykonano w temperaturze pokojowej z wykorzystaniem kolumn do chromatografii w odwróconym układzie faz, przy szybkości przepływu fazy ruchomej 1 cm³/min. Chromatogramy, warunki i wyniki analizy chromatograficznej porfirazyn **Pz1 – Pz3** oraz ftalocyjanin **Pc1 – Pc6** zamieszczono na ryc. 11 – 37.

Faza ruchoma			_	Kolumna	
Czas	ACN	MeOH		Producent	Agilent
[min]	nin] [%]			Тур	Eclipse XDB-C18
0	60	40		Długość	150 mm
20	60	40		φ	4,6 mm
			•	Wielkość porów	5 µm

	Deteko	cja λ=343 nm		Detekcja λ=720 nm			
	Czas		Zawartość		Czas		Zawartość
Sygnał	retencji	Powierzchnia	w próbce	Sygnał	retencji	Powierzchnia	w próbce
	[min]		[%]		[min]		[%]
1	5,21	21,0	0,58	1	5,21	17,5	0,58
2	8,51	88,5	2,46	2	8,51	70,4	2,35
3	10,82	3489,4	96,96	3	10,82	2907,8	97,07

Ryc. 11. Chromatogram, warunki i wyniki analizy chromatograficznej porfirazyny **Pz1** – pierwszy układ faz.

	Faza ruc	homa			Kolumna			
	Czas	ACN	MeOH	THF	Producent	Agilent		
	[min]		[%]		Тур	Eclipse XDB-C18		
	0	50	40	10	Długość	150 mm		
	20	50	40	10	φ	4,6 mm		
1					Wielkość porów	5 µm		

		Detek	cja λ=343 nm			Detek	cja λ=720 nm	
Czas Z			Zawartość w	awartość w Czas				
	Sygnał	retencji	Powierzchnia	próbce	Sygnał	retencji	Powierzchnia	próbce
		[min]		[%]		[min]		[%]
	1	1,71	6,6	0,19	1	1,71	2,3	0,10
	2	2,93	34,9	0,99	2	2,93	21,2	0,94
	3	4,18	97,2	2,77	3	4,18	54,5	2,43
	4	4,53	35,3	1,01	4	4,53	22,1	0,98
	5	4,93	3331.0	95.04	5	4.93	2145.0	95.55

Ryc. 12. Chromatogram, warunki i wyniki analizy chromatograficznej porfirazyny **Pz1** – drugi układ faz.

Faza ruc	Faza ruchoma					Kolumna			
Czas	ACN	MeOH	THF	CH_2CI_2	Producent	Agilent			
[min]		[%]		Тур	Eclipse XDB-C18			
0	70	20	5	5	Długość	150 mm			
15	70	20	5	5	φ	4,6 mm			
					Wielkość porów	5 µm			

	Detek	cja λ=343 nm		Detekcja λ=720 nm			
Sygnał	Czas retencii	Powierzchnia	Zawartość w próbce	Svonał	Czas retencii	Powierzchnia	Zawartość w próbce
~, 8	[min]		[%]	~, 8	[min]		[%]
1	3,42	20,9	0,68	1	3,42	11,4	0,52
2	5,18	70,0	2,27	2	5,18	35,7	1,64
3	5,65	15,5	0,50	3	5,65	11,1	0,51
4	6,34	2975,3	96,55	4	6,34	2125,2	97,34

Ryc. 13. Chromatogram, warunki i wyniki analizy chromatograficznej porfirazyny **Pz1** – trzeci układ faz.

Faza ruc	choma			Kolumna			
Czas	ACN	MeOH		Prod	ucent	Agil	ent
[min]	[min] [%]			Тур		Eclipse X	DB-C18
0	0 60 40			Dług	gość	150 mm	
20	70	20		q)	4,6 1	nm
				Wielkoś	ć porów	5 μ	m
	Detek	cja λ=343 nm		Detekcja λ=722 nm			
	Czas		Zawartość w		Czas		Zawartość w
Sygnał	Czas retencji	Powierzchnia	Zawartość w próbce	Sygnał	Czas retencji	Powierzchnia	Zawartość w próbce
Sygnał	Czas retencji [min]	Powierzchnia	Zawartość w próbce [%]	Sygnał	Czas retencji [min]	Powierzchnia	Zawartość w próbce [%]
Sygnał 1	Czas retencji [min] 1,6	Powierzchnia 10,6	Zawartość w próbce [%] 0,42	Sygnał 1	Czas retencji [min] 1,6	Powierzchnia 15,3	Zawartość w próbce [%] 1,09
Sygnał 1 2	Czas retencji [min] 1,6 5,84	Powierzchnia 10,6 43,7	Zawartość w próbce [%] 0,42 1,72	Sygnał 1 2	Czas retencji [min] 1,6 5,84	Powierzchnia 15,3 29,3	Zawartość w próbce [%] 1,09 2,07

Ryc. 14. Chromatogram, warunki i wyniki analizy chromatograficznej porfirazyny **Pz2** – pierwszy układ faz.

Faza ruc	choma			Kolumna			
Czas	ACN	THF MeOH		Producent	Agilent		
[min]	[min] [%]		Тур	Eclipse XDB-C18			
0	50	10	40	Długość	150 mm		
20	20 50 10 40		φ	4,6 mm			
				Wielkość porów	5 µm		

	Detek	cja λ=343 nm		Detekcja λ=722 nm			
	Czas		Zawartość w		Czas		Zawartość w
Sygnał	retencji	Powierzchnia	próbce	Sygnał	retencji	Powierzchnia	próbce
	[min]		[%]		[min]		[%]
1	3,09	68,9	2,49	1	3,09	35,9	2,83
2	5,00	41,6	1,50	2	5,00	20,7	1,64
3	5,81	2658,8	96,01	3	5,81	1208,5	95,53

Ryc. 15. Chromatogram, warunki i wyniki analizy chromatograficznej porfirazyny **Pz2** – drugi układ faz.

Faza Tu	lioma				Koluinna	
Czas	ACN	MeOH	THF	CH_2CI_2	Producent	Agilent
[min]		[%]		Тур	Eclipse XDB-C18	
0	70	20	5	5	Długość	150 mm
20	70	20	5	5	φ	4,6 mm
					Wielkość porów	5 µm

		Detek	cja λ=343 nm		Detekcja λ=720 nm				
Course 1		Czas	Doujorzobnia	Zawartość w	Sumat	Czas	Powiorzobnia	Zawartość w	
	Sygnai	[min]	rowierzennia	[%]	Sygnai	[min]	FOWIEIZCIIIIIa	[%]	
	1	1,58	7,3	0,29	1	1,58	3,3	0,29	
	2	3,93	55,3	2,22	2	3,93	34,2	2,99	
	3	7,00	22,9	0,92	3	7,00	10,4	0,91	
	4	8,12	2408,7	96,57	4	8,12	1094,9	95,80	

Ryc. 16. Chromatogram, warunki i wyniki analizy chromatograficznej porfirazyny **Pz2** – trzeci układ faz.

Faza ruc	choma			Kolumna		
Czas	ACN	MeOH	THF	Producent	Agilent	
[min]		[%]		Тур	Eclipse XDB-C18	
0	35	40	25	Długość	150 mm	
15	35	40	25	φ	4,6 mm	
				Wielkość porów	5 µm	

	Detek	cja λ=343 nm		Detekcja λ=720 nm			
	Czas		Zawartość w		Czas		Zawartość w
Sygnał	retencji	Powierzchnia	próbce	Sygnał	retencji	Powierzchnia	próbce
	[min]		[%]		[min]		[%]
1	1,57	7,7	1,42	1	1,63	9,4	4,26
2	4,37	532,7	98,58	2	4,37	210,6	95,74

Ryc. 17. Chromatogram, warunki i wyniki analizy chromatograficznej porfirazyny **Pz3** – pierwszy układ faz.

Czas	ACN	MeOH	CH ₂ Cl ₂	Producent	Agilent
[min]		[%]		Тур	Eclipse XDB-C18
0	35	40	25	Długość	150 mm
15	35	40	25	φ	4,6 mm
				Wielkość porów	5 µm

	Detek	cja λ=343 nm		Detekcja λ=726 nm			
Sygnał	Czas retencji [min]	Powierzchnia	Zawartość w próbce [%]	Sygnał	Czas retencji [min]	Powierzchnia	Zawartość w próbce [%]
1	1,56	7,7	1,59	1	1,62	9,6	6,43
2	5,42	477,7	98,41	2	5,42	139,6	93,57

Ryc. 18. Chromatogram, warunki i wyniki analizy chromatograficznej porfirazyny **Pz3** – drugi układ faz.

	Detekcja λ=343 nm				Detekcja λ=726 nm				
	Czas		Zawartość w		Czas		Zawartość w		
Sygnał	retencji	Powierzchnia	próbce	Sygnał	retencji	Powierzchnia	próbce		
	[min]		[%]		[min]		[%]		
1	1,55	8,4	4,11	1	1,55	2,4	3,54		
2	6,93	196,4	95,89	2	6,93	65,5	96,46		

Ryc. 19. Chromatogram, warunki i wyniki analizy chromatograficznej porfirazyny **Pz3** – trzeci układ faz.

Ryc. 20. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc1** – pierwszy układ faz.

Ryc. 21. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc1** – drugi układ faz.

Ryc. 22. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc1** – trzeci układ faz.

			-		
Czas	MeOH	Heksan		Producent	Agilent
[min]		[%]		Typ Eclipse XDB-C18	
0	95	5		Długość	150 mm
10	95	5		φ	4,6 mm
				Wielkość porów	5 um

	Detek	cja λ =343 nm		Detekcja λ=730 nm			
Sygnał	Czas retencji [min]	Powierzchnia	Zawartość w próbce [%]	Sygnał	Czas retencji [min]	Powierzchnia	Zawartość w próbce [%]
1	4,23	951,0	100,00	1 2	1,73 4,23	14,1 11008,5	0,13 99,87

Ryc. 23. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc2** – pierwszy układ faz.

Ryc. 24. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc2** – drugi układ faz.

Czas	MeOH	H ₂ O	CH ₂ Cl ₂	Producent	Agilent
[min]		[%]		Тур	Eclipse XDB-C18
0	80	5	15	Długość	150 mm
15	80	5	15	φ	4,6 mm
				Wielkość porów	5 µm

	Detek	cja λ =343 nm		Detekcja λ=730 nm			
	Czas		Zawartość w		Czas		Zawartość w
Sygnał	retencji	Powierzchnia	próbce	Sygnał	retencji	Powierzchnia	próbce
	[min]		[%]		[min]		[%]
1	2,50	218,3	100,00	1	1,69	17,6	1,25
				2	2,50	1396,2	98,75

Ryc. 25. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc2** – trzeci układ faz.

Faza ru	choma			Kolumna			
Czas	MeOH	H ₂ O		Producent	Agilent		
[min]		[%]		Тур	Eclipse XDB-C18		
0	95	5		Długość	150 mm		
15	95	5		φ	4,6 mm		
			•	Wielkość porów	5 µm		

	Detek	cja λ=343 nm		Detekcja λ=750 nm				
	Czas		Zawartość w		Czas		Zawartość w	
Sygnał	retencji	Powierzchnia	próbce	Sygnał	retencji	Powierzchnia	próbce	
	[min]		[%]		[min]		[%]	
1	6,26	14,8	2,44	1	6,25	72,1	1,98	
2	7,31	572,9	94,51	2	7,31	3466,5	95,10	
3	10,38	18,5	3,06	3	10,37	106,4	2,92	

Ryc. 26. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc3** – pierwszy układ faz.

Faza ru	choma			Kolumna				
Czas	MeOH	H ₂ O	ACN	Producent	Agilent			
[min]		[%]		Тур	Eclipse XDB-C18			
0	47,5	5	47,5	Długość	150 mm			
15	47,5	5	47,5	φ	4,6 mm			
				Wielkość porów	5 um			

	Detek	cja λ=343 nm			Dete	kcja λ=750 nm	
Sygnał	Czas retencji [min]	Powierzchnia	Zawartość w próbce [%]	Sygnał	Czas retencji [min]	Powierzchnia	Zawartość w próbce [%]
1	1,63	11,2	1,94	1	8,23	3555,4	96,04
2	8,23	548,4	95,32	2	11,50	146,6	3,96
3	11,51	15,8	2,74				

Ryc. 27. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc3** – drugi układ faz.

Ryc. 28. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc3** – trzeci układ faz.

Faza ru	choma		_	Kolumna	
Czas	MeOH	CH ₂ Cl ₂		Producent	Agilent
[min]		[%]		Тур	Eclipse XDB-C18
0	40	60		Długość	150 mm
20	40	60		φ	4,6 mm
			-	Wielkość porów	5 µm

	Detek	cja λ=343 nm			Detel	kcja λ=826 nm	
Sygnał	Czas retencji [min]	Powierzchnia	Zawartość w próbce [%]	Sygnał	Czas retencji [min]	Powierzchnia	Zawartość w próbce [%]
1 2	1,38 5,32	37,0 3464,5	1,06 98,94	1 2	1,34 5,33	9,3 12738,5	0,07 99,93

Ryc. 29. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc4** – pierwszy układ faz.

Ryc. 30. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc4** – drugi układ faz.

Ryc. 31. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc4** – trzeci układ faz.

Ryc. 32. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc5** – pierwszy układ faz.

100,00

4,36

1

14580,2

100,00

4,36

1

1466,4

Ryc. 33. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc5** – drugi układ faz.

Ryc. 34. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc5** – trzeci układ faz.

[min]		[%]		Т	ур	Gemini	C18
0	0	100		Dług	gość	250 n	nm
2	0	100		Ģ	р	4,6 m	m
3	100	0		Wielkoś	ć porów	5 µr	n
15	100	0					
	Detek	cja λ=343 nm			Detek	cja λ=720 nm	
	Czas		Zawartość w		Czas		Zawartość
Sygnał	retencji	Powierzchnia	próbce	Sygnał	retencji	Powierzchnia	w próbce
	[min]		[%]		[min]		[%]
1	5,06	10,0	1,62	1	2,02	10,7	0,22

Ryc. 35. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc6** – pierwszy układ faz.

Ryc. 36. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc6** – drugi układ faz.

[min]		[%]		T	ур	Gemini	C18	
0	0	100	0	Dług	gość	250 n	nm	
2	0	100	0	φ		4,6 m	ım	
3	50	0	50	Wielkoś	ć porów	5 µr	n	
15	50	0	50					
	Detek	cja λ=343 nm			Detek	cja λ=735 nm		
	Czas		Zawartość w		Czas		Zawartość	
Sygnał	retencji	Powierzchnia	próbce	Sygnał	retencji	Powierzchnia	w próbce	
	[min]		[%]		[min]		[%]	
1	5,40	650,4	100,00	1	2,03	17,6	0,38	
				2	5,40	4654,2	99,62	

Ryc. 37. Chromatogram, warunki i wyniki analizy chromatograficznej ftalocyjaniny **Pc6** – trzeci układ faz.

2.2. Molowe współczynniki absorpcji

W celu wyznaczenia molowych współczynników absorpcji rozpuszczono odważki badanych związków, odpowiednio dla porfirazyn dokładnie ok. 0,15 mg, a dla ftalocyjanin dokładnie ok. 0,10 mg, w odpowiednich rozpuszczalnikach w kolbach miarowych o pojemności 5,0 cm³. Następnie wykreślono widma absorpcji w kuwecie kwarcowej o długości drogi optycznej l = 10 mm. Molowe współczynniki absorpcji obliczono wg wzoru (*1*).

$$\varepsilon = \frac{A}{b^* c} \qquad (1)$$

$$[\varepsilon] = \left[\frac{\mathrm{dm}^3}{\mathrm{mol}^*\mathrm{cm}}\right]$$

gdzie:

A – absorbancja

ε-molowy współczynnik absorpcji

b – długość drogi optycznej

c – stężenie roztworu [$\frac{mol}{dm^3}$]

Obliczone wartości molowych współczynników absorpcji przedstawiono w tab. 3 – 5.

	Pz1			Pz2			Pz3		
Rozpuszczalnik	Długość fali	٤ [dm ³ ·mol ⁻¹ · cm ⁻¹]	lgε	Długość fali	٤ [dm ³ ·mol ⁻¹ · cm ⁻¹]	lg ε	Długość fali	٤ [dm ³ ·mol ⁻¹ · cm ⁻¹	1, lg
Izopropanol	[nm] 343	68 800 9	4 84	[nm] 345	51 808 2	4 71	[nm]	[un more cm	1
120010000101	439	10 630,5	4,03	646	16 974,1	4,23		- czali	٨N
	642	22 145,1	4,35	713	61 766,1	4,79	nie	rozpuszczan	
	712	69 176,2	4,84				•		
Acetonitryl	346	49 668,3	4,70	346	27 092,4	4,43	346	1 735,3	3,:
	440	7 446,7	3,87	650 722	8 603,7	3,93	416	615,7	2,
	717	15 008,2 49 337 1	4,20	122	20 510,0	4,42	710	1 251,4	3, 3
Aceton	345	68 819.0	4.84	343	63 171.3	4.80	338	35 901.3	4.
	437	10 767,7	4,03	649	20 779,9	4,32	422	13 290,8	4,
	644	21 371,8	4,33	720	66 821,7	4,82	720	24 935,5	4
	716	74 866,6	4,87				775	28 341,4	4
Dichlorometan	346	65 897,1	4,82	344	43 052,7	4,63	338	26 821,2	4
	438	10 958,4	4,04	423	13 124,8	4,12	425	18 760,3	4
	721	69 628 3	4,54	730	62 745 8	4,32	777	45 963 6	4
Chloroform	343	47 331,9	4,68	351	33 945,3	4,53	338	24 826,3	4
	439	11 287,9	4,05	417	11 495,5	4,06	423	19 506,2	4
	653	22 135,1	4,35	656	21 276,0	4,33	722	41 575,6	4
	722	69 089,6	4,84	727	67 725,0	4,83	778	50 138,3	4
Cykloheksan	347	35 591,6	4,55	343	2 972,7	3,47	340	33 030,3	4
	438	5 698,0	3,76	420	589,2	2,77	420	16 677,3	4
	644 714	11 /89,0	4,07	646 721	15/4,2	3,20	710	35 832,0	4
Dioksan	3/9	40 819,3	4,07	343	52 945 3	3,03 4 72	330	53 778 8	4
DIOKSAN	443	10 118.4	4.01	425	11 160.8	4,72	424	19 979.2	4
	656	22 208,2	4,35	653	20 852,6	4,32	721	38 653,1	4
	728	80 715,0	4,91	727	68 941,7	4,84	776	44 744,7	4
N,N-dimetylacetamid	343	52 198,0	4,72	348	60 361,2	4,78	339	45 140,1	4
	442	9 961,8	4,00	652	20 462,7	4,31	425	16 795,9	4
	647	21 379,0	4,33	722	67 613,3	4,83	727	33 208,7	4
IN dimetul of ormowid	717	67 740,9	4,83	247	CO COF 7	4 70	781	36 762,7	4
N,N-dimetyloformamid	343	65 898,1 10 402 0	4,82	347	60 695,7 20 752 6	4,78	343	32 058,1	4
	438 646	21 266 6	4,02	724	66 870 2	4,52	727	27 058 2	4
	719	66 907,4	4,83		00 07 0,2	.,05	780	29 649,8	4
Dimetylosulfotlenek	347	42 224,1	4,63	350	58 574,2	4,77			
	442	10 558,9	4,02	657	20 543,9	4,31		czczali	ny
	660	22 235,6	4,35	729	65 861,2	4,82	nie	rozpusze	
51 U 1	726	66 794,5	4,82			4 70	205	co. 000. c	
Eter dietylowy	346	66 676,8 10 528 8	4,82	343	61 964,4 10 008 1	4,79	335	60 326,6	4
	644	21 187.7	4,33	645	20 711.6	4,04	713	42 139.9	4
	714	80 865,7	4,91	717	77 952,0	4,89	771	53 198,5	4
Woda					·				
			v		- nuszczaln	Y		- nuszczali	ny
	nie	rozpuszczam	1	nie	rozpusee	nierozpuszczany			
Hokcop	1				10-1		nie		
Heksan	240	21 / 121 /	1 22	220	2 474 4	2 20	nie	22 254 0	
	346 436	21 451,4 3 229 8	4,33	336 419	2 474,4 591 8	3,39	338 420	23 251,9	4
neksun	346 436 640	21 451,4 3 229,8 6 715 5	4,33 3,51 3,83	336 419 646	2 474,4 591,8 995 0	3,39 2,77 3,00	338 420 708	23 251,9 7 642,6 16 309 0	4
neksun	346 436 640 712	21 451,4 3 229,8 6 715,5 28 232,3	4,33 3,51 3,83 4,45	336 419 646 721	2 474,4 591,8 995,0 4 751,6	3,39 2,77 3,00 3,68	338 420 708 767	23 251,9 7 642,6 16 309,0 24 262,3	4344
Metanol	346 436 640 712 343	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4	4,33 3,51 3,83 4,45 4,80	336 419 646 721 343	2 474,4 591,8 995,0 4 751,6 39 847,8	3,39 2,77 3,00 3,68 4,60	338 420 708 767	23 251,9 7 642,6 16 309,0 24 262,3	4 3 4 4
Metanol	346 436 640 712 343 438	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3	4,33 3,51 3,83 4,45 4,80 4,00	336 419 646 721 343 646	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0	3,39 2,77 3,00 3,68 4,60 4,19	338 420 708 767	23 251,9 7 642,6 16 309,0 24 262,3	4 3 4 4
Metanol	346 436 640 712 343 438 647	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6	4,33 3,51 3,83 4,45 4,80 4,00 4,32	336 419 646 721 343 646 718	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4	3,39 2,77 3,00 3,68 4,60 4,19 4,72	nie 338 420 708 767	23 251,9 7 642,6 16 309,0 24 262,3	4 3 4 4
Metanol	346 436 640 712 343 438 647 717	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81	336 419 646 721 343 646 718	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4	3,39 2,77 3,00 3,68 4,60 4,19 4,72	nie 338 420 708 767 nie	23 251,9 7 642,6 16 309,0 24 262,3	4 3 4 4 0 7
Metanol Octan etylu	346 436 640 712 343 438 647 717 345	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 2 670,7	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68	336 419 646 721 343 646 718 342	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76	nie 338 420 708 767 nie	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali	4 3 4 4 00 Y
Metanol Octan etylu	346 436 640 712 343 438 647 717 345 420 644	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 199 1	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 3,98 4,12	336 419 646 721 343 646 718 342 416 648	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 665,6	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76 4,02 4,28	nie 338 420 708 767 nie 336 420 717	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 192 5	4 3 4 4 4 4 4 4
Metanol Octan etylu	346 436 640 712 343 438 647 717 345 420 644 716	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444 9	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,68 3,98 4,12 4,66	336 419 646 721 343 646 718 342 416 648 719	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815 9	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76 4,02 4,29 4,84	nie 338 420 708 767 nie 336 420 717 772	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730 4	4 3 4 4 4 0 Y
Metanol Octan etylu Pirydvna	346 436 640 712 343 438 647 717 345 420 644 716 350	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 3,98 4,12 4,66 4,82	336 419 646 721 343 646 718 342 416 648 719 353	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76 4,02 4,29 4,84 4,78	nie 338 420 708 767 nie 336 420 717 772 342	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543.5	4 3 4 4 4 4 4 4 4 4 4 4 4 4 4
Metanol Octan etylu Pirydyna	346 436 640 712 343 438 647 717 345 420 644 716 350 442	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 3,98 4,12 4,66 4,82 4,01	336 419 646 721 343 646 718 342 416 648 719 353 660	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,72 4,76 4,02 4,29 4,84 4,78 4,31	nie 338 420 708 767 nie 336 420 717 772 342 427	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1	4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Metanol Octan etylu Pirydyna	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 3,98 4,12 4,66 4,82 4,01 4,34	336 419 646 721 343 646 718 342 416 648 719 353 660 732	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76 4,02 4,29 4,84 4,78 4,31 4,84	nie 338 420 708 767 nie 336 420 717 772 342 427 726	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6	4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Metanol Octan etylu Pirydyna	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655 728	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 3,98 4,12 4,66 4,82 4,01 4,34 4,88	336 419 646 721 343 646 718 342 416 648 719 353 660 732	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,72 4,72 4,29 4,84 4,78 4,31 4,84	nie 338 420 708 767 nie 336 420 717 772 342 427 726 784	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5	
Metanol Octan etylu Pirydyna Trietyloamina	346 436 640 712 343 438 647 717 345 420 644 716 350 644 716 350 442 655 728 347	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0 26 585,1	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 4,12 4,66 4,82 4,01 4,34 4,34 4,38 4,42	336 419 646 721 343 646 718 342 416 648 719 353 660 732 351	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1 49 959,6	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76 4,72 4,76 4,72 4,78 4,78 4,31 4,84 4,70	nie 338 420 708 767 nie 336 420 717 772 342 427 726 784 335	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5 49 656,0	4 3 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Metanol Octan etylu Pirydyna Trietyloamina	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655 728 347 438	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0 26 585,1 4 061,2	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 4,81 4,68 4,12 4,68 4,12 4,68 4,12 4,34 4,34 4,38 4,42 3,61	336 419 646 721 343 646 718 342 416 648 719 353 660 732 351 645	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1 49 959,6 17 789,7	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76 4,76 4,72 4,76 4,78 4,78 4,31 4,84 4,70 4,25	nie 338 420 708 767 336 420 717 772 342 427 726 784 335 419	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5 49 656,0 20 049,0	4 3 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Metanol Octan etylu Pirydyna Trietyloamina	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655 728 347 438 639 727	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0 26 585,1 4 061,2 8 986,5	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 3,98 4,12 4,66 4,82 4,01 4,34 4,88 4,42 3,61 3,95	336 419 646 721 343 646 718 342 416 648 719 353 660 732 351 645 716	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1 49 959,6 17 789,7 67 915,7	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76 4,72 4,76 4,72 4,78 4,78 4,31 4,84 4,70 4,25 4,83	nie 338 420 708 767 336 420 717 772 342 427 726 784 335 419 711	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5 49 656,0 20 049,0 41 995,4	
Metanol Octan etylu Pirydyna Trietyloamina	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655 728 347 438 639 709	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0 26 585,1 4 061,2 8 986,5 36 320,5	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 4,81 4,68 4,81 4,66 4,82 4,01 4,34 4,34 4,34 4,34 4,36 3,95 4,50	336 419 646 721 343 646 718 342 416 648 719 353 660 732 351 645 716	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1 49 959,6 17 789,7 67 915,7	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,72 4,72 4,72 4,72 4,84 4,78 4,84 4,70 4,25 4,83	nie 338 420 708 767 336 420 717 336 420 717 342 427 726 342 427 726 342 427 726 342 427 726 342 427 726 342 427 726 728	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5 49 656,0 20 049,0 41 995,4 55 939,8	
Metanol Octan etylu Pirydyna Trietyloamina Tetrahydrofuran	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655 728 347 438 639 709 347 439	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0 26 585,1 4 061,2 8 986,5 36 320,5 68 049,1 10 833 5	4,33 3,51 3,83 4,45 4,80 4,32 4,81 4,68 3,98 4,12 4,66 4,82 4,61 4,34 4,42 3,61 3,95 4,56 4,83 4,43	336 419 646 721 343 646 718 342 416 648 719 353 660 732 351 645 716 344 417	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1 49 959,6 17 789,7 67 915,7 60 635,2 10 754 4	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,72 4,72 4,72 4,72 4,72 4,84 4,73 4,84 4,70 4,25 4,83 4,78	nie 338 420 708 767 336 420 717 336 420 717 336 420 717 336 420 717 336 420 717 722 335 419 711 769 337 420 420 769 769 769 769 777 772 769 769 777 772 772 772 772 772 772 77	23 251,9 7 642,6 16 309,0 24 262,3 TOZPUSZCZAI 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5 49 656,0 20 049,0 41 995,4 55 939,8 57 885,5 20 116 4	
Metanol Octan etylu Pirydyna Trietyloamina	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655 728 347 438 639 709 347 438 639 709	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0 26 585,1 4 061,2 8 986,5 36 320,5 68 049,1 10 833,5 22 353 5	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 3,98 4,12 4,66 4,82 4,61 4,82 4,61 3,95 4,56 4,83 4,42 3,95 4,56	336 419 646 721 343 646 718 342 416 648 719 353 660 732 351 645 716 344 417 650	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1 49 959,6 17 789,7 67 915,7 60 635,2 10 754,4 20 615 6	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76 4,72 4,76 4,72 4,76 4,72 4,78 4,84 4,78 4,84 4,78 4,83 4,78 4,83 4,78	nie 338 420 708 767 336 420 717 336 420 717 342 427 726 784 427 726 784 419 711 769 337 422 720	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5 49 656,0 20 049,0 41 995,4 55 939,8 57 885,5 20 116,4 41 571 2	4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Metanol Octan etylu Pirydyna Trietyloamina	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655 728 347 438 639 709 347 439 650 721	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0 26 585,1 4 061,2 8 986,5 36 320,5 68 049,1 10 833,5 22 353,5 82 249,9	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 3,98 4,12 4,68 4,82 4,62 4,82 4,01 4,34 4,42 3,61 3,95 4,56 4,83 4,03 4,35 4,55	336 419 646 721 343 646 718 342 416 648 719 353 660 732 351 645 716 344 417 650 721	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1 49 959,6 17 789,7 67 915,7 60 635,2 10 754,4 20 615,6 75 940,7	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76 4,22 4,76 4,72 4,78 4,84 4,78 4,84 4,78 4,84 4,78 4,83 4,70 4,25 4,83 4,70 4,25 4,83 4,31 4,84	nie 338 420 708 767 767 336 420 717 772 342 427 726 784 335 742 726 784 337 419 711 769 337 422 720 737 725 726 737 726 738 747 747 747 747 747 747 747 74	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5 49 656,0 20 049,0 41 995,4 55 939,8 57 885,5 20 116,4 41 571,2 48 782,0	4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Metanol Octan etylu Pirydyna Trietyloamina Tetrahydrofuran	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655 728 347 438 639 709 347 439 650 721 349	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0 26 585,1 4 061,2 8 986,5 36 320,5 68 049,1 10 833,5 22 353,5 82 249,9 64 755,5	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,68 3,98 4,12 4,68 4,82 4,82 4,82 4,42 3,61 3,95 4,56 4,83 4,03 4,35 4,35 4,35 4,35 4,92 4,81	336 419 646 721 343 646 718 342 416 648 719 353 660 732 351 645 716 351 645 716 344 417 650 721 343	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1 49 959,6 17 789,7 67 915,7 60 635,2 10 754,4 20 615,6 75 940,7 51 834,8	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,76 4,02 4,29 4,84 4,78 4,31 4,78 4,70 4,75 4,83 4,78 4,78 4,78 4,78 4,78 4,78 4,71	nie 338 420 708 767 336 420 717 772 332 427 726 784 335 419 9111 769 337 422 720 337 422 725 332	23 251,9 7 642,6 16 309,0 24 262,3 rozpuszczali 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5 49 656,0 20 049,0 41 995,4 55 939,8 57 885,5 20 116,4 41 571,2 48 782,0 54 675,6	4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Metanol Octan etylu Pirydyna Trietyloamina Tetrahydrofuran	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655 728 347 438 639 709 347 439 650 729 347 439 650 729	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0 26 585,1 4 061,2 8 986,5 36 320,5 68 049,1 10 833,5 22 353,5 82 249,9 64 755,5 11 087,3	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,81 4,66 4,82 4,01 4,34 4,42 3,61 3,61 3,61 3,61 4,42 4,42 4,42 4,42 4,42 4,42 4,42 4,4	336 419 646 721 343 646 718 342 416 648 719 353 660 732 351 645 716 351 645 716	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1 49 959,6 17 789,7 67 915,7 60 635,2 10 754,4 20 615,6 75 940,7 51 834,8 12 664,9	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,72 4,72 4,72 4,72 4,73 4,78 4,78 4,70 4,73 4,84 4,70 4,73 4,71 4,71 4,71	nie 338 420 708 767 336 420 717 772 342 427 726 784 335 427 726 784 335 711 769 337 422 720 337 422 424	23 251,9 7 642,6 16 309,0 24 262,3 roZPUSZCZall 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5 49 656,0 20 049,0 41 995,4 55 939,8 57 885,5 20 116,4 41 571,2 48 782,0 54 675,6 19 511,1	4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Metanol Octan etylu Pirydyna Trietyloamina Tetrahydrofuran	346 436 640 712 343 438 647 717 345 420 644 716 350 442 655 728 347 438 639 709 347 439 650 721 349 650 721 349 650	21 451,4 3 229,8 6 715,5 28 232,3 62 649,4 10 105,3 20 670,6 65 193,7 48 343,7 9 609,2 13 189,1 45 444,9 65 737,9 10 217,2 21 809,7 75 534,0 26 585,1 4 061,2 8 986,5 36 320,5 68 049,1 10 833,5 22 353,5 82 249,9 64 755,5 11 087,3 21 950,1	4,33 3,51 3,83 4,45 4,80 4,00 4,32 4,66 4,82 4,01 4,34 4,42 3,61 3,95 4,56 4,83 4,03 4,35 4,56 4,83 4,03 4,35	336 419 646 721 343 646 718 342 416 648 719 353 660 732 351 645 716 351 645 716 344 417 650 721 343 419 654	2 474,4 591,8 995,0 4 751,6 39 847,8 15 473,0 52 227,4 57 660,8 10 467,0 19 685,6 69 815,9 59 672,2 20 532,5 69 739,1 49 959,6 17 789,7 67 915,7 60 635,2 10 754,4 20 615,6 75 940,7 51 834,8 12 664,9 20 955,4	3,39 2,77 3,00 3,68 4,60 4,19 4,72 4,72 4,72 4,72 4,72 4,73 4,78 4,78 4,70 4,78 4,70 4,78 4,73 4,73 4,71 4,71 4,71 4,71 4,71 4,72	nie 338 420 708 767 708 767 336 420 717 772 342 427 726 335 419 711 784 335 419 711 784 337 422 720 775 342 422 720 775 78 76 76 77 72 78 76 77 72 72 72 72 72 72 72 72 72	23 251,9 7 642,6 16 309,0 24 262,3 roZPUSZCZall 51 453,8 19 278,1 39 193,5 45 730,4 52 543,5 18 834,1 39 104,6 44 472,5 49 656,0 20 049,0 41 995,4 55 939,8 57 885,5 20 116,4 41 571,2 48 782,0 54 675,6 19 511,1 41 808,6	4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Tab. 3. Molowe współczynniki absorpcji porfirazyn Pz1, Pz2 i Pz3.

		Pc1			Pc2			Pc3	
Rozpuszczalnik	Długość fali	٤	lgε	Długość fali	ε 	lgε	Długość fali	٤ - ، ، ، -1 -1.	١٤
	[nm]	[dm ⁻ ·mol ⁻ · cm ⁻]		[nm]	[dm [°] ·mol [°] · cm [°]]		[nm]	[dm ⁻ ·mol ⁻ · cm ⁻]	
Izopropanol	375	31 661,9	4,50	335	29 023,8	4,46	325	60 807,5	4,
	726	28 589,0	4,40	573 651	27 354,2	4,44	394 662	22 123,7	4, 4
	805	44 406.9	4.65	725	148 019.7	5.17	754	116 438.0	5.
Acetonitryl	326	38 688,4	4,59	323	42 569,9	4,63	326	61 709,3	4,
	661	20 923,9	4,32	657	26 031,9	4,42	398	20 374,2	4,
	731	88 891,9	4,95	730	116 911,9	5,07	679	35 613,1	4
A	804	76 539,8	4,88	803	33 447,8	4,52	754	122 148,3	5
Aceton	332 658	44 864,3	4,65	332 654	38 369,2	4,58	333	43 398,4	4
	728	98 573.9	4,99	727	119 337.5	5.08	670	35 435.1	4
	798	73 469,4	4,87	798	37 202,8	4,57	751	127 295,0	5
Dichlorometan	327	46 090,1	4,66	327	43 155,9	4,64	333	48 777,4	4
	708	40 794,9	4,61	660	23 554,6	4,37	396	21 087,4	4
	758	73 019,4	4,86	735	100 225,5	5,00	670	34 895,1	4
	799	115 945,8	5,06	800	56 353,6	4,75	757	124 895,0	5
Chloroform	328	46 806,8	4,67	327	41 557,8	4,62	328	63 762,7	4
	430	15 239,0	4,18	724	24 972,9	4,40 5.06	597	20 950,8	4
	800	97 790.8	4.99	800	52 949.9	4.72	760	123 772.7	5
Cykloheksan				323	3 692,9	3,57	324	48 528,0	4
			N	379	2 576,0	3,41	691	34 033,1	4
	nie	rozpuszczan		659	2 744,1	3,44	724	82 571,6	4
	-			721	10 286,0	4,01	753	86 089,9	4
Dioksan	328	46 062,6	4,66	325	42 593,6	4,63	330	45 778,7	4
	389	24 941,0	4,40	403	18 038,8	4,26	397	22 729,4	4
	665	28 905,6	4,46	657 721	29 100,0	4,46	567	34 686,3	4
	735	62 249 4	3,09 4 79	795	30 650 6	4 49	740	125 509,5	5
N.N-dimetylacetamid	328	51 261.8	4,71	324	42 710.2	4.63	327	56 282.5	4
.,	377	38 063,2	4,58	391	27 347,6	4,44	396	20 373,0	4
1	658	40 598,4	4,61	656	33 982,2	4,53	680	34 237,0	4
	733	170 342,7	5,23	731	149 485,7	5,17	758	124 770,1	5
N,N-dimetyloformamid	325	54 931,1	4,74	326	44 544,0	4,65	400	20 991,3	4
	377	39 450,1	4,60	384	27 747,9	4,44	676	34 177,7	4
	658	39 925,1	4,60	657	34 157,3	4,53	757	123 620,3	5
Dimetricoulfetionali	/32	1/4 581,9	5,24	/31	152 094,7	5,18	220	FA (17.1	4
Dimetylosulfotienek	330	28 7 70,1	4,46	326	41 673,9	4,62	328	54 617,1	4
	663	34 587.1	4,47	663	33 179.7	4,40	687	36 511.9	4
	739	152 823,3	5,18	740	142 411,8	5,15	764	125 767,7	5
Eter dietylowy	324	40 162,6	4,60	323	40 440,8	4,61	324	61 077,2	4
	420	17 310,4	4,24	652	25 745,2	4,41	663	33 496,3	4
	726	88 382,4	4,95	724	120 539,3	5,08	729	109 149,9	5
	788	76 212,6	4,88	788	42 461,2	4,63	752	114 226,3	5
Woda	327	40 800,4	4,61	328	3 802,8	3,58		1	
	502	13 696,0	4,14	490	1 226,2	3,09	:0	rozpuszczaln	Y
	812	63 707 7	4,70	813	5 516,7	3,75	nie	10	
Heksan	012	03707,7	1,00	015	0 151,7	5,75	323	31 834,3	4
			N			V	687	23 178,7	4
	nie	rozpuszcza	-	nie	rozpuszczaw		723	52 671,2	4
	-			-			751	54 567,0	4
Metanol	326	79 972,1	4,90	326	53 033,1	4,72	325	62 235,5	4
	397	44 436,9	4,65	381	28 333,8	4,45	402	20 563,3	4
	655 720	20 023,5	4,30	657 720	3/ 632,2	4,58	668 75 <i>4</i>	34 2/4,3	4
	804	07 412,9 79 972 1	4,94 4 90	809	10/2/8,0 1666 1	3 67	750	110 302,/	Э
Octan etylu	325	46 952,2	4,67	324	37 294,7	4,57	325	63 083,0	4
	430	16 541,1	4,22	655	24 060,7	4,38	394	22 089,6	4
	729	86 269,5	4,94	726	108 775,7	5,04	668	34 141,8	4
	791	93 586,6	4,97	792	47 044,9	4,67	752	116 956,7	5
Pirydyna	327	32 451,5	4,51	339	29 395,2	4,47	329	58 282,1	4
	380	24 749,2	4,39	396	25 174,9	4,40	401	22 447,7	4
	661	25 798,6	4,41	662	33 564,7	4,53	674	34 975,9	4
Trietyloamina	/36 225	115 56U,6 A1 613 4	5,06	/38	13/ 329,6 20 511 F	5,14	/5/ 222	130 921,/	5
metyloamina	325	41 012,4	4,02	329	20 311,5 18 //85 5	4,31 4 77	555 686	39 857,1 39 707 2	4
	500 6 <u>4</u> 9	38 492 2	4,58 4 50	649	10 403,5 21 075 8	+,2/ 4 27	728	39 704,3 106 795 1	4
	721	166 675.9	+,39 5,22	722	109 764.2	-,32	754	112 476.5	5
Tetrahydrofuran	323	47 654,6	4,68	324	40 198,4	4,60	333	44 213,9	4
	394	23 144,8	4,36	403	19 785,5	4,30	403	21 535,1	4
	655	23 808,0	4,38	656	28 417,9	4,45	669	34 348,0	4
	728	105 219,6	5,02	729	121 054,1	5,08	754	123 982,8	5
	795	82 352,5	4,92	795	40 198,4	4,60			
Toluen	326	42 829,8	4,63	325	35 223,1	4,55	325	54 577,7	4
	424	17 793,8	4,25	660 733	22 339,9	4,35	400	23 190,1	4
	729	83 541,4 80 062 5	4,92	732	90 500,0	4,98	75 4	32 3/8,0	4
	/95	89 002.5	4.95	/96	58 ZZ8.4	4.//	/54	121 349.0	5

Tab. 4. Molowe współczynniki absorpcji ftalocyjanin Pc1, Pc2 i Pc3.

	Pc4			Pc5			Pc6			
Rozpuszczalnik	Długość fali [nm]	έ [dm ³ ·mol ⁻¹ · cm ⁻¹]	lgε	Długośc fali	έ ε [dm ³ ·mol ⁻¹ · cm ⁻¹]	lg ε	Długość fali [nm]	ε [dm ³ ·mol ⁻¹ · cm ⁻¹]	١į	
Izopropanol	358	32 281,2	4,51	312	35 056,8	4,54	324	49 446,9	4,	
	551	13 397,5	4,13	382	16 674,7	4,22	434	10 947,7	4,	
	733	16 869,1	4,23	645	18 566,1	4,27	661	36 225,7	4,	
	814	64 210,0	4,81	714	67 999,0	4,83	731	119 122,8	5,	
Acetonitryl	346	36 361,7	4,56	321	30 146,4	4,48	325	55 522,4	4	
	547	13 342,9	4,13	378	30 146,4	4,48	440	11 806,5	4,	
	734	21 704,2	4,34	661	17 614,3	4,25	661	35 781,8	4	
	811	79 624,0	4,90	725	18 843,4	4,28	736	130 590,7	5	
Aceton	347	33 034,2	4,52	331	27 750,4	4,44	332	45 295,6	4	
	537	13 196,4	4,12	381	18 085,6	4,26	440	11 081,0	4	
	720	22 034,9	4,34	649	19 934,8	4,30	658	34 753,6	4	
	802	86 065,4	4,93	718	73 727,8	4,87	732	129 390,7	5	
Dichlorometan	345	34 253,4	4,53	321	37 343,4	4,57	326	56 787,2	4	
	556	15 093,6	4,18	374	21 569,4	4,33	438	11 883,4	4	
	729	21 904,1	4,34	655	19 901,6	4,30	662	37 399,4	4	
	811	90 611,7	4,96	727	73 264,4	4,86	740	146 761,8	5	
Chloroform	342	36 044,4	4,56	338	18 807,3	4,27	328	57 953,5	4	
	560	14 917,8	4,17	390	16 221,1	4,21	439	12 079,2	4	
	728	21 552,6	4,33	655	19 995,8	4,30	663	38 353,6	4	
	812	92 321,5	4,97	727	71 938,7	4,86	742	156 881,4	5	
Cykloheksan						323	39 439,8	4		
		- nuszczaln	- DUS7CZalny			429	8 702,6	З		
	nie	rozpusze		nie	rozpusze	668	33 253,6	4		
							733	86 280,7	4	
Dioksan							326	51 180,0	4	
		unda sie		un da sie			436	12 298,4	4	
		rozkłaua si ę			rozkłaua si ę		656	36 113,2	4	
							731	156 792,8	5	
N,N-dimetylacetamid				322	30 806,2	4,49	328	50 832,1	4	
		da sie		386	18 392,8	4,26	377	37 744,1	4	
		rozkłaua się		649	19 845,4	4,30	658	40 258,0	4	
				721	72 749,4	4,86	733	168 914,8	5	
N,N-dimetyloformamid	351	32 559,1	4,51	345	19 209,3	4,28	328	48 855,8	4	
	526	10 380 9	4 02	389	15 943 9	4 20	377	34 766 6	2	
	727	16 930 3	4 23	650	20 335 0	4 31	658	35 185 2	2	
	806	60 042 7	4 78	718	69 571 8	4 84	732	153 855 6		
Dimetylosulfotlenek	358	36 122 3	4 56	324	33 339 1	4 52	340	26 069 1	-	
Binnetgrobunotienek	536	15 034 0	4 18	373	20 727 2	4 32	663	26 915 0	2	
	740	22 142 2	4 36	662	20 727,2	4 32	730	118 924 0		
	827	84 569 1	4 93	723	62 585 2	4 80	815	9 234 2	-	
Eter dietylowy	227	25 741 4	1,55	402	1 409 2	2 15	222	52 112 7	_	
Lier dretyrowy	528	8 701 1	2 0/	642	2 992 1	3 16	/22	11 442 5		
	715	16 073 5	1 21	718	10 969 1	4 04	657	28 078 0		
	705	E7 760 6	4 76	/10	10 505,1	4,04	722	122 652 0		
Mada	250	37 703,0	4,70	227	4 222 0	2.62	732	122 032,0	_	
woua	338	30 193,3	4,50	327	4 223,0	3,03				
	552	15 262,3	4,18	3//	2477,2	3,39	•-	roznuszczaln	A	
	748	21 /12,4	4,34	669	2 555,2	3,41	nie	1040		
	837	/5 /42,6	4,88	745	/ /48,6	3,89			_	
Heksan										
	in to zouszczalny				roznuszczaln	Y	•	roznuszczaln	ł	
	nie	1020		nie	1020		nie	1020		
Metanal	252	26.020.2	4	220	22,200,2	4 54	226	10 000 7	_	
ivietanol	359	36 938,2	4,57	320	32 200,2	4,51	326	48 868,7	4	
	557	17 800,2	4,25	373	18 759,6	4,27	428	11 637,5	4	
	737	21 386,5	4,33	655	18 598,2	4,27	657	33 293,7	4	
	824	81 327,8	4,91	722	58 604,5	4,77	731	137 644,6	5	
Octan etylu	338	32 194,0	4,51	369	21 026,5	4,32	330	36 984,9	4	
	533	9 732,6	3,99	654	12 609,2	4,10	431	11 668,2	4	
	718	16 753,1	4,22	720	35 438,0	4,55	657	36 207,4	4	
	796	65 007,7	4,81				733	135 890,9	5	
Pirydyna	357	32 799,4	4,52	328	30 364,0	4,48	326	44 420,2	4	
	532	14 584,6	4,16	377	19 171,1	4,28	389	22 330,2	4	
	725	21 850,9	4,34	661	18 975,2	4,28	660	35 364,8	4	
	810	85 395,1	4,93	730	54 880,4	4,74	737	161 091,2	5	
Trietyloamina							335	28 203,1	4	
			V		uracialn'	V I	426	10 884,2	4	
	nie	rozpuszczam	•	nie	rozpuszczam		662	38 636,7	4	
	1110						733	119 683,7	5	
Tetrahydrofuran	341	26 868,8	4,43	380	19 770,1	4,30	326	51 994,4	4	
,	432	13 183.1	4,12	646	18 410.8	4,27	429	12 042.9	2	
	715	11 122 7	4,05	719	68 149 3	4,83	656	35 998 4	1	
	794	43 938 6	4 64	,15	55 175,5	.,55	731	144 679 9		
Toluen	3/12	32 780 5	4 52	366	17 85/ 7	4 25	326	45 127 2		
ioiueii	543	12 /00,0	4,52	401	16 120 7	4,20 1 21	520 //20	12 207 0	4	
	710	10 702 4	4,10	401	10 103,2	4,21 1 76	423	36 /19 0	4	
	110	13 /03,0	4,29	700	10 338,4	4,20		JU 416,U	4	
	800	85 161,6	4,93	/23	68 038,8	4,83	/34	131 762,4	- 5	

Tab. 5. Molowe współczynniki absorpcji dla ftalocyjanin Pc4, Pc5 i Pc6.

2.3. Właściwości absorpcyjne

Elektronowe widma absorpcji analizowanych porfirazyn **Pz1 – Pz3** oraz ftalocyjanin **Pc1 – Pc6** zostały wykreślone z wykorzystaniem spektrofotometru Shimadzu UV-160A. Roztwory otrzymano przez rozpuszczenie odważek porfirazyn i ftalocyjanin, odpowiednio o masie dokładnie ok. 0,15 mg i 0,10 mg. Pomiary wykonano w kuwetach kwarcowych o długości drogi optycznej l = 10 mm. Zarejestrowane widma absorpcji porfirynoidów w pirydynie, trietyloaminie, tetrahydrofuranie, toluenie, wodzie, eterze dietylowym, heksanie, metanolu, octanie etylu, dimetylosulfotlenku, cykloheksanie, 1,4-dioksanie, dimetyloacetamidzie, acetonie, dimetyloformamidzie, izopropanolu, acetonitrylu, dichlorometanie i chloroformie zamieszczono na ryc. 38–46.

Ryc. 38. Elektronowe widma absorpcji porfirazyny Pz1 w różnych rozpuszczalnikach.

Ryc. 39. Elektronowe widma absorpcji porfirazyny Pz2 w różnych rozpuszczalnikach.

Ryc. 40. Elektronowe widma absorpcji porfirazyny Pz3 w różnych rozpuszczalnikach.

Ryc. 41. Elektronowe widma absorpcji ftalocyjaniny Pc1 w różnych rozpuszczalnikach.

Ryc. 42. Elektronowe widma absorpcji ftalocyjaniny Pc2 w różnych rozpuszczalnikach.

Ryc. 43. Elektronowe widma absorpcji ftalocyjaniny Pc3 w różnych rozpuszczalnikach.

Ryc. 44. Elektronowe widma absorpcji ftalocyjaniny Pc4 w różnych rozpuszczalnikach.

Ryc. 45. Elektronowe widma absorpcji ftalocyjaniny Pc5 w różnych rozpuszczalnikach.

Ryc. 46. Elektronowe widma absorpcji ftalocyjaniny Pc6 w różnych rozpuszczalnikach.

2.4. Zdolność agregacji

Właściwości agregacyjne porfirynoidów oceniono w 19 rozpuszczalnikach o różnej polarności: acetonie, 2-propanolu, acetonitrylu, dichlorometanie, chloroformie, cykloheksanie, DMA, DMF, DMSO, eterze dietylowym, heksanie, metanolu, octanie etylu, pirydynie, trietyloaminie, THF, toluenie, wodzie, 1,4-dioksanie. Przygotowano odważki porfirazyn i ftalocyjanin w łódeczkach aluminiowych, odpowiednio o masie dokładnie ok. 0,15 mg i 0,10 mg. Odważki rozpuszczono w odpowiednim rozpuszczalniku w kolbie miarowej o pojemności 5,0 cm³. Następnie przygotowany roztwór rozcieńczono w celu otrzymania próbek o stężeniach w zakresie od $4.0 \cdot 10^{-7}$ do 1,0·10⁻⁵ mol/dm³. Elektronowe widma absorpcji wszystkich próbek wykreślono w kuwetach kwarcowych (Hellma, l = 10 mm) i zamieszczono na ryc. 47 – 115. W odniesieniu do roztworów, dla których interpretacja elektronowych widm absorpcji jednoznacznie nie umożliwiała potwierdzenia obecności agregatów, przeprowadzono weryfikację słuszności prawa Lamberta-Beera. Analiza polegała na wyznaczeniu zależności absorbancji (A) w maksimum pasma Q, od stężenia (c) roztworu wyrażonego w mol/dm³, a następnie ocenie parametrów statystycznych otrzymanej funkcji A = f(c) (tab. 6 – 14).

Ryc. 47. Elektronowe widma absorpcji porfirazyny **Pz1** w roztworze 2-propanolu i acetonu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 48. Elektronowe widma absorpcji porfirazyny **Pz1** w acetonitrylu i dichlorometanie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 49. Elektronowe widma absorpcji porfirazyny **Pz1** w chloroformie i cykloheksanie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 50. Elektronowe widma absorpcji porfirazyny **Pz1** w DMA i DMF (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 51. Elektronowe widma absorpcji porfirazyny **Pz1** w DMSO i eterze dietylowym (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 52. Elektronowe widma absorpcji porfirazyny **Pz1** w heksanie i metanolu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 53. Elektronowe widma absorpcji porfirazyny **Pz1** w octanie etylu i pirydynie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 54. Elektronowe widma absorpcji porfirazyny **Pz1** w trietyloaminie i tetrahydrofuranie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 55. Elektronowe widma absorpcji porfirazyny **Pz1** w toluenie i **Pz2** w 2-propanolu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 56. Elektronowe widma absorpcji porfirazyny **Pz2** w acetonitrylu i acetonie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 57. Elektronowe widma absorpcji porfirazyny **Pz2** w dichlorometanie i chloroformie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 58. Elektronowe widma absorpcji porfirazyny **Pz2** w 1,4-dioksanie i DMA (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 59. Elektronowe widma absorpcji porfirazyny **Pz2** w DMF i DMSO (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 60. Elektronowe widma absorpcji porfirazyny **Pz2** w eterze dietylowym i metanolu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 61. Elektronowe widma absorpcji porfirazyny **Pz2** w octanie etylu i pirydynie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 62. Elektronowe widma absorpcji porfirazyny **Pz2** w trietyloaminie i tetrahydrofuranie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 63. Elektronowe widma absorpcji porfirazyny **Pz2** w toluenie i **Pz3** w acetonie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 64. Elektronowe widma absorpcji porfirazyny **Pz3** w dichlorometanie i chloroformie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 65. Elektronowe widma absorpcji porfirazyny **Pz3** w cykloheksanie i 1,4-dioksanie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 66. Elektronowe widma absorpcji porfirazyny **Pz3** w DMA i DMF (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 67. Elektronowe widma absorpcji porfirazyny **Pz3** w eterze dietylowym i heksanie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 68. Elektronowe widma absorpcji porfirazyny **Pz3** w octanie etylu i pirydynie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 69. Elektronowe widma absorpcji porfirazyny **Pz3** w trietyloaminie i tetrahydrofuranie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 70. Elektronowe widma absorpcji porfirazyny **Pz3** w toluenie (wstawka: wykres zależności absorbancji od stężenia) i **Pc1** w 2-propanolu.

Ryc. 71. Elektronowe widma absorpcji ftalocyjaniny Pc1 w acetonitrylu i acetonie.

Ryc. 72. Elektronowe widma absorpcji ftalocyjaniny Pc1 w dichlorometanie i chloroformie.

Ryc. 73. Elektronowe widma absorpcji ftalocyjaniny **Pc1** w 1,4-dioksanie i DMA (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 74. Elektronowe widma absorpcji ftalocyjaniny **Pc1** w DMF i DMSO (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 75. Elektronowe widma absorpcji ftalocyjaniny Pc1 w eterze dietylowym i metanolu.

Ryc. 76. Elektronowe widma absorpcji ftalocyjaniny **Pc1** w octanie etylu i pirydynie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 77. Elektronowe widma absorpcji ftalocyjaniny **Pc1** w trietyloaminie (wstawka: wykres zależności absorbancji od stężenia) i tetrahydrofuranie.

Ryc. 78. Elektronowe widma absorpcji ftalocyjaniny **Pc1** w toluenie i wodzie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 79. Elektronowe widma absorpcji ftalocyjaniny **Pc2** w 2-propanolu (wstawka: wykres zależności absorbancji od stężenia) i acetonie.

Ryc. 80. Elektronowe widma absorpcji ftalocyjaniny Pc2 w acetonitrylu i dichlorometanie.

Ryc. 81. Elektronowe widma absorpcji ftalocyjaniny Pc2 w chloroformie i 1,4-dioksanie.

Ryc. 82. Elektronowe widma absorpcji ftalocyjaniny **Pc2** w DMA i DMF (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 83. Elektronowe widma absorpcji ftalocyjaniny **Pc2** w DMSO (wstawka: wykres zależności absorbancji od stężenia) i eterze dietylowym.

Ryc. 84. Elektronowe widma absorpcji ftalocyjaniny **Pc2** w metanolu i trietyloaminie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 85. Elektronowe widma absorpcji ftalocyjaniny Pc2 w tetrahydrofuranie i toluenie.

Ryc. 86. Elektronowe widma absorpcji ftalocyjaniny **Pc2** w octanie etylu i **Pc3** w 2-propanolu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 87. Elektronowe widma absorpcji ftalocyjaniny **Pc3** acetonie i acetonitrylu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 88. Elektronowe widma absorpcji ftalocyjaniny **Pc3** w dichlorometanie i cykloheksanie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 89. Elektronowe widma absorpcji ftalocyjaniny **Pc3** w 1,4-dioksanie i DMA (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 90. Elektronowe widma absorpcji ftalocyjaniny **Pc3** w DMF i DMSO (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 91. Elektronowe widma absorpcji ftalocyjaniny **Pc3** w eterze dietylowym i heksanie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 92. Elektronowe widma absorpcji ftalocyjaniny **Pc3** w metanolu i octanie etylu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 93. Elektronowe widma absorpcji ftalocyjaniny **Pc3** w pirydynie i trietyloaminie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 94. Elektronowe widma absorpcji ftalocyjaniny **Pc3** w tetrahydrofuranie i toluenie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 95. Elektronowe widma absorpcji ftalocyjaniny **Pc4** w 2-propanolu i acetonie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 96. Elektronowe widma absorpcji ftalocyjaniny **Pc4** w dichlorometanie i chloroformie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 97. Elektronowe widma absorpcji ftalocyjaniny **Pc4** w DMA i DMSO (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 98. Elektronowe widma absorpcji ftalocyjaniny **Pc4** w eterze dietylowym metanolu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 99. Elektronowe widma absorpcji ftalocyjaniny **Pc4** w octanie etylu i pirydynie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 100. Elektronowe widma absorpcji ftalocyjaniny **Pc4** w tetrahydrofuranie i toluenie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 101. Elektronowe widma absorpcji ftalocyjaniny **Pc4** w wodzie i **Pc5** w 2-propanolu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 102. Elektronowe widma absorpcji ftalocyjaniny **Pc5** w acetonie i acetonitrylu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 103. Elektronowe widma absorpcji ftalocyjaniny **Pc5** w dichlorometanie i chloroformie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 104. Elektronowe widma absorpcji ftalocyjaniny **Pc5** w DMA i DMF (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 105. Elektronowe widma absorpcji ftalocyjaniny **Pc5** w DMSO i metanolu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 106. Elektronowe widma absorpcji ftalocyjaniny **Pc5** w octanie etylu i pirydynie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 107. Elektronowe widma absorpcji ftalocyjaniny **Pc5** w tetrahydrofuranie i toluenie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 108. Elektronowe widma absorpcji ftalocyjaniny **Pc6** w 2-propanolu i acetonitrylu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 109. Elektronowe widma absorpcji ftalocyjaniny **Pc6** w dichlorometanie i chloroformie (wstawka wykres zależności absorbancji od stężenia).

Ryc. 110. Elektronowe widma absorpcji ftalocyjaniny **Pc6** w cykloheksanie i 1,4-dioksanie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 111. Elektronowe widma absorpcji ftalocyjaniny **Pc6** w DMA i DMF (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 112. Elektronowe widma absorpcji ftalocyjaniny **Pc6** w DMSO i eterze dietylowym (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 113. Elektronowe widma absorpcji ftalocyjaniny **Pc6** w metanolu i octanie etylu (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 114. Elektronowe widma absorpcji ftalocyjaniny **Pc6** w pirydynie i trietyloaminie (wstawka: wykres zależności absorbancji od stężenia).

Ryc. 115. Elektronowe widma absorpcji ftalocyjaniny **Pc6** w tetrahydrofuranie i toluenie (wstawka: wykres zależności absorbancji od stężenia).

Tab. 6. Ocena statystyczna zależności absorbancji (A) w maksimum pasma Q od stężenia porfirazyny **Pz1** (c), A = f(c) w rozpuszczalnikach o różnej polarności.

Rozpuszcza	alnik	а	Δa	b	Δb	Sa	Sb	ta	t _b	$t_{\alpha,f}$	r	n
Izopropanol	[712nm]	68832,9	9320,6	0,0934	0,1546	3357,5	0,0557	20,5	1,677	2,776	0,995	6
Acetonitryl	[717nm]	49240,8	1808,8	0,0191	0,0303	651,6	0,0109	75,6	1,752	2,776	1,000	6
Aceton	[716nm]	73309,9	1226,2	0,0531	0,0208	441,7	0,0075	166,0	7,071	2,776	1,000	6
CH ₂ Cl ₂	[721nm]	70745,5	4721,8	0,0019	0,0758	1700,9	0,0273	41,6	0,068	2,776	0,999	6
CHCl₃	[722nm]	68320,1	5549,8	0,0555	0,0908	1999,2	0,0327	34,2	1,697	2,776	0,998	6
Cykloheksan	[714nm]	46679,3	4380,4	0,0296	0,0805	1376,6	0,0253	33,9	1,170	3,182	0,999	5
1,4-dioksan	[728nm]	80625,3	3599,7	0,0320	0,0586	1296,7	0,0211	62,2	1,517	2,776	0,999	6
DMA	[717nm]	67453,7	6533,6	0,0661	0,1063	2353,6	0,0383	28,7	1,726	2,776	0,998	6
DMF	[719nm]	65871,8	6344,6	0,0901	0,1052	2285,5	0,0379	28,8	2,377	2,776	0,998	6
DMSO	[726nm]	66461,1	6298,0	0,0651	0,1016	2268,7	0,0366	29,3	1,779	2,776	0,998	6
Eter dietylowy	[714nm]	82829,7	2638,5	-0,0706	0,0471	829,2	0,0148	99,9	4,770	3,182	1,000	5
Woda					n.	ierozpus	zczalny	_				
Heksan	[712nm]	28542,5	1328,7	-0,0051	0,0241	417,6	0,0076	68,4	0,673	3,182	1,000	5
Metanol	[717nm]	64522,5	2034,6	0,0407	0,0347	732,9	0,0125	88,0	3,256	2,776	1,000	6
Octan etylu	[716nm]	44961,5	506,8	0,0153	0,0084	182,6	0,0030	246,3	5,083	2,776	1,000	6
Pirydyna	[728nm]	75011,9	2674,7	0,0415	0,0450	963,5	0,0162	77,9	2,562	2,776	1,000	6
TEA	[709nm]	35874,0	809,5	0,0218	0,0132	291,6	0,0048	123,0	4,570	2,776	1,000	6
THF	[721nm]	81847,5	3953,6	0,0491	0,0661	1424,2	0,0238	57,5	2,063	2,776	0,999	6
Toluen	[724nm]	79847,7	4353,3	0,0474	0,0730	1568,2	0,0263	50,9	1,802	2,776	1,000	6

a - współczynnik kierunkowy prostej y = ax + b; Δa - przedział ufności współczynnika kierunkowego prostej; b - wartość rzędnej dla x = 0; Δb - przedział ufności współczynnika b; S_a - błąd standardowy kierunkowego współczynnika prostej; S_b - błąd standardowy współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika b - pogrubiono wartości wskazujące na istotność współczynnika b (t_b > t_{a,t}- wartość tabelaryczna parametru t dla f = n-2 stopni swobody i poziomie istotności α = 0,05; r - współczynnik regresji; n - liczba pomiarów

Rozpuszcz	alnik	а	Δa	b	Δb	Sa	Sb	ta	t _b	$t_{\alpha,f}$	r	n
Izopropanol	[713nm]	61530,4	514,1	0,0115	0,0079	185,2	0,0029	332,2	4,021	2,776	1,000	6
Acetonitryl	[722nm]	26506,0	98 <i>,</i> 8	0,0002	0,0017	31,1	0,0005	853,5	0,361	3,182	1,000	5
Aceton	[720nm]	65181,0	9305,9	0,1040	0,1581	2924,5	0,0497	22,3	2,093	3,182	0,997	5
CH ₂ Cl ₂	[730nm]	87239,1	4939,8	0,0202	0,0436	1552,4	0,0137	56,2	1,474	3,182	1,000	5
CHCl₃	[727nm]	67734,9	9906,9	0,0837	0,1580	3568,8	0,0569	19,0	1,471	2,776	0,994	6
Cykloheksan	[721nm]		_	_	n	ierozpus	zczalny	_	_	_		
1,4-dioksan	[727nm]	68891,1	5711,7	0,0501	0,0916	2057,5	0,0330	33,5	1,518	2,776	0,998	6
DMA	[722nm]	67242,6	1018,0	0,0209	0,0165	366,7	0,0060	183,4	3,507	2,776	1,000	6
DMF	[724nm]	66724,7	933,7	0,0121	0,0143	336,3	0,0052	198,4	2,345	2,776	1,000	6
DMSO	[729nm]	65784,8	1374,7	0,0136	0,0223	495,2	0,0081	132,8	1,689	2,776	1,000	6
Eter dietylowy	[717nm]	78341,4	5909,7	-0,0621	0,0949	2128,8	0,0342	36,8	1,816	2,776	0,999	6
Woda				-	n.	ierozpus	zczalny					
Heksan					n	ierozpus	zczalny					
Metanol	[718nm]	51474,9	754,4	0,0278	0,0116	271,8	0,0042	189,4	6,667	2,776	1,000	6
Octan etylu	[719nm]	69681,3	748,6	-0,0012	0,0115	269,7	0,0041	258,4	0,278	2,776	1,000	6
Pirydyna	[732nm]	69580,7	2005,9	0,0218	0,0316	722,6	0,0114	96,3	1,912	2,776	1,000	6
TEA	[716nm]	67722,3	1194,1	0,0159	0,0193	430,1	0,0070	157,4	2,288	2,776	1,000	6
THF	[721nm]	75720,0	2422,9	0,0281	0,0391	872,8	0,0141	86,8	1,993	2,776	1,000	6
Toluen	[728nm]	79792,2	1529,3	0,0218	0,0245	550,9	0,0088	144,8	2,466	2,776	1,000	6

Tab. 7. Ocena statystyczna zależności absorbancji (A) w maksimum pasma Q od stężenia porfirazyny **Pz2** (c), A = f(c) w rozpuszczalnikach o różnej polarności.

a - współczynnik kierunkowy prostej y = ax + b; Δa - przedział ufności współczynnika kierunkowego prostej; b - wartość rzędnej dla x = 0; Δb - przedział ufności współczynnika b; S_a - błąd standardowy kierunkowego współczynnika prostej; S_b - błąd standardowy współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika b - pogrubiono wartości wskazujące na istotność współczynnika b (t_b > t_{a,f} - wartość tabelaryczna parametru t dla f = n-2 stopni swobody i poziomie istotności α = 0,05; r - współczynnik regresji; n - liczba pomiarów

Tab. 8. Ocena statystyczna zależności absorbancji (A) w maksimum pasma Q od stężenia porfirazyny **Pz3** (c), A = f(c) w rozpuszczalnikach o różnej polarności.

Rozpuszcza	alnik	а	Δa	b	Δb	Sa	Sb	ta	t _b	t _{α,f}	r	n
Izopropanol					ni	erozpu	szczalny	/				
Acetonitryl					ni	erozpu	szczalny	/		_		
Aceton	[775nm]	28292,0	574,8	0,0038	0,0107	180,6	0,0034	156,6	1,116	3,182	1,000	5
CH ₂ Cl ₂	[777nm]	46390,0	874,5	-0,0112	0,0148	315,0	0,0053	147,3	2,105	2,776	1,000	6
CHCl ₃	[778nm]	49775,3	2041,6	0,0296	0,0341	735,5	0,0123	67,7	2,407	2,776	1,000	6
Cykloheksan	[769nm]	50911,0	1125,4	0,0186	0,0192	405,4	0,0069	125,6	2,696	2,776	1,000	6
1,4-dioksan	[776nm]	44206,6	1541,7	0,0157	0,0261	555,4	0,0094	79,6	1,672	2,776	1,000	6
DMA	[781nm]	36651,0	986,7	0,0128	0,0170	355,4	0,0061	103,1	2,092	2,776	1,000	6
DMF	[780nm]	29293,2	2586,4	0,0339	0,0425	931,7	0,0153	31,4	2,216	2,776	0,998	6
DMSO					ni	erozpu	szczalny	/				
Eter dietylowy	[771nm]	53577,1	279,8	-0,0118	0,0047	100,8	0,0017	531,5	6,982	2,776	1,000	6
Woda				-	ni	erozpu	szczalny	/				
heksan	[767nm]	24826,8	291,4	-0,0227	0,0051	105,0	0,0018	236,5	12,404	2,776	1,000	6
Metanol					ni	erozpu	szczalny	/				
Octan etylu	[772nm]	45458,2	414,6	0,0123	0,0069	149,4	0,0025	304,3	4,980	2,776	1,000	6
Pirydyna	[784nm]	44220,9	1093,4	0,0188	0,0188	393,9	0,0068	112,3	2,769	2,776	1,000	6
TEA	[769nm]	53686,0	6831,5	0,0781	0,1133	2460,9	0,0408	21,8	1,914	2,776	0,996	6
THF	[775nm]	48299,1	758,3	0,0212	0,0129	273,2	0,0047	176,8	4,559	2,776	1,000	6
Toluen	[778nm]	50794,6	1338,2	0,0204	0,0229	482,1	0,0083	105,4	2,473	2,776	1,000	6

a - współczynnik kierunkowy prostej y = ax + b; Δa - przedział ufności współczynnika kierunkowego prostej; b - wartość rzędnej dla x = 0; Δb - przedział ufności współczynnika b; S_a - błąd standardowy kierunkowego współczynnika prostej; S_b - błąd standardowy współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika a; t_b - parametr t obliczony empirycznie dla współczynnika b (t_b > t_{a,f}); t_{a,f} - wartość tabelaryczna parametru t dla f = n-2 stopni swobody i poziomie istotności α = 0,05; r - współczynnika regresji; n - liczba pomiarów

Tab. 9. Ocena statystyczna zależności absorbancji (A) w maksimum pasma Q od stężenia ftalocyjaniny **Pc1** (c), A = f(c) w rozpuszczalnikach o różnej polarności.

Rozpus	zczalnik	а	Δa	b	Δb	Sa	Sb	ta	t _b	t _{α,f}	r	n
Cykloheksan						nierozpus	zczalny					
DMA	[733nm]	170563,6	19971,2	0,0668	0,1316	7194,2	0,0474	23,7	1,409	2,776	0,996	6
DMF	[732nm]	172400,3	11608,3	0,0616	0,0702	4181,7	0,0253	41,2	2,435	2,776	0,999	6
DMSO	[739nm]	152079,8	19207,6	0,0737	0,1208	6919,2	0,0435	22,0	1,694	2,776	0,996	6
Heksan					_	nierozpus	zczalny				_	
Pirydyna	[736nm]	115966,6	5525,3	0,0178	0,0475	1990,4	0,0171	58,3	1,041	2,776	0,999	6
TEA	[721nm]	166078,5	28440,3	0,1120	0,1954	10245,1	0,0704	16,2	1,591	2,776	0,992	6

a - współczynnik kierunkowy prostej y = ax + b; Δa - przedział ufności współczynnika kierunkowego prostej; b - wartość rzędnej dla x = 0; Δb - przedział ufności współczynnika b; S_a - błąd standardowy kierunkowego współczynnika prostej; S_b - błąd standardowy współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika a; t_b - parametr t obliczony empirycznie dla współczynnika b (t_b > t_a, - parametr t obliczony empirycznie dla współczynnika b (t_b > t_a, - wartość tabelaryczna parametru t dla f = n-2 stopni swobody i poziomie istotności α = 0,05; r - współczynnik regresji; n - liczba pomiarów

Tab. 10. Ocena statystyczna zależności absorbancji (A) w maksimum pasma Q od stężenia ftalocyjaniny **Pc2** (c), A = f(c) w rozpuszczalnikach o różnej polarności.

Rozpuszcz	alnik	а	Δa	b	Δb	Sa	Sb	ta	t _b	t _{α,f}	r	n
Izopropanol	[725nm]	148624,8	17602,6	0,0624	0,1360	6341,0	0,0490	23,4	1,273	2,776	0,996	6
Cykloheksan					nie	erozpusz	czalny				_	
DMA	[731nm]	149277,9	11853,3	0,0475	0,0836	4269,9	0,0301	35,0	1,578	2,776	0,998	6
DMF	[731nm]	151745,3	10675,6	0,0421	0,0702	3845,7	0,0253	39,5	1,664	2,776	0,999	6
DMSO	[740nm]	142100,5	10005,1	0,0440	0,0738	3604,1	0,0266	39,4	1,654	2,776	0,999	6
Woda					słab	o rozpus	zczalny					
Heksan					nie	erozpusz	czalny					
Metanol	[732nm]	156155,6	12915,5	0,0637	0,0902	4652,5	0,0325	33,6	1,960	2,776	0,998	6
Pirydyna	[738nm]	137522,9	16496,2	0,0699	0,1380	5942,4	0,0497	23,1	1,406	2,776	0,996	6
TFA	[722nm]	108824.0	40277	0.0233	0.0306	1265.8	0 0096	86.0	2 4 2 5	3 1 8 2		5

a - współczynnik kierunkowy prostej y = ax + b; Δa - przedział ufności współczynnika kierunkowego prostej; b - wartość rzędnej dla x = 0; Δb - przedział ufności współczynnika b; S_a - błąd standardowy kierunkowego współczynnika prostej; S_b - błąd standardowy współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika a; t_b - parametr t obliczony empirycznie dla współczynnika b; t_a, - parametr t obliczony empirycznie dla współczynnika b (t_b > t_{a,f}); t_{a,f} - wartość tabelaryczna parametru t dla f = n-2 stopni swobody i poziomie istotności α = 0,05; r - współczynnika regresji; n - liczba pomiarów

Tab. 11. Ocena statystyczna zależności absorbancji (A) w maksimum pasma Q od stężenia ftalocyjaniny **Pc3** (c), A = f(c) w rozpuszczalnikach o różnej polarności.

Rozpuszcz	zalnik	а	Δa	b	Δb	Sa	Sb	ta	tb	t _{α,f}	r	n
Izopropanol	[754nm]	116442,1	3638,2	0,0145	0,0275	1310,6	0,0099	88,8	1,465	2,776	1,000	6
Acetonitryl	[752nm]	122011,4	8537,2	0,0406	0,0747	3075,3	0,0269	39,7	1,509	2,776	0,999	6
Aceton	[751nm]	126412,5	2013,9	0,0186	0,0137	725,5	0,0049	174,3	3,780	2,776	1,000	6
CH ₂ Cl ₂	[757nm]	126360,6	2326,4	-0,0264	0,0191	838,0	0,0069	150,8	3,832	2,776	1,000	6
CHCl₃	[759nm]	123709,5	2141,5	0,0119	0,0154	771,4	0,0056	160,4	2,144	2,776	1,000	6
1,4-dioksan	[748nm]	123533,3	5562,4	0,0219	0,0466	2003,8	0,0168	61,7	1,304	2,776	0,999	6
DMA	[758nm]	124813,7	3107,5	0,0109	0,0218	1119,4	0,0079	111,5	1,387	2,776	1,000	6
DMF	[757nm]	123599,8	4758,4	0,0200	0,0375	1714,1	0,0135	72,1	1,481	2,776	1,000	6
DMSO	[764nm]	125235,1	3745,6	0,0246	0,0300	1349,3	0,0108	92,8	2,278	2,776	1,000	6
Woda				-	słab	o rozpus	zczalny					
Metanol	[754nm]	118014,6	3574,0	0,0267	0,0259	1287,5	0,0093	91,7	2,859	2,776	0,999	6
Octan etylu	[752nm]	116462,6	6534,1	0,0402	0,0583	2353,8	0,0210	49,5	1,914	2,776	0,999	6
Pirydyna	[757nm]	130918,2	4707,7	0,0178	0,0336	1695,8	0,0121	77,2	1,471	2,776	1,000	6
THF	[754nm]	123305,0	2039,0	0,0161	0,0137	734,5	0,0049	167,9	3,266	2,776	1,000	6

a - współczynnik kierunkowy prostej y = ax + b; Δa - przedział ufności współczynnika kierunkowego prostej; b - wartość rzędnej dla x = 0; Δb - przedział ufności współczynnika b; S_a - błąd standardowy kierunkowego współczynnika prostej; S_b - błąd standardowy współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika b; - parametr t obliczony empirycznie dla współczynnika b - pogrubiono wartości wskazujące na istotność współczynnika b (t_b > t_{a,f}); t_{a,f} - wartość tabelaryczna parametru t dla f = n-2 stopni swobody i poziomie istotności α = 0,05; r - współczynnik regresji; n - liczba pomiarów

Tab. 12. Ocena statystyczna zależności absorbancji (A) w maksimum pasma Q od stężenia ftalocyjaniny **Pc4** (c), A = f(c) w rozpuszczalnikach o różnej polarności.

Rozpuszcza	lnik	а	Δa	b	Δb	Sa	Sb	ta	t _b	t _{α,f}	r	n
Izopropanol	[814nm]	66414,6	4046,3	-0,0532	0,0398	1271,6	0,0125	52,2	4,256	3,182	0,999	5
Acetonitryl	[811nm]	79498,6	273,8	0,0023	0,0026	98,6	0,0009	806,1	2,459	2,776	1,000	6
Aceton	[802nm]	85302,4	1219,1	0,0090	0,0087	383,1	0,0027	222,6	3,299	3,182	1,000	5
CH ₂ Cl ₂	[811nm]	90893,3	654,9	-0,0050	0,0055	205,8	0,0017	441,7	2,874	3,182	1,000	5
CHCl₃	[812nm]	91813,9	4912,3	0,0187	0,0363	1543,8	0,0114	59,5	1,640	3,182	1,000	5
Cykloheksan						nierozpu	szczalny					
1,4-dioksan				_		rozkła	da się					
DMA	[802nm]	75943,8	6306,4	-0,0730	0,0544	1981,9	0,0171	38,3	4,269	3,182	0,999	5
DMF	[806nm]			-		rozkła	da się					
DMSO	[827nm]	83945,0	1665,4	0,0128	0,0127	523,4	0,0040	160,4	3,200	3,182	1,000	5
Eter dietylowy	[795nm]	58844,9	4749,9	-0,0061	0,0433	1492,7	0,0136	39,4	0,451	3,182	0,999	5
Woda	[837nm]	76176,0	1064,0	-0,0067	0,0122	334,4	0,0038	227,8	1,759	3,182	1,000	5
Heksan				-		nierozpu	szczalny					
Metanol	[824nm]	80567,4	1050,9	0,0151	0,0095	330,3	0,0030	243,9	5,050	3,182	1,000	5
Octan etylu	[796 nm]	67829,9	6678,1	-0,0530	0,0474	2098,7	0,0149	32,3	3,557	3,182	0,999	5
Pirydyna	[810nm]	87159,5	1926,9	-0,0328	0,0172	605,5	0,0054	143,9	6,052	3,182	1,000	5
TEA						nierozpu	szczalny					
THF	[794nm]	46370,8	8756,2	-0,0764	0,0907	2751,8	0,0285	16,9	2,681	3,182	0,995	5
Toluen	[800nm]	86501,2	327,0	-0,0178	0,0023	102,8	0,0007	841,7	24,688	3,182	1,000	5

a - współczynnik kierunkowy prostej y = ax + b; Δa - przedział ufności współczynnika kierunkowego prostej; b - wartość rzędnej dla x = 0; Δb - przedział ufności współczynnika b; S_a - błąd standardowy kierunkowego współczynnika prostej; S_b - błąd standardowy współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika a; t_b - parametr t obliczony empirycznie dla współczynnika b; t_a - porubiono wartości wskazujące na istotność współczynnika b (t_b > t_{a,f}); t_{a,f} - wartość tabelaryczna parametru t dla f = n-2 stopni swobody i poziomie istotności α = 0,05; r - współczynnik regresji; n - liczba pomiarów

Tab. 13. Ocena statystyczna zależności absorbancji (A) w maksimum pasma Q od stężenia ftalocyjaniny **Pc5** (c), A = f(c) w rozpuszczalnikach o różnej polarności.

Rozpuszcza	lnik	а	Δa	b	Δb	Sa	Sb	ta	tb	t _{α,f}	r	n
Izopropanol	[714nm]	68312,2	1073,0	-0,0074	0,0084	337,2	0,0027	202,6	2,774	3,182	1,000	5
Acetonitryl	[726nm]	64662,9	1250,7	-0,0064	0,0086	393,0	0,0027	164,5	2,372	3,182	1,000	5
Aceton	[718nm]	73543,4	2446,9	-0,0037	0,0223	769,0	0,0070	95,6	0,530	3,182	1,000	5
CH ₂ Cl ₂	[727nm]	75369,6	4638,2	-0,0507	0,0430	1457,6	0,0135	51,7	3,756	3,182	0,999	5
CHCl₃	[727nm]	71216,6	4426,3	0,0262	0,0414	1391,1	0,0130	51,2	2,015	3,182	0,999	5
Cykloheksan						nierozpu	szczalny					
1,4-dioksan				_		rozkła	da się			_		_
DMA	[721nm]	72470,3	953,8	0,0056	0,0067	299,7	0,0021	241,8	2,668	3,182	1,000	5
DMF	[718nm]	69241,1	598,3	0,0050	0,0039	188,0	0,0012	368,3	4,131	3,182	1,000	5
DMSO	[723nm]	62190,1	1678,6	0,0093	0,0123	527,5	0,0039	117,9	2,403	3,182	1,000	5
Eter dietylowy			-	-		nierozpu	szczalny			-	-	
Woda					I	nierozpu	szczalny					
Heksan						nierozpu	szczalny					
Metanol	[722nm]	58558,7	738,7	0,0020	0,0052	232,1	0,0016	252,3	1,209	3,182	0,997	5
Octan etylu	[720nm]	35837,4	5116,8	-0,0185	0,0395	1608,0	0,0124	22,3	1,492	3,182	0,997	5
Pirydyna	[730nm]	55244,2	637,6	-0,0076	0,0054	200,4	0,0017	275,7	4,473	3,182	1,000	5
TEA				-		nierozpu	szczalny			-		
THF	[719nm]	68883,8	394,4	-0,0108	0,0032	123,9	0,0010	555,8	10,588	3,182	1,000	5
Toluen	[723nm]	69193,4	1312,1	-0,0221	0,0111	412,4	0,0035	167,8	6,351	3,182	1,000	5

a -współczynnik kierunkowy prostej y = ax + b; Δa - przedział ufności współczynnika kierunkowego prostej; b - wartość rzędnej dla x = 0; Δb - przedział ufności współczynnika b; S_a - błąd standardowy kierunkowego współczynnika prostej; S_b - błąd standardowy kierunkowego współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika b (t_b > t_{a,f}); t_{a,f} - wartość tabelaryczna parametru t dla f = n-2 stopni swobody i poziomie istotności α = 0,05; r - współczynnika regresji; n - liczba pomiarów

Tab. 14. Ocena statystyczna zależności absorbancji (A) w maksimum pasma Q od stężenia ftalocyjaniny **Pc6** (c), A = f(c) w rozpuszczalnikach o różnej polarności.

Rozpuszcz	alnik	а	Δa	b	Δb	Sa	S _b	ta	t _b	$t_{\alpha,f}$	r	n
Izopropanol	[731nm]	118665,0	10007,3	0,0531	0,0855	3604,9	0,0308	32,9	1,724	2,776	0,998	6
Acetonitryl	[736nm]	131363,0	12632,9	0,0439	0,1102	4550,7	0,0397	28,9	1,106	2,776	0,998	6
Aceton	[732nm]	128949,4	11719,8	0,0629	0,1035	4221,8	0,0373	30,5	1,686	2,776	0,998	6
CH ₂ Cl ₂	[740nm]	150089,8	23514,4	0,0395	0,1724	8470,6	0,0621	17,7	0,636	2,776	0,994	6
CHCl₃	[742nm]	156928,7	5251,2	0,0168	0,0333	1891,7	0,0120	83,0	1,400	2,776	1,000	6
Cykloheksan	[733nm]	85582,1	5368,1	0,0299	0,0544	1687,0	0,0171	50,7	1,749	3,182	0,999	5
Dioksan	[731nm]	157414,9	8448,8	0,0214	0,0575	3043,5	0,0207	51,7	1,034	2,776	0,999	6
DMA	[736nm]	148520,7	6294,5	0,0172	0,0416	2267,5	0,0150	65,5	1,147	2,776	1,000	6
DMF	[736nm]	143798,9	7582,5	0,0322	0,0522	2731,4	0,0188	52,6	1,713	2,776	0,999	6
DMSO	[740nm]	140280,0	14962,4	0,0661	0,1210	5389,9	0,0436	26,0	1,516	2,776	0,997	6
Eter dietylowy	[732nm]	124809,0	7962,7	-0,0041	0,0741	2868,4	0,0267	43,5	0,153	2,776	0,999	6
Woda					nie	erozpusz	czalny					
Heksan					nie	erozpusz	czalny					
Metanol	[731nm]	135142,7	6517,0	0,0527	0,0422	2347,6	0,0152	57,6	3,467	2,776	0,999	6
Octan etylu	[733nm]	136305,1	13375,3	0,0525	0,1127	4818,2	0,0406	28,3	1,293	2,776	0,998	6
Pirydyna	[737nm]	161532,4	5613,5	0,0056	0,0363	1764,1	0,0114	91,6	0,489	3,182	1,000	5
TEA	[733nm]	117006,4	10274,2	0,0605	0,0754	3228,9	0,0237	36,2	2,553	3,182	0,999	5
THF	[731nm]	144100,7	16044,2	0,0773	0,1277	5779,6	0,0460	24,9	1,680	2,776	0,997	6
Toluen	[734nm]	169601,7	3749,8	0,0081	0,0184	1178,5	0,0058	143,9	1,400	3,182	1,000	5

a - współczynnik kierunkowy prostej y = ax + b; Δa - przedział ufności współczynnika kierunkowego prostej; b - wartość rzędnej dla x = 0; Δb - przedział ufności współczynnika b; S_a - błąd standardowy kierunkowego współczynnika prostej; S_b - błąd standardowy współczynnika b; t_a - parametr t obliczony empirycznie dla współczynnika a; t_b - parametr t obliczony empirycznie dla współczynnika b - pogrubiono wartości wskazujące na istotność współczynnika b (t_b > t_{a,f}); t_{a,f} - wartość tabelaryczna parametru t dla f = n-2 stopni swobody i poziomie istotności α = 0,05; r - współczynnik regresji; n - liczba pomiarów

Dla związków silnie agregujących tj. **Pc1** i **Pc2** wyznaczono stosunek intensywności składowych pasma Q wg wzoru (2) a uzyskane wartości przedstawiono w tab. 15 - 16.

$$s = \frac{A_{(\lambda_1)}}{A_{(\lambda_2)}} \tag{2}$$

gdzie:

 $A_{(\lambda 1)}$ – absorbancja składowej pasma Q wykazującej maksimum absorpcji przy długości fali λ_1

 $A_{(\lambda 2)}$ – absorbancja składowej pasma Q wykazującej maksimum absorpcji przy długości fali λ_2

 $\lambda_1 < \lambda_2$

			Pc1		
Aceto	onitryl	A	ceton	Dichl	orometan
stężenie [mol/dm ³]	(731)/A(804	stężenie [mol/dm ³]	A(728)/A(798)	stężenie [mol/dm ³]	A(758)/A(799)
1.43·10 ⁻⁵	1,16	1.33·10 ⁻⁵	1,34	1.35·10 ⁻⁵	0,63
7.17·10 ⁻⁶	2,86	6.67·10 ⁻⁶	1,77	6.73·10 ⁻⁶	0,62
3.58·10 ⁻⁶	11,86	3.34·10 ⁻⁶	2,21	3.37·10 ⁻⁶	0,61
1.79·10 ⁻⁶	16,12	1.67·10 ⁻⁶	3,15	1.68·10 ⁻⁶	0,63
8.96·10 ⁻⁷	16,46	8.34·10 ⁻⁷	4,02	8.42·10 ⁻⁷	0,63
		4.17·10 ⁻⁷	10,30	4.21·10 ⁻⁷	0,56
Eter di	etylowy	М	etanol	Oct	an etylu
stężenie [mol/dm ³]	(726)/A(788	stężenie [mol/dm ³]	A(730)/A(804)	stężenie [mol/dm ³]	A(728)/A(791)
1.37·10 ⁻⁵	1,16	1.40·10 ⁻⁵	1,09	1.32·10 ⁻⁵	0,92
6.86·10 ⁻⁶	1,28	6.98·10 ⁻⁶	1,24	6.61·10 ⁻⁶	1,03
3.43·10 ⁻⁶	1,82	3.49·10 ⁻⁶	1,29	3.30·10 ⁻⁶	1,12
$1.71 \cdot 10^{-6}$	2,41	$1.75 \cdot 10^{-6}$	1,25	1.65·10 ⁻⁶	1,39
$8.57 \cdot 10^{-7}$	4,36	8.73·10 ⁻⁷	1,38	8.26·10 ⁻⁷	1,81
		4.36·10 ⁻⁷	1,35	4.13·10 ⁻⁷	1,01
Chlor	oform	1,4-	Dioksan	V	Voda
stężenie [mol/dm ³]	(738)/A(800	stężenie [mol/dm ³]	A(733)/A(795)	stężenie [mol/dm ³]	A(780)/A(812)
1.26·10 ⁻⁵	0,85	1.31·10 ⁻⁵	1,98	1.98·10 ⁻⁵	0,95
$6.30 \cdot 10^{-6}$	0,86	$6.55 \cdot 10^{-6}$	2,64	9,91·10 ⁻⁶	0,87
$3.15 \cdot 10^{-6}$	0,90	3.27·10 ⁻⁶	3,80	4,96·10 ⁻⁶	0,83
$1.57 \cdot 10^{-6}$	0,97	$1.64 \cdot 10^{-6}$	5,73	2,48·10 ⁻⁶	0,81
$7.87 \cdot 10^{-7}$	1,07	8.18·10 ⁻⁷	4,19	1,24·10 ⁻⁶	0,81
		4.09·10 ⁻⁷	2,99		
Т	ΉF	Т	oluen		
stężenie [mol/dm ³]	(728)/A(795	stężenie [mol/dm ³]	A(729)/A(795)		
1.30.10-5	1,28	1.28·10 ⁻⁵	0,94		
6.48·10 ⁻⁶	1,79	6.42·10 ⁻⁶	1,24		
3.24·10 ⁻⁶	2,45	3.21·10 ⁻⁶	1,76		
1.62·10 ⁻⁶	4,97	$1.61 \cdot 10^{-6}$	2,33		
8.10.10 ⁻⁷	11,90	8.03·10 ⁻⁷	2,61		
4.05.10-7	93,70				

Tab. 15. Stosunek intensywności składowych pasma Q w elektronowych widmach absorpcji ftalocyjaniny **Pc1**.

Tab. 16. Stosunek intensywności składowych pasma Q w elektronowych widmach absorpcji ftalocyjaniny **Pc2**.

					Pc2				
Ace	tonitryl	A	ceton	Dichl	orometan	Chlor	oform	1,4-di	oksan
stężenie [mol/dm ³]	A(730)/A(803)	stężenie [mol/dm ³]	A(727)/A(798)	stężenie [mol/dm ³]	A(735)/A(800)	stężenie [mol/dm ³]	A(734)/A(800)	stężenie [mol/dm ³]	A(731)/A(795)
1.64·10 ⁻⁵	3,50	1.63·10 ⁻⁵	3,21	1.69·10 ⁻⁵	1,78	1.36·10 ⁻⁵	2,14	1.69.10-5	4,14
8.21·10 ⁻⁶	4,10	8.15·10 ⁻⁶	3,47	8.45·10 ⁻⁶	1,77	$6.81 \cdot 10^{-6}$	2,18	8.45·10 ⁻⁶	4,50
4.10·10 ⁻⁶	5,51	4.07·10 ⁻⁶	3,82	4.22·10 ⁻⁶	1,80	3.40·10 ⁻⁶	2,10	4.22·10 ⁻⁶	5,95
2.05·10 ⁻⁶	8,84	2.04·10 ⁻⁶	4,46	2.11·10 ⁻⁶	1,88	$1.70 \cdot 10^{-6}$	1,96	2.11·10 ⁻⁶	8,77
1.03·10 ⁻⁶	13,01	1.02·10 ⁻⁶	6,17	$1.06 \cdot 10^{-6}$	1,58	8.51·10 ⁻⁷	1,81	1.06·10 ⁻⁶	15,37
5.13·10 ⁻⁷	18,62	5.09·10 ⁻⁷	7,47						
Eter o	dietylowy	Oct	an etylu		THF		Tol	uen	
stężenie [mol/dm ³]	A(724)/A(788)	stężenie [mol/dm ³]	A(726)/A(792)	stężenie [mol/dm ³]	A(729)/A(795)	A(689)/A(729)	stężenie [mol/dm ³]	A(733)/A(796)	
1.52·10 ⁻⁵	2,84	1.81.10 ⁻⁵	2,31	1.90·10 ⁻⁵	3,65	0,00	1.40·10 ⁻⁵	1,66	
7.60·10 ⁻⁶	2,85	9.0610 ⁻⁶	2,54	9.48·10 ⁻⁶	4,62	0,46	$6.99 \cdot 10^{-6}$	1,76	
3.80·10 ⁻⁶	2,74	4.53·10 ⁻⁶	2,60	4.74·10 ⁻⁶	6,51	0,44	3.50·10 ⁻⁶	1,71	
1.90·10 ⁻⁶	3,17	2.26·10 ⁻⁶	2,92	2.37·10 ⁻⁶	9,96	0,50	1.75·10 ⁻⁶	1,61	
9.50·10 ⁻⁷	3,65	1.13·10 ⁻⁶	3,16	1.19·10 ⁻⁶	12,63	0,50	8.74·10 ⁻⁷	1,31	
		5.66·10 ⁻⁷	3,63	5.93·10 ⁻⁷	26,00	0,48			

2.4.1. Wpływ dokuzanu sodu na właściwości agregacyjne

Wpływ środka powierzchniowo czynnego na właściwości agregacyjne porfirynoidów analizowano na przykładzie ftalocyjaniny **Pc1** i dokuzanu sodu. W tym celu przygotowano serię roztworów wodnych ftalocyjaniny **Pc1** posiadających absorbancję ok. 0,6. Do każdej kolbki o pojemności 2,0 cm³ dodano roztwór roboczy dokuzanu sodu (c = 100,0 g/dm³) w takiej ilości, aby po uzupełnieniu próbek wodą stężenie dokuzanu wynosiło od 1,0 – 10,0 g/dm³. Jednocześnie przygotowano próbę odniesienia, która nie zawierała związku powierzchniowo czynnego. Następnie wykreślono widma absorpcji otrzymanych mieszanin w zakresie od 290 nm do 1000 nm, które zamieszczono na ryc. 116.

Ryc. 116. Zmiany widm absorpcji ftalocyjaniny **Pc1** w obecności wzrastającego stężenia dokuzanu sodu.

2.5. Właściwości emisyjne

Do pomiarów fluorescencji przygotowano roztwory porfirazyn Pz1 - Pz3 oraz ftalocyjanin Pc1 - Pc6 w DMF i DMSO, wykazujące absorbancję ok. 0,1. Fluorescencję mierzono w kuwetach kwarcowych o długości drogi optycznej l = 10 mm. Porfirynoidy wzbudzano promieniowaniem o długości fali z zakresu pasma Soreta i pasma Q [122] i wykreślano widma fluorescencji z wykorzystaniem spektrofluorymetru Jasco 6200.

Wydajność kwantową fluorescencji obliczono wg wzoru (*3*), zgodnie z metodą zaproponowaną przez Birks'a i Nombona i wsp. [122,123]:

$$\phi_F = \phi_F(Std) \frac{\int F(\lambda)}{\int F_{Std}(\lambda)} \cdot \frac{1 - 10^{-A_{Std}}}{1 - 10^{-A}}$$
(3)

gdzie:

 Φ_F – wydajność kwantowa fluorescencji związku badanego $\Phi_F(Std)$ – wydajność kwantowa wzorca (ZnPc) F – natężenie emisji związku badanego F_{Std} – natężenie emisji wzorca (ZnPc) A – absorbancja substancji badanej przy długości fali wzbudzenia A_{Std} – absorbancja wzorca przy długości fali wzbudzenia

Wzorzec stanowiła niepodstawiona ftalocyjanina cynkowa (ZnPc), której wydajność kwantową zaczerpnięto z piśmiennictwa i przyjęto wartości 0,20 i 0,17 – odpowiednio w DMSO oraz DMF [124]. Długość fali promieniowania wzbudzającego była jednakowa dla wzorca, jak i substancji badanych. Zarejestrowane widma emisji dla porfirazyn w roztworach DMF zamieszczono na ryc. 117, a w DMSO na ryc. 118. Widma emisji ftalocyjanin przedstawiono na ryc. 119 i 120, odpowiednio dla roztworów w DMF i DMSO. Natomiast wydajność kwantową fluorescencji oraz wartości przesunięć Stokes'a zestawiono w tab. 17.

Ryc. 117. Widma absorpcji i emisji porfirazyn Pz1 – Pz3 w DMF.

Ryc. 118. Widma absorpcji i emisji porfirazyn Pz1 – Pz2 w DMSO.

Ryc. 119. Widma absorpcji i emisji ftalocyjanin Pc1, Pc2, Pc3 i Pc5 w DMF.

Ryc. 120. Widma absorpcji i emisji ftalocyjanin Pc1, Pc2, Pc3 i Pc5 w DMSO.

	Rozpuszczalnik	10 ² ф _F	Przesunięcie Stokes'a [1/cm]
Pz1	DMF	4,55	321
	DMSO	1,19	351
Pz2	DMF	1,86	317
	DMSO	0,46	384
Pz3	DMF	0,31	258
	DMSO	niero	zpuszczalny
Pc1	DMF	5,39	166
	DMSO	2,33	181
Pc2	DMF	10,12	166
	DMSO	2,23	109
Pc3	DMF	1,08	206
	DMSO	0,80	174
Pc4	DMF	brak f	luorescencji
	DMSO	brak f	luorescencji
Pc5	DMF	0,14	414
	DMSO	0,04	318
Pc6	DMF	brak f	luorescencji
	DMSO	brak f	luorescencji

Tab. 17. Wydajność kwantowa fluorescencji i wartości przesunięć Stokes'a dla porfirazyn Pz1 – Pz3 oraz ftalocyjanin Pc1 – Pc6 w DMF i DMSO.

2.6. Ocena fototrwałości

Szybkość rozkładu fotochemicznego i wydajność kwantową fotodegradacji oznaczano w kwarcowej cylindrycznej kuwecie o pojemności 2,8 cm³. Do badań stosowano roztwory porfirynoidu o stężeniu odpowiadającym absorbancji ok. 0,7, mierzonej w maksimum pasma Q. Naświetlanie prowadzono w temperaturze pokojowej, zarówno w warunkach tlenowych, jak i beztlenowych. Odtlenowanie przeprowadzono przy użyciu azotu (N₂), przepuszczając przez kolbę z badanym roztworem gaz w czasie 20 min. Szybkość rozkładu fotochemicznego monitorowano w DMF i DMSO. Próbkę naświetlano promieniowaniem o długości fali powyżej 450 nm. W tym celu użyto wysokociśnieniowej lampy ksenonowej (150 W) firmy Optel, wyposażonej w filtr żółty HCC 16, który eliminował promieniowanie o długości fali <450 nm. Intensywność promieniowania wynosiła 130 klux i kontrolowana była luksometrem TES-1335. Do wykreślania widm absorpcji w czasie naświetlania używano spektrofotometru Shimadzu UV – 160A, a zmiany zachodzące w elektronowych widmach absorpcji przedstawiono na ryc. 121 – 136. Na podstawie zmian absorbancji w maksimum pasma Q wyznaczono wydajność kwantową rozkładu

fotochemicznego wg wzoru (4), zaproponowanego przez Seotsanyana-Mokhosi i wsp. [125,126]:

$$\phi = \frac{(c_0 - c_t)VN_A}{I_{Abs}St} \tag{4}$$

gdzie:

- c_0 stężenie porfirynoidu przed naświetlaniem [mol/dm³]
- c stężenie porfirynoidu po naświetlaniu [mol/dm³]

V - objętość kuwety [dm³]

 $N_A - liczba \ Avogadro$

 I_{Abs} – natężenie zaabsorbowanego promieniowania przez próbkę $\left[\frac{W}{m^2}\right]$

- S powierzchnia kuwety[m²]
- t czas naświetlania [s]

Wydajność kwantową rozkładu fotochemicznego przedstawiono w tab. 18

Ryc. 121. Zmiany widm absorpcji podczas naświetlania porfirazyny **Pz1** w roztworze DMF w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 122. Zmiany widm absorpcji podczas naświetlania porfirazyny **Pz1** w roztworze DMSO w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 123. Zmiany widm absorpcji podczas naświetlania porfirazyny **Pz2** w roztworze DMF w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 124. Zmiany widm absorpcji podczas naświetlania porfirazyny **Pz2** w roztworze DMSO w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 125. Zmiany widm absorpcji podczas naświetlania porfirazyny **Pz3** w roztworze DMF w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 126. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc1** w roztworze DMF w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 127. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc1** w roztworze DMSO w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 128. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc2** w roztworze DMF w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 129. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc2** w roztworze DMSO w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 130. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc3** w roztworze DMF w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 131. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc3** w roztworze DMSO w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 132. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc4** w roztworze DMSO w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 133. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc5** w roztworze DMF w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 134. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc5** w roztworze DMSO w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 135. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc6** w roztworze DMF w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Ryc. 136. Zmiany widm absorpcji podczas naświetlania ftalocyjaniny **Pc6** w roztworze DMSO w warunkach z dostępem tlenu (po lewej) oraz po odtlenowaniu azotem (po prawej).

Związek	10 ⁴ φ _Δ				
	DMF	DMSO	DMF	DMSO	
	Dostęp tlenu		Odtlenowanie azotem		
Pz1	1,81	1,37	1,58	1,03	
Pz2	1,82	1,81	1,49	0,37	
Pz3	0,70	nierozpuszczalny	0,38	nierozpuszczalny	
Pc1	1,81	0,12	1,09	0,16	
Pc2	1,13	0,09	1,14	0,05	
Pc3	0,89	0,64	0,51	0,38	
Pc4	rozkłada się	0,01	rozkłada się	<0,01	
Pc5	0,04	0,02	0,16	0,01	
Pc6	0,32	0,03	0,21	0,02	

Tab. 18.	Wydajność kwantowa	rozkładu fotochemicznego	o porfirazyn Pz1 –	Pz3 i ftalocyjanin
	Pc1 – Pc6 .			

2.7. Zdolność generowania tlenu singletowego

Ocenę zdolności generowania tlenu singletowego przeprowadzono z zastosowaniem 1,3-difenyloizobenzofuranu (DPBF), jako chemicznego wygaszacza (ryc. 137).

Ryc. 137. Mechanizm chemicznego wygaszania tlenu singletowego przez DPBF.

W wyniku reakcji tlenu singletowego ${}^{1}\Delta_{g}$ z DPBF powstaje o-dibenzoilobenzen (ODBB), co skutkuje odbarwieniem roztworu.

Zdolność generowania tlenu singletowego oceniono w DMSO i DMF. W tym celu przygotowano:
- roztwór zawierający DPBF o stężeniu ~6,0·10⁻⁵ mol/dm³ wykazujący wartość absorbancji ok. 1,3
- roztwory porfirazyn i ftalocyjanin, których stężenie dobierano w ten sposób, aby wartość absorbancji przy długości fali odpowiadającej maksimum pasma Q wynosiła ~1,0, co odpowiadało stężeniu ok. 5,0·10⁻⁶ mol/dm³.

Następnie roztwory 1 i 2 zmieszano w stosunku objętościowym 1:1, a otrzymaną mieszaninę naświetlano promieniowaniem o długości fali odpowiadającej maksimum absorpcji pasma Q. Jako źródło światła wykorzystano łukową lampę ksenonową o mocy 150 W (*Optel*), a do uzyskania określonej długości fali promieniowania użyto monochromatora (*Optel, M250/1200/U*). Natężenie promieniowania na poziomie ~0,5 mW/cm² kontrolowano radiometrem firmy *Optel* RD 0,2/2 z sondą TD. Naświetlany roztwór znajdował się w kuwecie kwarcowej o długości drogi optycznej l = 10 mm. Podczas naświetlania mieszaninę DPBF i badanego związku mieszano na mieszadle magnetycznym, a w określonych odstępach czasu wykreślano widma absorpcji przy użyciu spektrofotometru Shimadzu UV–160A. Pomiary wykonywano w temperaturze pokojowej przy swobodnym dostępie tlenu, jak również po 20 min odpowietrzeniu roztworów azotem. Eksperyment prowadzono w czasie 540 s. Zmiany absorbancji DPBF przy $\lambda = 417$ nm analizowano jako zależność ln absorbancji od czasu ekspozycji mieszaniny na promieniowanie. Rozpad DPBF zachodził zgodnie z reakcją kinetyczną I rzędu:

$$\ln \left(A_0 / A \right) = kt \tag{5}$$

gdzie:

- A absorbancja DPBF przy $\lambda = 417$ nm po określonym czasie naświetlania
- A_0 absorbancja DPBF przy $\lambda = 417$ nm przed naświetlaniem
- k stała szybkości rozkładu DPBF [s⁻¹]

t – czas naświetlania [s]

Zmiany przebiegu widm absorpcji mieszaniny DPBF i porfirynoidu w czasie naświetlania oraz zależność ln (A_0/A) od czasu naświetlania (t) przedstawiono na rycinach:

1.	ryc. 138 i 139;	Pz1 odpowiednio w DMF i DMSO
2.	ryc. 140 i 141;	Pz2 odpowiednio w DMF i DMSO
3.	ryc. 142;	Pz3 w DMF
4.	ryc. 143 i 144;	Pc1 odpowiednio w DMF i DMSO
5.	ryc. 145 i 146;	Pc2 odpowiednio w DMF i DMSO
6.	ryc. 147 i 148;	Pc3 odpowiednio w DMF i DMSO
7.	ryc. 149;	Pc4 w DMSO
8.	ryc. 150 i 151;	Pc5 odpowiednio w DMF i DMSO
9.	ryc. 152 i 153;	Pc6 odpowiednio w DMF i DMSO

Wydajność kwantową generowania tlenu singletowego porfirynoidów wyznaczono metodą porównawczą. Jako wzorzec zastosowano ftalocyjaninę cynkową (ZnPc), której wydajność kwantowa generowania tlenu singletowego, zgodnie z danymi z piśmiennictwa, wynosi odpowiednio: 0,67 w DMSO oraz 0,56 w DMF [125–130]. Ocenę statystyczną oraz wydajność kwantową generowania tlenu singletowego dla związków **Pz1 – Pz3** i **Pc1 – Pc6** zamieszczono w tab. 19 i 20.

Ryc. 138. Widma absorpcji mieszaniny DPBF z **Pz1** w roztworze DMF oraz zależność $\ln(A_0/A)$ od czasu naświetlania (540 s).

Ryc. 139. Widma absorpcji mieszaniny DPBF z **Pz1** w roztworze DMSO oraz zależność ln(A₀/A) od czasu naświetlania (540 s).

Ryc. 140. Widma absorpcji mieszaniny DPBF z **Pz2** w roztworze DMF oraz zależność ln(A₀/A) od czasu naświetlania (540 s).

Ryc. 141. Widma absorpcji mieszaniny DPBF z **Pz2** w roztworze DMSO oraz zależność $ln(A_0/A)$ od czasu naświetlania (540 s).

Ryc. 142. Widma absorpcji mieszaniny DPBF z **Pz3** w roztworze DMF oraz zależność ln(A₀/A) od czasu naświetlania (540 s).

Ryc. 143. Widma absorpcji mieszaniny DPBF z **Pc1** w roztworze DMF oraz zależność ln(A₀/A) od czasu naświetlania (540 s).

Ryc. 144. Widma absorpcji mieszaniny DPBF z **Pc1** w roztworze DMSO oraz zależność $ln(A_0/A)$ od czasu naświetlania (540 s).

Ryc. 145. Widma absorpcji mieszaniny DPBF z **Pc2** w roztworze DMF oraz zależność ln(A₀/A) od czasu naświetlania (540 s).

Ryc. 146. Widma absorpcji mieszaniny DPBF z **Pc2** w roztworze DMSO oraz zależność $ln(A_0/A)$ od czasu naświetlania (540 s).

Ryc. 147. Widma absorpcji mieszaniny DPBF z **Pc3** w roztworze DMF oraz zależność ln(A₀/A) od czasu naświetlania (540 s).

Ryc. 148. Widma absorpcji mieszaniny DPBF z **Pc3** w roztworze DMSO oraz zależność ln(A₀/A) od czasu naświetlania (540 s).

Ryc. 149. Widma absorpcji mieszaniny DPBF z **Pc4** w roztworze DMSO oraz zależność $ln(A_0/A)$ od czasu naświetlania (540 s).

Ryc. 150. Widma absorpcji mieszaniny DPBF z **Pc5** w roztworze DMF s oraz zależność $ln(A_0/A)$ od czasu naświetlania (540 s).

Ryc. 151. Widma absorpcji mieszaniny DPBF z **Pc5** w roztworze DMSO oraz zależność ln(A₀/A) od czasu naświetlania (540 s).

Ryc. 152. Widma absorpcji mieszaniny DPBF z **Pc6** w roztworze DMF oraz zależność ln(A₀/A) od czasu naświetlania (540 s).

Ryc. 153. Widma absorpcji mieszaniny DPBF z **Pc6** w roztworze DMSO oraz zależność $ln(A_0/A)$ od czasu naświetlania (540 s).

Tab. 19. I	Dane statystyczne zal	leżności ln(A ₀ /A)	= f(t), opisuj	jące rozkład	DPBF pod	wpływem
	wygenerowanego tle	nu singletowego	w wyniku na	swietlania p	orfirynoidu	l .

Rozpuszczalnik	Związek	10 ⁴ ·(k±∆k)	10 ³ ·(b±∆b)	$10^6 \cdot S_k$	$10^3 \cdot S_b$	r	Zmiany pasma Q [%±∆%]	n	10 ⁴ ·(k±Δk)	10 ³ ·(b±∆b)	$10^6 \cdot S_k$	$10^3 \cdot S_b$	r	Zmiany pasma Q [%±Δ%]	n
			Dostęp tlenu								Odtlend	wanie azotem			
D+1	DMF	15,00±0,22	11,40±5,75	10,0	2,66	1,000	1,56±0,01	15	11,90±0,08	4,38±2,13	3,7	1,00	1,000	0,71±0,00	15
121	DMSO	6,05±0,29	14,00±7,56	13,2	3,50	0,997	1,98±0,02	15	5,02±0,18	11,10±4,67	8,1	2,16	0,998	0,86±0,00	15
D=2	DMF	25,80±0,51	17,20±13,52	23,5	6,26	0,999	3,65±0,04	15	22,40±1,10	46,60±29,38	0,5	13,6	0,997	2,95±0,03	15
F 22	DMSO	7,87±0,26	11,70±7,00	12,2	3,24	0,998	1,54±0,01	15	6,31±0,29	15,30±7,60	13,2	3,52	0,997	0,73±0,01	15
D+2	DMF	0,50±0,02	1,50±0,56	1,0	0,26	0,998	0,86±0,01	15	0,20±0,02	1,41±0,60	1,0	0,28	0,982	1,08±0,02	15
F 2 3	DMSO nierozpuszczalny							niero	zpuszczalny						
Pc1	DMF	$33,30\pm0,32$	-2,03 ±8,47	14,8	3,92	1,000	$0,31 \pm 0,01$	15	28,70±0,39	$-4,21 \pm 10,30$	17,9	4,77	1,000	$0,51 \pm 0,01$	15
101	DMSO	12,60±0,43	$16,90 \pm 11,34$	19,7	5,25	0,998	$0,25 \pm 0,00$	15	91,60±1,40	9,80±3,80	6,6	1,76	1,000	-0,36±0,01	15
Pc2	DMF	$48,60 \pm 1,38$	-4,88±27,95	62,5	12,70	0,999	$-1,01 \pm 0,06$	13	37,00 ± 1,40	37,50±37,80	66,0	17,5	0,998	$2,46 \pm 0,06$	15
102	DMSO	19,8±0,97	36,30 ± 25,70	44,8	11,90	0,997	$1,47 \pm 0,03$	15	16,80 ± 58,32	19,70±15,49	27,0	7,17	0,998	$-0,45 \pm 0,01$	15
Dc2	DMF	$1,01 \pm 0,03$	1,66 ± 0,75	1,3	0,35	0,999	$0,11 \pm 0,00$	15	$0,68 \pm 0,03$	2,04±0,79	1,4	0,37	0,997	$0,56 \pm 0,01$	15
FUS	DMSO	$0,30 \pm 0,03$	1,02 ±0,73	1,3	0,34	0,988	$0,75 \pm 0,01$	15	$0,37 \pm 0,04$	-2,24 ±0,97	1,7	0,45	0,986	$0,11 \pm 0,00$	15
Pc4	DMF		związ	ek niesta	bilny						związe	k niestabilny			
1.64	DMSO	$0,15 \pm 0,03$	2,79±0,83	1,5	0,39	0,942	$0,66 \pm 0,00$	15	$0,11 \pm 0,03$	2,22±0,75	2,8	0,35	0,923	0,07±0,00	15
Pc5	DMF	$1,61 \pm 0,04$	2,46 ± 1,03	1,8	0,48	0,999	$2,77 \pm 0,04$	15	$1,27 \pm 4,19$	2,28 ± 1,12	1,9	0,52	0,998	$2,70 \pm 0,04$	15
105	DMSO	0,73 ±0,03	$1,95 \pm 0,71$	1,2	0,33	0,998	0,93±0,01	15	$0,61 \pm 2,55$	$1,48 \pm 0,68$	1,2	0,32	0,998	$0,42 \pm 0,00$	15
De6	DMF	$1,86 \pm 0,04$	$2,19 \pm 1,18$	2,1	0,55	0,999	$0,18 \pm 0,00$	15	$1,04 \pm 0,04$	$1,70 \pm 1,06$	1,9	0,49	0,998	$0,85 \pm 0,01$	15
	DMSO	0,54±0,05	1,51 ± 1,26	2,2	0,58	0,990	-0,60 ± 0,01	15	0,24±2,87	1,45±0,76	1,3	0,35	0,980	0,08±0,00	15
							wzorze	ec							
ZnPc	DMF	58,60±1,16	-30,40±30,89	53,9	14,3	0,999	2,18±0,02	15							
ZnPc	DMSO	28.40±0.64	23.80±17.09	29.8	7.91	0.999	1.09±0.02	15							

Tab. 20. Wydajność kwantowa generowania tlenu singletowego porfirazyn **Pz1 – Pz3**, ftalocyjanin **Pc1 – Pc6** oraz ZnPc jako wzorca.

Związek	Rozpuszczalnik	Długość fali promieniowania wzbudzającego [nm]	Wydajność kwantowa generowania tlenu singletowego ΦΔ	Wydajność kwantowa generowania tlenu singletowego ΦΔ
			Dostęp tlenu (powietrza)	Odtlenowanie azotem
D-1	DMF	719	0,14*	0,11*
PZI	DMSO	726	$0,14 \pm 0,01$	$0,12 \pm 0,01$
0-2	DMF	724	0,25±0,01	$0,21\pm0,01$
PZZ	DMSO	729	$0,19 \pm 0,03$	$0,15\pm 0,01$
D-2	DMF	780	0,01*	<0,01
P23	DMSO	•	nierozpuszczalny	
De1	DMF	732	0,32±0,01	0,27±0,01
PCI	DMSO	739	$0,30\pm 0,01$	$0,22 \pm 0,01$
De 2	DMF	731	0,46±0,02	$0,35 \pm 0,02$
PCZ	DMSO	740	0,47±0,03	$0,40 \pm 0,02$
Dc2	DMF	757	0,01*	0,01*
PC3	DMSO	764	0,01*	0,01*
Pc4	DMF		związek niestabilny	
ru4	DMSO	826	<0,01	<0,01
DeF	DMF	718	0,02*	0,01*
PCS	DMSO	723	0,02*	0,01*
Def	DMF	736	0,02*	0,01*
PC6	DMSO	740	0,01*	0,01*
		WZ	zorzec	
7	DMF	670	0,67	
ZNPC	DMSO	672	0,56	

* - niepewność pomiaru mniejsza od 0,01

2.8. Ocena aktywności biologicznej

Badania na komórkach przeprowadzono z wykorzystaniem ftalocyjanin Pc1 – Pc6. Natomiast w doświadczeniach na wirusach użyto porfirazynę Pz2 oraz ftalocyjaninę Pc6.

2.8.1. Ocena aktywności przeciwnowotworowej

W badaniach in vitro wykorzystano komórki nowotworowe:

- 1. raka szyjki macicy (HeLa)
- linii komórek CEM wywodzących się z ludzkich komórek ostrej białaczki limfoblastycznej
- 3. komórki czerniaka (SK-MEL-5)

W doświadczeniach użyto medium hodowlane Dulbecco's Modified Eagle Medium (DMEM) z dodatkiem 1% buforu Hepes (1 mol/dm³), 1% glutaminy, 10% płodowej surowicy bydlęcej (Gibco) i 1% pirogronianu sodu. Do testów wykorzystano 96-studzienkowe płytki, do których wysiano po ok. $6 \cdot 10^4$ komórek oraz dodano medium hodowlane i ftalocyjaniny **Pc1** – **Pc6** rozpuszczone w DMSO. Zawartość DMSO w hodowli komórkowej po dodaniu związku nie przekraczała 0,1%. Przygotowane w powyższy sposób próby podzielono na dwie tożsame grupy, z których jedną inkubowano bez dostępu światła – faza ciemna, a drugą poddano naświetlaniom – faza jasna. Hodowle inkubowano w cieplarce w 37°C w atmosferze powietrza zawierającego 5% CO₂. W fazie ciemnej po inkubacji 96 h dla komórek CEM, a 120 h w przypadku HeLa i SK-MEL-5 bez dostępu światła, hodowle poddano trypsynizacji. Przepłukując każdą studzienkę 0,2 cm³ buforu PBS, przeniesiono zawartość studzienki do zlewki zawierającej 10,0 cm³ tego buforu. Następnie w przygotowanym roztworze oceniono przeżywalność komórek za pomocą licznika żywych komórek ZTM Series COULTER COUNTER[®].

W doświadczeniach prowadzonych w fazie jasnej hodowle komórkowe z ftalocyjaninami **Pc1** – **Pc6** naświetlono trzykrotnie promieniowaniem o $\lambda_{max} = 735$ nm i natężeniu 4,5 mW/cm² w czasie 30 minut (dawka promieniowania wynosiła 8,1 J/cm²). Naświetlanie przeprowadzono w pierwszym dniu eksperymentu, następnie hodowle inkubowano w cieplarce w wyżej podanych warunkach; naświetlanie

powtórzono po 24 h oraz po 48 h inkubacji. Inkubację kontynuowano przez kolejne 48 h w przypadku komórek CEM a 72 h dla linii HeLa i SK-MEL-5. Po tym czasie hodowle poddano trypsynizacji zgodnie z procedurą dla fazy ciemnej, a następnie zliczono ilość żywych komórek za pomocą licznika COULTER COUNTER[®]. W celu wykluczenia wpływu światła na przeżywalność komórek przeprowadzono test kontrolny. Wpływ światła na hodowlę komórkową oceniono z wykorzystaniem warunków inkubacji i naświetlania, jak w przypadku fazy jasnej (bez dodatku związku). Wszystkie doświadczenia powtórzono trzykrotnie [131]. Celem oceny właściwości przeciwnowotworowych wyznaczono wartość IC₅₀, określającą połowę maksymalnego stężenia hamującego oraz współczynnik fototoksyczny PI ftalocyjanin (ang. *Phototoxic index*), który obliczono ze wzoru przedstawionego przez Naik i wsp. (6) [132]:

$$PI = \frac{IC_{50(faza ciemna)}}{IC_{50(faza jasna)}}$$
(6)

Uzyskane wyniki przedstawiono w tab. 21

Tab. 21.	Wartości IC ₅₀ ,	indeksu	fototoksycznego	(PI)	ftalocyjanin P	Pc1 – Pc6	wyznaczonyc	h w
	badaniach in	vitro.						

		CEM			HeLa		SK-MEL-5			
Związek	IC ₅₀ (μM)		DI	IC ₅₀	(µM)	DI	IC ₅₀ (μM)		DI	
	Faza ciemna	Faza jasna	F1	Faza ciemna	Faza jasna	P1	Faza ciemna	Faza jasna	r1	
Pc1	$7,7 \pm 0,2$	$1,5 \pm 0,2$	5	14 ± 6	$0,85 \pm 0,41$	16	-	-	-	
Pc2	5,4 ± 1,1	$0,50 \pm 0,46$	11	$6,8 \pm 6,0$	$0,072 \pm 0,032$	94	5,7 ± 2,3	$0,081 \pm 0,052$	70	
Pc3	20 ± 7	0,085 ± 0,011	235	> 50	$0,32 \pm 0,29$	> 156	> 50	$0,34 \pm 0,28$	> 147	
Pc4	20 ± 4	19 ± 8	1	> 50	> 50	-	-	-	-	
Pc5	7,1 ± 1,5	$3,2 \pm 0,9$	2	13 ± 3	$4,9 \pm 0,4$	3	-	-	-	
Pc6	4,8 ± 0,1	0,13 ± 0,03	37	19 ± 11	0,38 ± 0,29	50	6,6 ± 2,3	0,33 ± 0,15	20	

2.8.2. Ocena aktywności przeciwwirusowej

Badania fotoinaktywacji wirusów przeprowadzono na trzech modelach:

- 1. ludzkich fibroblastach embrionalnych komórek płuc (HEL)
- 2. komórkach nerki afrykańskiej małpy zielonej (VERO)
- 3. komórkach nabłonkowych nerki psa Madin-Darby (MDCK)

Doświadczenia wykonano w trzech powtórzeniach wg niżej opisanych procedur [133]:

1. Model komórkowy HEL

Wysiano do 96 studzienek komórki HEL w ilości ok. $5 \cdot 10^3$ komórek na jedną studzienkę, następnie dodano medium DMEM (Dulbecco's Modified Eagle's Medium)

zawierające podwyższona ilość glukozy, L-glutaminę oraz płodowa surowice bydlęca. Otrzymane mieszaniny pożywki i komórek inkubowano 6 dni w temperaturze 37°C celem namnożenia komórek. Następnie przygotowano w PBS rozcieńczenia wirusa opryszczki typu 1, wirusa opryszczki typu 2, wirusa ospy oraz wirusa pęcherzykowatego zapalenia jamy ustnej $(10^6 - 10^8 \text{ PFU/ml} - \text{jednostek tworzących})$ łysinki na mililitr). W kolejnym etapie do każdej zawiesiny wirusów dodano taka ilość roztworu Pz2 w DMSO, aby w studzienkach uzyskać stężenie 100 µM (zawartość DMSO w hodowli komórkowej nie przekraczała 0,1%). Następnie tak otrzymaną mieszaninę naświetlono promieniowaniem o $\lambda_{max} = 735$ nm w czasie 30 min (dawka promieniowania 8,1 J/cm²) – faza jasna. Po naświetleniu mieszanin wirusów i Pz2dodano je do kultur komórkowych. Równocześnie przygotowano podłoże agarowe. Wysterylizowany w autoklawie roztwór agarozy wymieszano z medium DMEM i zawartością dołka 96-dołkowej płytki, a następnie otrzymaną mieszaninę przeniesiono do dołka w 6-dołkowej płytce. Po zastygnięciu podłoża płytki inkubowano przez kolejne 4 dni w temperaturze 37°C. Ostatnim etapem doświadczenia było zliczanie pod mikroskopem łysinek, czyli przejaśnień w hodowli komórkowej, które były wynikiem lizy komórek na skutek działania wirusa – objawy cytopatyczności. Jednocześnie wykonano próbę kontrolną bez naświetlania mieszaniny związku i wirusa - faza ciemna. Wszystkie doświadczenia przeprowadzono trzykrotnie. PFU obliczano ze wzoru (7):

$$PFU/ml = \frac{\text{ilość łysinek}}{d \times v}$$
(7)

gdzie:

d - rozcieńczenie zawiesiny wirusa użytej do badań

v – objętość rozcieńczonej zawiesiny wirusa dodanej do podłoża agarowego
Wyniki doświadczenia przedstawiono na ryc. 154.

Ryc. 154. Wykresy przedstawiające wartości PFU w fazie ciemnej i jasnej dla porfirazyny **Pz2** wyznaczone na modelu komórkowym HEL.

2. Model komórkowy VERO

Wysiano do 96 studzienek komórki VERO w ilości ok. 3 · 10⁴ komórek na jedną studzienkę i inkubowano 1 dzień w temperaturze 37°C. W kolejnym etapie otrzymano dwie serie mieszanin **Pc6** i badanych wirusów: w pierwszej stężenie związku w studzienkach wynosiło 100 µM, a w drugiej 25 µM. Następnie naświetlono otrzymane mieszaniny ftalocyjaniny **Pc6** i wirusa Coxsackie B4, wirusa Sindbis, wirusa opryszczki typu 1, wirusa paragrypy 3, wirusa Punta Toro oraz reowirusa w warunkach jak w przypadku modelu HEL. Kolejnym etapem doświadczenia były testy na podłożu stałym, które przeprowadzono analogicznie jak dla modelu HEL. Płytki inkubowano w temperaturze 37°C przez kolejne 3 dni w przypadku wirusa Coxsackie B4, wirusa Sindbis, wirusa opryszczki typu 1; natomiast 6 dni w przypadku wirusa paragrypy 3, wirusa Punta Toro oraz reowirusa w zliczono pod mikroskopem łysinki będące objawem cytopatyczności komórek wywołanej działaniem wirusa. Równocześnie wykonano próbę odniesienia. Wszystkie testy powtórzono trzykrotnie. Wyniki doświadczenia przedstawiono na ryc. 155.

Ryc. 155. Wykresy przedstawiające wartości PFU w fazie ciemnej i jasnej dla ftalocyjaniny **Pc6** wyznaczone na modelu komórkowym VERO.

3. Model komórkowy MDCK

Wysiano do 96 studzienek komórki MDCK w ilości ok. $8 \cdot 10^3$ komórek na jedną studzienkę i inkubowano 1 dzień w temperaturze 35°C. Następnie przygotowano dwie serie mieszanin ftalocyjaniny **Pc6** oraz wirusa grypy typu A podtyp H1N1, wirusa grypy typu A podtyp H3N2 oraz wirusa grypy typu B. W pierwszej serii stężenie

związku w studzienkach wynosiło 100 μ M, a w drugiej 25 μ M. Próby do badań przygotowano i naświetlono wg procedury zastosowanej przy modelu HEL. Kolejnym etapem badań było "przeniesienie" doświadczenia na podłoże stałe zgodnie z procedurą opisaną dla modelu HEL. Przygotowane płytki z podłożem stałym inkubowano przez kolejne 4 dni w temperaturze 35°C. Ostatnim etapem doświadczenia było zliczanie łysinek. Doświadczenie wykonano trzykrotnie. Równocześnie wykonano próbę kontrolną bez naświetlania. Otrzymane wyniki przedstawiono na ryc. 156.

Ryc. 156. Wykresy przedstawiające wartości PFU w fazie ciemnej i jasnej dla ftalocyjaniny **Pc6** wyznaczone na modelu komórkowym MDCK.

V. OMÓWIENIE WYNIKÓW

1. Czystość chemiczna porfirazyn i ftalocyjanin

Czystość chemiczna substancji leczniczej jest podstawowym kryterium, które umożliwia zastosowanie danego związku chemicznego w lecznictwie. Dobrze zdefiniowana tożsamość substancji warunkuje uzyskanie spodziewanych efektów leczniczych, jak również ich powtarzalność przy ponownym zastosowaniu. Wysokie kryteria czystości chemicznej dla substancji leczniczych są egzekwowane zarówno na etapie projektowania nowego leku, a także na etapach badań przedklinicznych, klinicznych, a następnie przy masowej produkcji [134,135].

W grupie fotouczulaczy stosowanych w praktyce klinicznej można spotkać zarówno leki, w skład których wchodzi mieszanina substancji czynnych np. Photofrin® oraz chemicznie jednorodne substancje czynne np. Visudyne®. Jest to uwarunkowane procedurą otrzymywania tychże związków. Photofrin® jest lekiem półsyntetycznym składającym się z monomerów, dimerów i oligomerów, otrzymanych w wyniku obróbki chemicznej hematoporfiryny z 5% kwasem siarkowym w kwasie octowym. Otrzymana w ten sposób mieszanina ze względu na podobieństwo struktury powstających związków, jest bardzo trudna do rozdzielenia. Jednak ze względu na fakt, że 90 – 95% związków zawartych w mieszaninie poreakcyjnej, jest aktywna fotodynamicznie preparat dopuszczono do użytku klinicznego. Natomiast w skład preparatu Visudyne® wchodzi werteporfiryna, której monografia zamieszczona w farmakopei amerykańskiej podaje, iż czystość chemiczna powinna być zawarta w zakresie 94,0 – 102,0%, z uwzględnieniem dwóch regioizomerów [6,136–138].

Podstawową metodą analityczną, która oferuje bardzo duże możliwości analizy mieszanin substancji jest wysokosprawna chromatografia cieczowa, powszechnie stosowana do określania czystości chemicznej substancji leczniczych [139]. HPLC umożliwia szeroki dobór faz stacjonarnych i ruchomych w celu uzyskania właściwego rozdzielenia mieszaniny. Jednak pomimo to rozdział porfirynoidów metodą HPLC nastręcza wiele problemów uwarunkowanych budową tej grupy związków. Porfirynoidy posiadają system zdelokalizowanych elektronów π , które generują silnie hydrofobowy charakter. Właściwości porfirynoidów można modyfikować m.in. poprzez

wprowadzenie do części peryferyjnej cząsteczki szeregu podstawników. W zależności od oczekiwanych właściwości mogą to być ugrupowania elektronodonorowe lub elektronobiorcze, które zmieniają polarność cząsteczki. Innym sposobem modyfikacji jest inkorporowanie odpowiedniego jonu metalu do centrum makrocykla. Z tego względu wypadkowe właściwości zmodyfikowanych makrocykli istotne z punktu widzenia analizy chromatograficznej są bardzo zróżnicowane [140–142].

Analiza czystości chemicznej nowych autorskich związków makrocyklicznych **Pz1** – **Pz3** oraz **Pc1** – **Pc6** została przeprowadzona metodą HPLC z wykorzystaniem trzech różnych układów fazy ruchomej. Chromatogramy monitorowano przy dwóch długościach fali, a mianowicie $\lambda = 343$ nm zastosowanie, której umożliwiało potwierdzenie zarówno obecności pasma Soreta analizowanych makrocykli, a także pochodnych maleonitryli i ftalonitryli będących niskocząsteczkowymi substratami w reakcjach makrocyklizacji. Druga długość fali wykorzystywana do monitorowania chromatogramów odpowiadała maksimum pasma Q związków makrocyklicznych i była zawrata w zakresie 722 – 826 nm. Analiza chromatogramów wskazała na obecność we wszystkich próbkach pochodnych maleonitryli (substraty do syntezy porfirazyn) lub ftalonitryli (substraty do syntezy ftalocyjanin), których zawartość nie przekraczała jednak 5% (wyjątek pochodna **Pz3** – 6,5%). Natomiast w żadnym przypadku nie odnotowano obecności dodatkowych produktów makrocyklicznych. Uzyskane wartości potwierdziły, że wszystkie nowe związki autorskie spełniały wymagania czystości stawiane fotouczulaczom (ryc. 11 – 37).

2. Właściwości absorpcyjne

Przystępując do oceny przydatności nowego związku, jako potencjalnego fotouczulacza w PDT, należy scharakteryzować jego właściwości absorpcyjne. Są to niezwykle istotne informacje, pozwalające m.in. w kolejnych testach wybrać odpowiednią długość fali promieniowania wzbudzającego. Analizując piśmiennictwo można wskazać niezbędne właściwości, jakimi powinien charakteryzować się idealny fotouczulacz, a jedną z wymienianych jest absorpcja promieniowania z zakresu 600 – 800 nm [8].

Ryc. 157. Widma absorpcji najważniejszych chromoforów tkankowych [143–147]; Hb – hemoglobina, HbO₂ – utlenowana hemoglobina.

Stosowanie podanego zakresu promieniowania wynika z tzw. okna terapeutycznego dla tkanek, które zawierają substancje bedące naturalnymi chromoforami, jak: melaniny (eumelanina i feomelanina), hemoglobina, hemoglobina utlenowana (absorbujące w zakresie UV-Vis) oraz woda (zakres NIR). Jak wynika z ryc. 157, przedstawiającej widma absorpcji najważniejszych chromoforów tkankowych, najmniejszą absorpcję promieniowania przez substancje endogenne obserwuje się w zakresie 600 - 1100 nm. Jednocześnie jednak wskazane jest, aby fotouczulacz absorbował promieniowanie z zakresu 600 – 800 nm. Wynika to z faktu, iż promieniowanie z tego zakresu posiada odpowiednią energię do wzbudzenia związku i uruchomienia reakcji fotodynamicznej. Światło czerwone wnika na głębokość do 10 mm w głab tkanek (penetracja uzależniona jest od właściwości tkanki, rozpraszania i współczynnika odbicia światła). Natomiast światło niebieskie i UV (poniżej 500 nm) wnika tylko na głębokość 1 - 2 mm [6,8]. W elektronowych widmach absorpcji badanej grupy porfirazyn Pz1 – Pz3 i ftalocyjanin Pc1 – Pc6 zaobserwowano dwa pasma charakterystyczne dla porfirynoidów, a mianowicie pasmo Soreta (inaczej nazywane pasmem B) w zakresie od 300 - 400 nm oraz intensywne pasmo Q w przedziale 600 – 850 nm, którego zakres pokrywa się z oknem terapeutycznym. Zagadnieniem przyczyn wykształcania się pasm absorpcji w widmach elektronowych porfirynoidów, zajmowało się wiele grup badawczych m.in. Sibert i wsp. [148], van Nostrum i wsp. [149] oraz Kandaz i wsp. [150]. Wspomniani autorzy tłumaczą powstawanie pasma Soreta przejściami typu π - π * z wewnętrznych orbitali molekularnych (MO), do najniższego nieobsadzonego orbitalu molekularnego (LUMO). Pasmo Q natomiast jest również wynikiem przejść typu π - π *, lecz związane jest z przemieszczeniem elektronów z najwyższego obsadzonego orbitalu molekularnego (HOMO) do zdegenerowanego LUMO [148-150]. W widmach absorpcji porfirazyn Pz1 i Pz2 oraz ftalocyjanin Pc1, Pc2, Pc4, Pc5 i Pc6 zaobserwowano pasmo Q wraz ze składową Q_x o małej intensywności przesuniętą nieznacznie w kierunku fal krótszych (ryc. 38 – 46). Cook i wsp. tłumaczyli mechanizm tworzenia składowej Q_x wibracjami cząsteczki [151]. W szeregu porfirazyn Pz1 – Pz3 zaobserwowano, że intensywność pasma Soreta i Q jest porównywalna, co jest charakterystyczne dla tego typu związków. W odniesieniu do widma związku Pz3 (ryc. 40), będącego formą demetalowaną, obserwowano charakterystyczne rozszczepienie pasma Q. Przyczyną rozszczepienia jest symetria D_{2h} makrocykli demetalowanych, dla których orbital LUMO nie jest zdegenerowany, dlatego możliwe są przejścia elektronowe z orbitalu HOMO na dwa niezdegenerowane orbitale LUMO. Dodatkowym pasmem w widmie elektronowym Pz3 demetalowanej porfirazyny jest pasmo w zakresie 400 – 450 nm. Analiza wyników i obserwacji przedstawionych przez grupy badawcze Siberta i wsp. [148], Stuzhina i wsp. [152] oraz Aoudia i wsp. [153], pozwala zakładać, że powstawanie wspomnianego pasma tłumaczy się przejściami elektronów wolnych par elektronowych (elektronów niewiążących) do orbitalu LUMO i określa się jako przejście typu n- π^* . W badanej grupie ftalocyjanin Pc1 – Pc6 odnotowano typowe pasmo Soreta o małej intensywności, oraz znacznie bardziej nasilone pasmo Q. Dodatkowo w przypadku widma formy demetalowanej – Pc3, w porównaniu z innymi ftalocyjaninami zaobserwowano poszerzenie pasma Q, a w takich rozpuszczalnikach, jak heksan i cykloheksan nieznaczne jego rozszczepienie. Kobayashi i wsp. przedstawili wyniki badań właściwości spektroskopowych m.in. ftalocyjanin demetalowanych. W opublikowanej pracy autorzy tłumaczyli znikome rozszczepienie lub poszerzenie pasma Q możliwością absorpcji promieniowania z zakresu czerwonego, a nawet NIR. Absorpcja promieniowania niskoenergetycznego jest przyczyną zmniejszenia różnicy energetycznej pomiędzy dwoma niezdegenerowanymi orbitalami LUMO w formach demetalowanych ftalocyjanin [154]. Bardzo ciekawe widmo absorpcji uzyskano w przypadku ftalocyjaniny Pc4 (ryc. 44) z inkorporowanym jonem manganu(III). W tym przypadku pasmo Soreta występuje w zakresie charakterystycznym dla porfirynoidów, natomiast pasmo Q jest przesunięte w kierunku fal dłuższych. Ponadto ftalocyjanina Pc4 posiada dodatkowe pasmo absorpcji z maksimum przy ok. 500 nm, które w oparciu o badania Knechta i wsp. [155] można sklasyfikować jako pasmo typu LMCT (ang. ligand-metal charge transfer, ftalocyjanina \rightarrow metal). Pasmo to ściśle wiąże się z barwą związku, **Pc4** w odróżnieniu od pozostałych porfirazyn i ftalocyjanin, które w roztworach są zielone lub niebieskie, wykazuje barwę od czerwonej do brunatnej. Najczęściej porfirazyny i ftalocyjaniny z wiązki światła białego absorbują światło czerwone, co w efekcie generuje obserwowaną barwę zieloną lub niebieską. Natomiast w widmie **Pc4** pasmo Q jest mocno przesunięte w kierunku fal dłuższych i znajduje się już w zakresie NIR (zakres odpowiadający promieniowaniu podczerwonemu). Z tego względu przez ftalocyjaninę **Pc4**, z wiązki światła białego absorbowane są głównie fale długości o ok. 500 nm (barwa niebieska, pasmo LMCT), co przekłada się na obserwowaną barwę czerwoną [155].

3. Zdolność agregacji

W roztworach porfirynoidów często obserwowane jest zjawisko agregacji, uwarunkowane strukturą chemiczną związków, których pierścienie makrocykliczne posiadają rozbudowany układ zdelokalizowanych elektronów π , umożliwiających oddziaływania typu π - π między cząsteczkami porfirynoidów. Na zjawisko agregacji ma wpływ temperatura, stężenie, właściwości rozpuszczalnika, inkorporowany jon metalu w centrum makrocykla oraz rodzaj, a także liczba podstawników umieszczonych na peryferium pierścienia makrocyklicznego [156,157]. Ponieważ widma absorpcji porfirynoidowych form zagregowanych (ryc. 81) różnią się od form monomerycznych (ryc. 82), w wykrywaniu zjawiska agregacji najczęściej stosowana jest metoda spektrofotometryczna. Obecność agregatów w roztworze przekłada się na charakterystyczne rozszczepienie pasma Q w widmie absorpcji, które jest skutkiem zmian rozmieszczenia elektronów w agregatach. W zależności od rodzaju powstających agregatów, zaobserwować można przesunięcie składowej pasma Q w kierunku fal krótszych, a obserwowane zmiany przypisywane są agregatom typu H (face-to-face, ryc. 158). Natomiast powstanie składowej pasma Q przesuniętej w kierunku fal dłuższych jest rezultatem utworzenia agregatów typu J (side-by-side, ryc. 158) [156,158–161].

Ryc. 158. Model agregatów typu H oraz typu J na przykładzie niepodstawionej ftalocyjaniny magnezowej.

Agregacja w roztworach porfirynoidowych fotouczulaczy wykorzystywanych w PDT jest zjawiskiem wysoce niepożądanym, ponieważ formy zagregowane generują tlen singletowy z nieznaczną wydajnością [20,162]. Cząsteczki zagregowanych porfirynoidów również absorbują promieniowanie, dzięki czemu ulegają wzbudzeniu. Stany wzbudzone agregatów ulegają relaksacji na drodze wibracyjnej. Efektem tego zjawiska jest niska wydajność tworzenia i krótki czas życia wzbudzonych stanów trypletowych zagregowanego fotouczulacza, co bezpośrednio przekłada się na niską zdolność generowania tlenu singletowego [128,163].

Bezpośrednia analiza zmian zarejestrowanych widm absorpcji (ryc. 47 – 69) przy wzrastającym stężeniu porfirazyn **Pz1** – **Pz3**, nie pozwoliła jednoznacznie potwierdzić tworzenia form zagregowanych. Z tego względu zastosowano analizę statystyczną zależności absorbancji (A) w maksimum pasma Q od stężenia związku (c) (tab. 6 – 8), która umożliwiła ocenę słuszności prawa Lamberta-Beera dla roztworów jednoskładnikowych: A = f(c). Analiza wyników wskazała, że spośród porfirazyn **Pz1 – Pz3** tendencję do agregacji wykazywały:

- 1. **Pz1** w acetonie, eterze dietylowym, metanolu i octanie etylu (ryc. 47 54)
- 2. **Pz2** w izopropanolu, DMA i metanolu (ryc. 55 62)
- Pz3 w cykloheksanie, eterze dietylowym, heksanie, octanie etylu, pirydynie i THF (ryc. 65, 67 – 69).

Należy jednak zaznaczyć, że porfirazyny **Pz1 – Pz3** w porównaniu z drugą grupą ocenianych porfirynoidów, tj. ftalocyjaninami **Pc1 – Pc6**, wykazywały nieznaczną zdolność tworzenia agregatów. Można założyć, że tworzenie agregatów w przypadku porfirazyn jest ograniczane przez podstawniki dimetylopirolilowe, które stanowią

zawadę przestrzenną (ryc. 159). Właściwości analogicznych porfirazyn zostały przedstawione przez Michel i wsp. w poglądowej publikacji obejmującej przegląd piśmiennictwa na temat peryferyjnie sfunkcjonalizowanych porfirazyn. Wspomniani autorzy, opisywali między innymi porfirazynę **XLIV** (ryc. 159) wykazującą podobną strukturę do cząsteczek **Pz1 – Pz3**, która jako podstawniki peryferyjne zawierała osiem grup dimetyloaminowych. W widmie elektronowym związku **XLIV** obserwowano znaczne poszerzenie pasma Q, które przypisano nasilonemu zjawisku agregacji [164].

Ryc. 159. Struktura chemiczna porfirazyny oktadimetyloaminowej **XLIV** oraz badanych porfirazyn **Pz1 – Pz3**.

W odniesieniu do analizowanych porfirynoidów (porfirazyny/ftalocyjaniny), znacznie bardziej nasilone zjawisko agregacji odnotowano w roztworach ftalocyjanin **Pc1** – **Pc6**, a zaobserwowane różnice przypisano budowie cząsteczek. Na układ makrocykliczny porfirazyn składają się cztery cząsteczki pirolu, a ftalocyjanin cztery cząsteczki izoindolu (2,3-benzopirolu). Z tego względu ftalocyjaniny posiadają większą liczbę elektronów typu π – odpowiedzialnych za oddziaływania π - π .

Widma absorpcji **Pc1** zamieszczone na ryc. 70 – 78 wykreślone w izopropanolu, acetonitrylu, acetonie, dichlorometanie, chloroformie, 1,4-dioksanie, DMSO (największe stężenie), eterze dietylowym, metanolu, octanie etylu, THF, toluenie i w wodzie charakteryzują się obecnością rozszczepionego pasma Q, co wskazuje na tworzenie agregatów. Właściwości agregacyjne analizowało wiele grup badawczych m.in. Zorlu i wsp., którzy na przykładzie ftalocyjanin zawierających w centrum koordynacyjnym jony platyny(II) i cynku(II) stwierdzili, że główną przyczyną tworzenia agregatów jest zbyt duże stężenie roztworu, ponieważ w miarę rozcieńczania obserwowano zanikanie pasm absorpcji charakterystycznych dla agregatów [156]. Wyniki badań Zorlu i wsp. znalazły potwierdzenie w odniesieniu do analizowanych porfirynoidów, gdyż jak można zauważyć na ryc. 70, w miarę rozcieńczania roztworu

obserwowano zanikanie składowej pasma Q, której obecność jest uwarunkowana istnieniem form zagregowanych. W celu określenia rodzaju agregatów, korzystając ze wzoru (2), wyznaczono stosunek (s) intensywności składowych pasma Q. Powstawaniu agregatów typu J towarzyszy zanikanie składowej pasma Q, wykazującej maksimum absorpcji przy większych długościach fali, co przekłada się na wzrost wartości s. Odwrotna zależność ma miejsce w przypadku tworzenia agregatów typu H, mianowicie w miarę rozcieńczania roztworu zanika składowa pasma Q, posiadająca maksimum absorpcji przy krótszych długościach fali. W takich przypadkach wartość s dla kolejnych rozcieńczeń maleje. Natomiast w odniesieniu do roztworów o stałej wartości s trudno określić rodzaj tworzonych agregatów. W tab. 15 zamieszczono wartości s dla Pc1 tworzącej agregaty typu J w roztworach w acetonitrylu, acetonu, eteru etylowego, THF i toluenu. Natomiast w roztworze wodnym ftalocyjanina Pc1 rozpuszczała się tworząc agregaty typu H, a w pozostałych przypadkach, tj. w izopropanolu, dichlorometanie, chloroformie, 1,4-dioksanie, metanolu, octanie etylu stwierdzono obecność pasma absorpcji odpowiadającego agregatom, jednak nie można było jednoznacznie określić ich rodzaju. W roztworach DMA, DMF, pirydyny i trietyloaminy nie zaobserwowano dodatkowych pasm absorpcji, dlatego zweryfikowano słuszność prawa Lamberta-Beera analizując parametry statystyczne zależności A = f(c)(tab. 9). Brak agregatów Pc1 w roztworach DMA, DMF, pirydyny i trietyloaminy (ryc. 73 - 74, ryc. 76 - 77) można uzasadnić właściwościami koordynacyjnymi tych rozpuszczalników. Właściwości koordynacyjne rozpuszczalników były analizowane przez wielu naukowców, m.in. przez Kuznetsową i wsp., którzy stwierdzili, że tego rodzaju cząsteczki silnie oddziałują z jonem metalu w centrum makrocykla [165]. Układy powstające w wyniku tych interakcji mogą tworzyć zawadę przestrzenną dla oddziaływań typu π - π . W przypadku ftalocyjaniny **Pc2** przebieg widm absorpcji w roztworach acetonitrylu, acetonu, dichlorometanu, chloroformu, 1,4-dioksanu, eteru dietylowego, metanolu, octanu etylu, THF i toluenu wskazywał na obecność agregatów (ryc. 79 - 81, ryc. 83 - 86). Aby określić typ tworzonych agregatów wyznaczono wartości s, a uzyskane wyniki przedstawiono w tab. 16. Z otrzymanych danych wynika, że Pc2 w acetonitrylu, acetonie, 1,4-dioksanie, eterze dietylowym, octanie etylu tworzy agregaty typu J. Natomiast w roztworach chloroformu i toluenu zaobserwowano tworzenie agregatów typu H. W pozostałych rozpuszczalnikach tj. izopropanolu, DMA, DMF, DMSO, metanolu, pirydynie i trietyloaminie nie zaobserwowano dodatkowych pasm absorpcji w widmie UV-Vis. Z tego względu dla tych przypadków

przeprowadzono analizę statystyczną zależności A = f(c), której wyniki zamieszczono w tab. 10. Uzyskane wartości wskazują, że ftalocyjanina **Pc2** (podobnie jak pochodna **Pc1**), nie wykazuje tendencji do agregacji w rozpuszczalnikach koordynujących (ryc. 82 – 84). Ciekawą zaobserwowaną właściwością zarówno **Pc1**, jak i **Pc2** jest tworzenie rzadko spotykanych dla ftalocyjanin agregatów J, które w ostatnim czasie badali Sessler i wsp. na przykładzie ftalocyjaniny cynkowej posiadającej jako podstawnik peryferyjny pochodną cytydyny. Wspomniani autorzy stwierdzili, że w formowaniu agregatu istotną rolę pełnią oddziaływania pomiędzy atomami azotu cytydyny jednej cząsteczki makrocykla, a jonem metalu w centrum koordynacyjnym drugiej cząsteczki [159].

W odróżnieniu od wyraźnych zmian obserwowanych w widmach absorpcji Pc1 i Pc2 wraz ze wzrostem stężenia, w widmach absorpcji pochodnych Pc3 – Pc6 nie stwierdzono znaczących różnic wskazujących na tworzenie agregatów (ryc. 87 – 115). W związku z powyższym dla roztworów ftalocyjanin Pc3 - Pc6 przeprowadzono analizę statystyczną zależności A = f(c). Stwierdzono, że w przypadku ftalocyjaniny Pc3 zarejestrowane w widmie absorpcji nieznaczne rozszczepienie pasma Q, wynika ze struktury elektronowej i symetrii demetalowanych makrocykli. Natomiast analiza danych statystycznych zależności absorbancji od stężenia (tab. 11) pozwala wnioskować, że związek agreguje w acetonie, dichlorometanie, cykloheksanie, metanolu i THF. Z analizy danych statystycznych zależności A = f(c) ftalocyjaniny Pc4 zawierającej inkorporowany jon manganu(III) (tab. 12) można wnioskować, że agregaty były obecne w izopropanolu, acetonie, DMA, DMSO, metanolu, octanie etylu, pirydynie i toluenie (ryc. 95, ryc. 97 – 100). Wspólną właściwością ftalocyjaniny Pc4 oraz Pc1 jest dobra rozpuszczalność w wodzie, jednak tylko związek zawierający jon manganu(III) nie ulegał agregacji w roztworach wodnych. Natomiast ftalocyjanina Pc5 zawierająca jon kobaltu(II) wykazywała zdolność do tworzenia agregatów w izopropanolu, dichlorometanie, DMF, pirydynie, THF i w toluenie (tab. 13), a dla ftalocyjaniny miedziowej **Pc6** agregację zaobserwowano tylko w metanolu (tab. 14).

Niepożądane w PDT zjawisko agregacji można ograniczyć m.in. przez modyfikację cząsteczki polegającą na wprowadzeniu do struktury makrocykla np. grup sulfonowych, karboksylowych [153,166]. Okazało się, że istotne znaczenie w hamowaniu agregacji ma również miejsce podstawienia makrocykla. George i wsp. badali wpływ podstawienia demetalowanej ftalocyjaniny w pozycji α (pozycji nieperyferyjnej) i

β (pozycji peryferyjnej) czterema grupami 4-kumylofenoksylowymi (1-metylo-1-fenyloetylowymi) na zdolność związku do agregacji (ryc. 160).

Ryc. 160. Pozycja α i β ftalocyjaniny.

Wykazano, że podstawienie w pozycji α powoduje powstanie zawady przestrzennej między cząsteczkami i utrudnia oddziaływania π - π odpowiedzialne za zjawisko agregacji [167]. Agregację można również ograniczyć poprzez dodanie do roztworu porfirynoidu substancji powierzchniowo czynnej (surfaktantu) np. dokuzanu sodu, czy Tritonu X-100. Agregaty związku, jak stwierdzili Zorlu i wsp. ulegają wówczas interkalacji i asocjacji przez cząsteczki surfaktantu, co powoduje rozpad form zagregowanych do monomerycznych [156].

Aby zobrazować deagregacyjne działanie dokuzanu sodu, przeprowadzono doświadczenie na przykładzie silnie agregującej w wodzie ftalocyjaniny **Pc1**. Wyniki zamieszczono na ryc. 116, która przedstawia zmiany widm absorpcji **Pc1** przy wzrastających stężeniach dokuzanu sodu. Obserwowane zależności wskazują, że dokuzan sodu w stężeniu 2,0 g/dm³ powoduje całkowity rozpad agregatów **Pc1**. Natomiast stężenie 7,0 g/dm³ dokuzanu powoduje "przeładowanie" układu związkiem powierzchniowo czynnym i osłabia intensywność pasma Q.

4. Właściwości emisyjne

W ocenianej grupie ftalocyjanin **Pc1** – **Pc6** zaobserwowano zjawisko fluorescencji. Najwyższe wydajności kwantowe odnotowano w przypadku pochodnych z inkorporowanymi jonami Mg²⁺ (**Pz1**, **Pc1**), Zn²⁺ (**Pz2**, **Pc2**), natomiast pochodna zawierająca jon Co²⁺ (**Pc5**) oraz forma demetalowana wykazały nieznaczną zdolność emisji promieniowania. W przypadku ftalocyjanin z inkorporowanymi jonami Mn³⁺ i Cu²⁺ tj. **Pc4** i **Pc6**, nie stwierdzono emisji promieniowania. Z piśmiennictwa wynika, że zarówno zjawisko fluorescencji, jak i efekt zwiększonej przepuszczalności naczyń – EPR, umożliwiają wykorzystanie porfirynoidów w diagnostyce fluorescencyjnej (PFD), nazywanej również diagnostyką fotodynamiczną (ang. *Photodynamic diagnosis*, PDD). PFD znalazła zastosowanie w wizualizacji zmian nowotworowych, ale także zmian przednowotworowych [15,168]. Z doniesień literaturowych wynika, że diagnostyka fluorescencyjna jest szczególnie przydatna w śródoperacyjnej kontroli zmian patologicznych i pozwala maksymalnie oszczędzić zdrowe tkanki podczas resekcji guza. Ponadto podkreśla się, że w porównaniu z powszechnie stosowanymi metodami, jak np. tomografia komputerowa, rezonans magnetyczny, diagnostyka fluorescencyjna wydaje się być równie czuła. Zalety tej metody zaakcentowali m.in. Celli i wsp., którzy w pracy będącej przeglądem piśmiennictwa przedstawili stan badań nad diagnostyką fluorescencyjną i podkreślili przydatność tej metody w diagnostyce nowotworów: pęcherza moczowego, jajników, mózgu, jamy ustnej i skóry [15].

W celu wyjaśnienia zdolności emisyjnych ftalocyjanin Pc1 – Pc6 można posłużyć się pracą opublikowaną przez Kuznetsovą i wsp., którzy podzielili jony metali inkorporowane w pierścieniu porfirynoidu na dwie grupy: otwartopowłokowe i zamknietopowłokowe. Jony otwartopowłokowe, do których należa m.in. Co²⁺, Cu²⁺, Mn³⁺, charakteryzuja sie niepełnym obsadzeniem orbitali na powłokach walencyjnych, co warunkuje mało wydajne tworzenie stanów wzbudzonych. Natomiast jony zamkniętopowłokowe np. Zn^{2+} , Al^{3+} , Mg^{2+} posiadające sparowane elektrony na powłoce walencyjnej, umożliwiają wydajne tworzenie stanów wzbudzonych cząsteczek porfirynoidów [169]. Zjawisko fluorescencji polega na wyemitowaniu promieniowania ze stanu wzbudzonego S1 do podstawowego S0. Relaksacja singletowego stanu wzbudzonego S_1 może zachodzić również na inne sposoby: (1) na drodze konwersji wewnętrznej poprzez relaksację wibracyjna; (2) W wyniku konwersji międzysystemowej, dzięki której powstaje wzbudzony stan trypletowy, relaksujący emisję fosforescencji lub transfer energii na inne poprzez czasteczki (np. tlen cząsteczkowy) [123,170]. Oprócz budowy cząsteczkowej związku zjawisko fluorescencji jest również uzależnione od rodzaju rozpuszczalnika i temperatury. Potwierdzeniem tych zależności są wyniki zestawione w tab. 17 wskazujące, że ftalocyjaniny Pc1, Pc2, Pc3 i Pc5 w roztworach DMSO, wykazywały mniejszą wydajność kwantową fluorescencji w porównaniu z wartościami otrzymanymi w DMF. Zauważone różnice można uzasadnić koordynacyjnymi właściwościami rozpuszczalnika. Na podobne zależności zwracają uwagę Kuznetsova i wsp., którzy przedstawili w 2005 roku wyniki prac dotyczących między innymi wpływu DMSO na stany wzbudzone porfirynoidów. Autorzy stwierdzili, że zjawisko koordynacji DMSO do jonu metalu inkorporowanego w centrum ftalocyjaniny jest przyczyną obniżenia wydajności tworzenia stanów wzbudzonych cząsteczki [165].

Z danych przedstawionych w tab. 17 oraz na ryc. 117 - 120 wynika, że oceniane porfirazyny i ftalocyjaniny po wzbudzeniu emitują promieniowanie o większych długościach fal w stosunku do maksimum absorpcji pasma Q tych związków. Na ryc. 117 - 120 można zauważyć, że w badanym zakresie promieniowania widma emisji stanowią lustrzane odbicie widm absorpcji, co dowodzi, że geometria cząsteczki stanu wzbudzonego nie różni się od stanu podstawowego [171]. Ponadto z analizy widm przedstawionych na ryc. 117 - 120 wynika, że potwierdziła się reguła Kashy-Wawiłowa zgodnie, z którą nie ma różnic w zarejestrowanych widmach emisji po wzbudzeniu cząsteczek promieniowaniem o różnych długościach fali [123].

Oceniane porfirazyny **Pz1 – Pz3** wykazały zdolność do emisji promieniowania. Z analizy danych przedstawionych w tab. 17 można stwierdzić, że najsilniej emitowała promieniowanie porfirazyna **Pz1**, zawierająca jon magnezu(II) w centrum makrocykla, a najsłabiej **Pz3** – forma demetalowana. Podobnie jak ftalocyjaniny, także porfirazyny, **Pz1** i **Pz2** w roztworze DMSO, charakteryzowały się mniejszą wydajnością kwantową emisji w porównaniu do roztworów w DMF. Również w tym przypadku zauważone różnice tłumaczy się koordynacją cząsteczki DMSO do jonu metalu w centrum makrocyklicznego pierścienia porfirazyny. Możliwość koordynacji DMSO do jonu metalu w porfirazynach udowodnili Montalban i wsp., analizując właściwości bis(dimetyloamino)porfirazyny. Autorzy otrzymali kompleksy porfirazyny z DMSO w fazie stałej, których budowę potwierdzono metodą rentgenografii strukturalnej [172].

5. Ocena fototrwałości

W planowaniu leczenia z wykorzystaniem metody terapii fotodynamicznej istotnym problemem jest dobranie odpowiedniej dawki fotouczulacza oraz natężenia światła wykorzystywanego do wzbudzenia. Należy uwzględnić zjawiska, które towarzyszą leczeniu, takie jak generowanie tlenu singletowego, wpływające między innymi również na rozkład fotouczulacza. Fotodegradacja fotouczulacza – w zależności od powstających produktów – może wpływać zarówno pozytywnie, jak i negatywnie na proces leczenia. Korzystnym zjawiskiem jest brak toksyczności powstających fotoproduktów, ponieważ można wówczas zredukować znacznie czas fototoksyczności

skórnej po leczeniu PDT. Czas ten w przypadku fotouczulaczy już stosowanych klinicznie np. Photofrinu® utrzymuje się nawet do pięciu tygodni po zabiegu [173,174].

Fotodegradację oceniono w odniesieniu do wszystkich badanych porfirazyn Pz1 – Pz3 i ftalocyjanin Pc1 – Pc6 w środowisku DMF i DMSO, zarówno z dostępem tlenu jak i po odtlenowaniu próbek azotem. Z piśmiennictwa, a w szczególności prac Carchesio i wsp. [175] oraz Kuznetsovej i wsp. [165] można odnotować, że rozkład porfirynoidowych fotouczulaczy może zachodzić na dwa sposoby, na drodze fototransformacji lub fotowybielania. Na drodze fototransformacji powstaje zmodyfikowany produkt makrocykliczny, któremu towarzyszy zanikanie pasma Q w widmie UV-Vis, z równoczesnym wykształceniem pasma przesunietego w kierunku fal dłuższych [165,175]. W przypadku badanych porfirynoidów proces fototransformacji obserwowano tylko dla odtlenowanych roztworów porfirazyn Pz1 – Pz3 (ryc. 121 – 125), zarówno w roztworach DMF, jak i DMSO. Można zakładać, że proces fototransformacji tych związków zachodził wg mechanizmu rodnikowego. Natomiast w odniesieniu do wymienionych porfirazyn Pz1 – Pz3 w środowisku z dostępem tlenu, w czasie naświetlania roztworów, obserwowano zanikanie pasm absorpcji oraz zmianę barwy. Zachodzący proces zgodnie z pracami Carchesio i wsp. oraz Kuznetsovej i wsp. można przypisać fotowybielaniu (Photobleaching). W wyniku fotowybielania związki makrocykliczne rozkładają się z wytworzeniem niskocząsteczkowych fotoproduktów, które nie absorbują promieniowania z zakresu widzialnego, co przekłada się na zanik barwy próbki. Wspomniani autorzy stwierdzili ponadto, że proces fotodegradacji związany jest z tworzeniem tlenu singletowego, który reaguje z porfirynoidami i tworzy labilny endonadtlenek. W wyniku przemian powstają niskocząsteczkowe fotoprodukty, głównie pochodne ftalimidu (ryc. 161). Znaczący udział tlenu singletowego potwierdzili również Kuznetsova i wsp., prowadzący doświadczenia z deuterowanymi rozpuszczalnikami. Obserwowany szybki rozkład fotochemiczny porfirynoidów uzasadniono właściwościami deuterowanych rozpuszczalników, które wydłużają czas życia tlenu singletowego. Jednocześnie podkreślono, że nie można pomijać znaczenia rodnikowego mechanizmu rozkładu fotochemicznego [165]. W przypadku badanych porfirazyn jak i ftalocyjanin, ocenę stabilności fotochemicznej przeprowadzono w jednakowym przedziale czasu. Natomiast w celu oceny ilościowej wyznaczono wydajność kwantową fotodegradacji. Analiza uzyskanych wartości wykazała, że rozkład fotochemiczny z wyjątkiem odtlenowanych roztworów ftalocyjaniny Pc1 w DMSO, zachodził każdorazowo wolniej w DMSO niż w DMF, co można uzasadnić zdolnością koordynacji cząsteczki DMSO do centrum makrocykla.

Ryc. 161. Mechanizm rozkładu fotochemicznego porfirynoidu na przykładzie ftalocyjaniny cynkowej przy udziale tlenu singletowego.

Analizując dane przedstawione w tab. 18 można zauważyć, że w środowisku z dostępem tlenu największą wydajność kwantową zanotowano dla porfirazyny cynkowej **Pz2**. Natomiast po odtlenowaniu najwydajniej proces fotodegradacji zachodził w przypadku porfirazyny magnezowej **Pz1**, a najmniejszą wydajność odnotowano dla porfirazyny demetalowanej **Pz3**. W warunkach z ograniczonym dostępem powietrza (tlenu), fotodegradacja zachodziła z mniejszą wydajnością, co pozwala zakładać udział w procesie rozkładu RFT, w tym tlenu singletowego. W piśmiennictwie można spotkać wiele doniesień na ten temat m.in. pracę Kuznetsovej i wsp., którzy stwierdzili, że fotodegradacja porfirynoidów oparta jest na reakcji z tlenem singletowym i innymi RFT, dlatego większe stężenie tlenu cząsteczkowego przyspiesza proces [169].

W odniesieniu do badanych ftalocyjanin **Pc1** – **Pc6** obserwowano wyłącznie proces fotowybielania. Jednocześnie rozkład ftalocyjanin **Pc4**, **Pc5** i **Pc6** (ryc. 132 – 136) w roztworach DMF oraz DMSO zachodził bardzo wolno, co znalazło przełożenie na niewielkie wartości wydajności kwantowych, które wynosiły ok. 10^{-6} (tab. 18), zarówno w warunkach z dostępem tlenu, jak i po odtlenowaniu. Stosunkowo dużą stabilność **Pc4** – **Pc6** można uzasadnić niską wydajnością generowania tlenu singletowego. Ponadto dla porfirazyn **Pc5** i **Pc6** w odtlenowanych roztworach DMF, podczas naświetlania obserwowano obniżanie pasma Q, z równoczesnym przesuwaniem maksimum absorpcji. Badane ftalocyjaniny **Pc1** – **Pc6** w warunkach po odtlenowaniu roztworów rozkładały się wolniej, w porównaniu z próbami naświetlanymi w warunkach z dostępem tlenu.

W podsumowaniu można stwierdzić, że stabilność porfirynoidów uzależniona jest od zdolności generowania tlenu singletowego. Im wydajniej generowany jest tlen singletowy, tym związek wykazuje mniejszą trwałość fotochemiczną.

6. Zdolność generowania tlenu singletowego

Tlen singletowy jest najważniejszym czynnikiem odpowiedzialnym za skuteczność terapii fotodynamicznej. Jest generowany w procesie fotodynamicznym, który ma miejsce po naświetleniu fotouczulacza. Fotouczulacz absorbuje kwant promieniowania, w następstwie zachodzi reorganizacja struktury elektronowej cząsteczki, polegająca na wytworzeniu singletowego stanu wzbudzonego. Drugim etapem procesu jest kolejna reorganizacja struktury elektronowej fotouczulacza w wyniku, której na drodze konwersji międzysystemowej powstaje stosunkowo długo żyjąca forma wzbudzona związku – wzbudzony stan trypletowy. Energia tego stanu jest "przenoszona" na cząsteczkę tlenu w stanie trypletowym (stan podstawowy tlenu), w konsekwencji powstaje wysoce reaktywna forma tlenu - tlen singletowy. Tlen singletowy reaguje z ważnymi biologicznie substancjami, co prowadzi do zniesienia ich funkcji biologicznych, a substratami są przede wszystkim aminokwasy (cysteina, metionina, tyrozyna, histydyna, tryptofan) oraz nienasycone kwasy tłuszczowe. Doskonałym substratem dla tlenu singletowego jest również DNA. W wyniku reakcji powstają liczne produkty, w tym "wiązania krzyżowe" między sąsiadującymi zasadami purynowymi w podwójnej helisie DNA. Reakcje te prowadzą do wyłączenia funkcji DNA i śmierci komórki [6,20,138]. Wśród porfirazyn Pz1 – Pz3 tlen singletowy najintensywniej generowała pochodna Pz2 z inkorporowanym jonem cynku(II), słabiej forma magnezowa Pz1, natomiast ftalocyjanina demetalowana Pz3 nie generowała tlenu singletowego (tab. 20). Uzyskane wyniki są zgodne z danymi przedstawionymi przez Goślińskiego i wsp., którzy badali m.in. zdolność generowania tlenu singletowego cynkowej, magnezowej i demetalowanej formy porfirazyny selenodiazolowej zawierającej sześć podstawników propylowych [126]. Także w przypadku ftalocyjanin Pc1 – Pc6, generowanie tlenu singletowego bardzo wyraźnie zależało od rodzaju jonu metalu inkorporowanego w centrum makrocykla. Najintensywniej $^{1}O_{2}$ generowały ftalocyjaniny posiadające jony cynku i magnezu, tj. Pc2 oraz Pc1. Natomiast bardzo słabym generatorem ${}^{1}O_{2}$ okazała się **Pc5**, a praktycznie nie generowały tlenu singletowego Pc3, Pc4 i Pc6 (tab. 20). Podobne zależności zostały przedstawione w pracy Ishii, w której autor dokonał przeglądu piśmiennictwa dotyczącego generowania tlenu singletowego przez porfirynoidy. Z przeprowadzonych dotad badań wynika, że generowanie tlenu singletowego wymaga wydajnego tworzenia wzbudzonych stanów trypletowych porfirynoidu, które charakteryzują się długim czasem życia. Na wydajne tworzenie stanów trypletowych wpływ ma struktura całej cząsteczki, a szczególnie silnie powyższe właściwości warunkuje inkorporowany jon metalu w centrum makrocykla. Podkreśla się, że związki zawierające w centrum makrocykla jony pierwiastków z 3 okresu układu okresowego pierwiastków (np. Mg²⁺), dzięki sprzężeniu spin-orbita charakteryzują się stosunkowo długimi czasami życia stanów trypletowych, co prowadzi do wydajnego generowania tlenu singletowego. W tym przypadku obserwuje się sprzężenia spin-orbitale typu p. Natomiast jony takie jak Zn^{2+} , Ga^{3+} , czy Ge^{4+} posiadają zarówno orbitale s i p, a także orbitale d, które powodują nasilenie efektu sprzeżenia spin-orbita. Z kolei jony metali takich jak Ru²⁺, Rh³⁺, Pd²⁺, Pt²⁺ oraz Ir³⁺ wykazują jeszcze bardziej zaznaczony efekt sprzężenia spin-orbita, ze względu na większe rozmiary orbitali d. Jony metali o większej liczbie elektronów jak np. Ru²⁺. Rh³⁺, Pd²⁺, czy Pt²⁺ generują w związku makrocyklicznym długie czasy życia stanów trypletowych, dzięki którym można zaobserwować fosforescencję. Inne zależności obserwuje się w przypadku makrocykli z inkorporowanymi jonami metali takimi jak: Ni^{2+} , Co^{2+} , Cu^{2+} , V^{2+} . Wymienione jony metali posiadaja niesparowane elektrony na orbitalach d, stan taki powoduje zaburzenia w dystrybucji elektronów we wzbudzonej cząsteczce i drastyczne skrócenie czasów życia stanów trypletowych [176]. Jak wcześniej wspomniano, Kuznetsova i wsp. podzielili jony metali inkorporowane w porfirynoidowym na dwie otwartopowłokowe i pierścieniu grupy: zamkniętopowłokowe. Jony otwartopowłokowe np. Co²⁺, Cu²⁺, Mn³⁺ charakteryzują się niepełnym obsadzeniem orbitali i warunkują mało wydajne tworzenie stanów wzbudzonych. Natomiast jony zamkniętopowłokowe np. Zn²⁺, Al³⁺, Mg²⁺ posiadające sparowane elektrony na wszystkich orbitalach, umożliwiają wydajnie tworzenie stanów wzbudzonych cząsteczek porfirynoidów [169].

Niezwykle istotna w procesie generowania tlenu singletowego jest bezpośrednia interakcja tlenu molekularnego z pierścieniem makrocykla, dlatego też na tworzenie ${}^{1}O_{2}$ duży wpływ mają podstawniki peryferyjne. Potwierdzenie powyższej obserwacji stanowią wyniki uzyskane dla ftalocyjaniny **Pc2**, która pomimo obecności jonu Zn²⁺,

charakteryzuje się mniejszą wydajnością generowania tlenu singletowego, w porównaniu z niepodstawioną ZnPc (tab. 20). Analiza uzyskanych zależności (tab. 20) oraz wyniki badań opublikowanych przez Ogunsipe i wsp. [128], którzy analizowali właściwości alkoksysulfanylowych pochodnych ftalocyjanin pozwalają wnioskować, że podstawniki alkoksylowe obecne w cząsteczkach ftalocyjanin **Pc1 – Pc6**, utrudniają dostęp tlenu cząsteczkowego do pierścienia makrocyklicznego.

Doświadczenie generowania tlenu singletowego powtórzono po odpowietrzeniu próbek azotem. Zgodnie z oczekiwaniami, stałe szybkości reakcji rozkładu DPBF zmniejszyły się. Z porównania wartości zamieszczonych w tab. 20 wynika, że efektem ograniczonego dostępu tlenu, było zmniejszenie wydajności generowania tlenu singletowego przez wszystkie badane związki. Najsilniejszy efekt odnotowano w przypadku porfirazyny **Pz2** w DMSO oraz ftalocyjaniny **Pc2**, tzn. porfirynoidów inkorporowanych jonami cynku(II). Obserwowane zależności wskazują, że podczas naświetlania badanych porfirynoidów, tlen singletowy generowany jest wydajniej niż rodnikowe formy tlenu.

Można również zauważyć, że wydajność kwantowa maleje w przypadku roztworów w DMSO, który jest rozpuszczalnikiem silnie koordynującym. Kuznetsova i wsp. w opublikowanej w 2005 roku pracy opisali zjawisko koordynacji cząsteczki DMSO w pozycji aksjalnej do jonu metalu inkorporowanego w centrum makrocykla, które ogranicza wymianę energii między makrocyklem, a tlenem cząsteczkowym [165].

Generowanie tlenu singletowego przez analizowane makrocykle, porównano z wartościami charakteryzującymi fotouczulacze już stosowane w lecznictwie lub będące na etapie badań klinicznych.

Fotouczulacz	Rozpuszczalnik	Długość fali wzbudzającej fotosensybilizator λ [nm]	Wydajność kwantowa
bakteriochlorofil a	benzen	770	0,35
chloryna -e6	DMF	663	0,65
jodowana BODIPY	MeOH	534	~1 ,00
błękit metylenowy	Triton X-100	665	0,55
protoporfiryna IX	MeOH	626	0,56
tetrafenyloporfiryna	benzen	647	0,63
teksafiryna lutetu (Motexafin Lutetium)	MeOH	733	0,23
tetrafenyloporfiryna cynkowa	benzen	586	0,73
ZnPc	DMSO	672	0,67
ZnPc	DMF	670	0,57

Tab. 22. Wydajność kwantowa wybranych fotouczulaczy (wg piśmiennictwa [13,125]).

Przytoczone wartości w tab. 22 wskazują, że najmniej wydajnym generatorem jest moteksafina lutetowa uzyskująca wartość $\Phi_{\Delta} = 0,23$. Jednak pomimo to jest ona bardzo obiecującym fotouczulaczem, i jako potencjalny fotouczulacz w PDT, w badaniach klinicznych uzyskuje bardzo pozytywne opinie ze względu na korzystną długość fali promieniowania $\lambda = 733$ nm, które stosuje się do wzbudzenia. Jak podano wcześniej (rozdz.V.2.), promieniowanie z zakresu 700 – 800 nm stosunkowo najgłębiej penetruje tkanki [20,177]. Porównując zdolność generowania tlenu singletowego przez analizowane porfirynoidy z moteksafiną lutetową należy zauważyć, że **Pc1** i **Pc2** są lepszymi generatorami tlenu singletowego, a **Pz1** i **Pz2** tylko nieznacznie słabszymi. Jednocześnie należy podkreślić, że do wzbudzenia wszystkich wymienionych porfirynoidów, jako potencjalnych fotouczulaczy, można będzie wykorzystać promieniowanie o długości fali powyżej 700 nm, co stanowi istotną zaletę. Natomiast warto zaznaczyć, że najbardziej wydajny generator tlenu singletowego z tab. 22 – jodowana BODIPY, jest wzbudzany promieniowaniem, które słabo penetruje tkanki ($\lambda = 534$ nm).

7. Ocena aktywności biologicznej

7.1. Ocena aktywności przeciwnowotworowej

W pierwszym etapie badań *in vitro* oceniono zdolność hamowania wzrostu komórek nowotworowych przez ftalocyjaniny **Pc1** – **Pc6** na liniach komórkowych CEM i HeLa. Uzyskane wyniki zamieszczone w tab. 21 pozwoliły wyselekcjonować najaktywniejsze związki, którymi okazały się **Pc2**, **Pc3** i **Pc6**, testowane następnie przeciw komórkom czerniaka złośliwego (SK-MEL-5). Ponadto zauważono, że naświetlanie hodowli komórkowych zawierających badane ftalocyjaniny – z wyjątkiem **Pc4** – potęgowało efekt cytotoksyczny, co jest korzystne z punktu widzenia terapii fotodynamicznej. W celu szerszej oceny związku, jako fotouczulacza wyznaczono współczynnik fototoksyczny PI, którego wysoka wartość informuje o pożądanej w PDT dużej aktywności w fazie jasnej i małej w fazie ciemnej. Na podstawie wartości zamieszczonych w tab. 21 można wnioskować, że najbardziej obiecujące właściwości fotodynamiczne posiada ftalocyjanina demetalowana **Pc3**, która względem testowanych linii komórkowych charakteryzowała się małymi wartościami IC₅₀ w fazie jasnej oraz największymi wartościami PI. Natomiast **Pc1 i Pc5** pomimo korzystnych wartości IC₅₀ charakteryzowały się małymi wartościami PI, które wskazywały na mniejszą różnicę aktywności związków w fazie jasnej i ciemnej. Można, zatem wnioskować, że zastosowanie światła w tym przypadku ma mniejsze znaczenie.

Analiza uzyskanych wartości IC₅₀, umożliwia wyselekcjonowanie związków o najkorzystniejszych właściwościach do badań *in vivo*. Natomiast wyznaczenie wartości PI pozwala wskazać najbardziej obiecujące związki fotouczulające dla potrzeb PDT, poprzez oszacowanie poziomu uogólnionej toksyczności po zabiegu, jako działania niepożądanego.

Z analizy danych zamieszczonych w tab. 21 można wywnioskować, że najbardziej aktywną pochodną w badaniach na linii komórkowej CEM, okazała się ftalocyjanina demetalowana Pc3, której IC₅₀ w fazie jasnej wynosiło 85,00 nM. Uzyskane wartości IC₅₀ dla ftalocyjanin **Pc1** – **Pc6** porównano z wartościami przedstawionymi przez Beesley'a i wsp. dla leków przeciwnowotworowych. Wymieniony zespół badawczy podał wartości IC₅₀ dla leków przeciwnowotworowych względem komórek CEM, które mieściły się w przedziale od 2,60 nM do 8,15 µM. Wynosiły one odpowiednio dla antymetabolitów: 6-merkaptopuryny – 8,15 µM, 6-tioguaniny – 3,67 µM, metotreksatu - 13,20 nM; dla antybiotyków przeciwnowotworowych: doksorubicyny 0,79 μM, daunorubicyny 0,39 µM; a dla alkaloidu cytostatycznego winkrystyny – 2,60 nM. Natomiast najnowsze leki klofarabina i nelarabina stosowane w białaczkach, w badaniach na linii komórkowej CEM wykazały wartości IC₅₀ odpowiednio 1,76 i 16,82 μ M. Z kolei związek będący w badaniach klinicznych, flawopirydol posiada IC₅₀ równa 166,00 nM [178,179]. Analizując powyższe wartości oraz dane z tab. 21 można wnioskować, że wyznaczone IC_{50} dla związków Pc1, Pc2, Pc3, Pc5 i Pc6 w doświadczeniach na komórkach CEM, zarówno w fazie jasnej, jak i fazie ciemnej, są porównywalne z IC₅₀ związków stosowanych jako leki. Pochodna Pc4, która zawiera w centrum koordynacyjnym złożony jon Mn³⁺, okazała się mniej aktywna względem linii komórkowej CEM, uzyskując IC₅₀ o wartości 20 µM zarówno w fazie ciemnej, jak i jasnej. Można zakładać, że jednakowa aktywność, zarówno bez, jak i z naświetlaniem hodowli komórkowej wskazuje na inny niż fotodynamiczny mechanizm działania przeciwnowotworowego. Potwierdzeniem przedstawionego założenia jest brak zdolności tworzenia tlenu singletowego przez Pc4 (rozdz. V.6.).

Z kolei w badaniach aktywności biologicznej na linii komórkowej HeLa, najmniejszą wartość IC₅₀ wykazała ftalocyjanina **Pc2**. Natomiast najkorzystniejsze właściwości z punktu widzenia potrzeb PDT, prezentowała ftalocyjanina **Pc3** uzyskując

IC₅₀ równą 320,00 nM w fazie jasnej i wartość PI >156. Wyznaczone wartości IC₅₀ i PI ftalocyjanin Pc1 – Pc6 otrzymane na linii komórkowej HeLa, odniesiono do leków stosowanych klinicznie, dla których dane zaczerpnięto z piśmiennictwa. Zagadnienie wynika, analizowali Istomin i wsp., z których badań że najmniej to aktywnym lekiem względem komórek HeLa jest ifosamid z wartością IC₅₀ równą 6,51 mM, następnie gemcitabina – 101,82 μM; karboplatyna – 31,52 μM; oksaliplatyna $-1,01 \mu$ M; etopozyd -170,00 nM; doksorubicyna -15,00 nM; docetaksel -7,00 nM; winorelbina – 1,00 nM [180]. Porównanie przytoczonych wartości IC₅₀ dla leków onkologicznych oraz wartości uzyskanych dla analizowanych ftalocyjanin (tab. 21) wskazuje, że IC₅₀ dla badanych fotouczulaczy ftalocyjaninowych w fazie jasnej, są porównywalne z aktualnie stosowanymi lekami przeciwnowotworowymi. Należy również przytoczyć pracę Naik i wsp. z 2014 roku, którzy opublikowali wyniki badań aktywności koniugatów fotouczulaczy porfirynoidowych ze związkami platyny na linii komórkowej HeLa. Dla koniugatów przy zastosowaniu promieniowania wzbudzającego o dawce 6.95 J/cm² i długości fali λ równej 420 nm, uzyskano wartości IC₅₀ od 0,80 do 1,51 µM [132]. Porównanie aktywności koniugatów otrzymanych przez Naik i wsp. [132] z aktywnością ftalocyjanin Pc1, Pc2, Pc3, Pc5 i Pc6, względem komórek HeLa, wskazuje na bardzo korzystne właściwości analizowanych związków. Ponadto należy podkreślić jeszcze jedną dodatkową zaletę badanych ftalocyjanin Pc1, Pc2, Pc3, Pc5 i Pc6, a mianowicie możliwość wzbudzania tych fotouczulaczy promieniowaniem o niskiej energii. Program badań uwzględniał również ocenę aktywności ftalocyjanin względem komórek czerniaka (SK-MEL-5). Z przeprowadzonych doświadczeń na komórkach SK-MEL-5 wynika, że największą aktywnością przeciwnowotworową charakteryzowała się ftalocyjanina cynkowa Pc2. Natomiast uwzględniając wymagania stawiane fotouczulaczom w PDT najkorzystniejsze właściwości posiada pochodna Pc3 z IC₅₀ równą 340,00 nM w fazie jasnej i współczynnik fototoksyczny PI >147.

W celach porównawczych uzyskane wartości IC_{50} względem linii SK-MEL-5, odniesiono do wartości wyznaczonych dla stosowanych obecnie leków przeciwnowotworowych, które zaczerpnięto z piśmiennictwa tj. dla epirubicyny, temozolomidu i docetakselu wartości IC_{50} wynoszą odpowiednio 8,10 nM; 263,00 μ M i 0,70 nM [181]. Natomiast obatoclax – związek, który jest w II etapie badań klinicznych, w ocenie *in vitro* wykazywał wartość $IC_{50} = 1,80 \mu$ M [182]. Porównanie danych z tab. 21 oraz wartości IC_{50} wyżej wymienionych leków przeciwnowotworowych pozwala stwierdzić, że w warunkach *in vitro* ftalocyjaniny **Pc2, Pc3** i **Pc6** nie ustępują skutecznością stosowanym obecnie lekom przeciwnowotworowym. Z tego względu można zakładać duży potencjał badanych fotouczulaczy w leczeniu czerniaka, szczególnie, że w leczeniu chorób skóry, obok skuteczności największą zaletą PDT są doskonałe efekty kosmetyczne.

7.2. Ocena aktywności przeciwwirusowej

Fotoinaktywacja wirusów znalazła największe zastosowanie w hematologii, gdzie może stać się wiodącą metodą w sterylizacji produktów krwiopochodnych i krwi. Fotoinaktywacja wirusów jest obecnie z powodzeniem stosowana w wielu ośrodkach krwiodawstwa (rozdz.II).

Opracowując warunki badań biologicznych na wirusach uwzględniono związki, które nie wykazują toksyczności względem komórek HEL, VERO lub MDCK, były to porfirazyna **Pz2** i ftalocyjanina **Pc6**.

Bardzo korzystne wyniki otrzymano dla porfirazyny Pz2 w doświadczeniach na wirusach opryszczki pospolitej typu 1 i 2, ospy i zapalenia pęcherzykowatego jamy ustnej, dla których uzyskano w zastosowanym stężeniu 25 µM i dawce promieniowania 8,1 J/cm² całkowite zahamowanie rozwoju wirusa w hodowli komórkowej (ryc. 154 i 155). Również korzystne właściwości wykazywała ftalocyjanina Pc6, która przy zastosowaniu modelu komórkowego VERO, już w stężeniu 25 µM całkowicie hamowała rozwój wirusa opryszczki typu 1, paragrypy 3 i Punta Toro. Natomiast opornymi na inaktywację okazały się reowirus oraz wirus Coxsakie B4. Analiza wykresów zamieszczonych na ryc. 155 pozwala stwierdzić, że w przypadku wirusów opornych na fotoinaktywację - wirusa Coxsakie B4 i reowirusa, zmniejszenie stężenia fotouczulacza ze 100 do 25 µM uruchamia w nieznacznym stopniu proces fotodynamiczny. Ciekawe zależności obserwowano analizując doświadczenia na wirusach Sindbis i Punta Toro. W tym przypadku w fazie ciemnej zanotowano większy stopień inaktywacji wirusów przy zastosowaniu mniejszego stężenia (25 µM) ftalocyjaniny Pc6. Fakt ten wskazuje, że ftalocyjanina Pc6 inaktywuje wirusa Sindbis i Punta Toro, także wg innego mechanizmu, w którym nie uczestniczy światło. Natomiast naświetlanie wirusów z ftalocyjaniną Pc6, potęguje efekt inaktywacyjny poprzez "włączenie" procesu fotodynamicznego. W inny sposób zmniejszenie dawki fotouczulacza wpływa na fotoinaktywację w przypadku wirusa paragrypy. Działanie inaktywacyjne tego wirusa bez udziału światła obserwowano przy zastosowaniu 100 μM, natomiast przy 25 μM aktywność fotouczulacza była wyraźnie mniejsza. Po naświetleniu inaktywacja wirusa paragrypy następowała zarówno przy wykorzystaniu wyższego (100 μM), jak i niższego (25 μM) stężenia **Pc6**, przy czym korzystniejsze parametry fotodynamiczne ftalocyjanina wykazywała dla niższego stężenia. W badaniach na modelu komórkowym MDCK oceniono zdolność ftalocyjaniny **Pc6**, do fotodynamicznej inaktywacji wirusów grypy. Z analizy ryc. 156 wynika, że najbardziej podatnym na fotodynamiczną inaktywację jest wirus grypy typu A, o podtypie odpowiedzialnym za pandemie świńskiej grypy tj. H1N1 oraz izolowany wśród świń podtyp H3N2. Mniej podatnym okazał się wirus grypy typu B.

Należy zauważyć, że analizowana porfirazyna **Pz2** i ftalocyjanina **Pc6** okazały się zdolne do inaktywacji wirusów z otoczką, do których należą wirusy opryszczki pospolitej typu 1 i 2, wirus ospy, wirus pęcherzykowatego zapalenia jamy ustnej, wirus paragrypy 3, wirus Punta Toro, wirus Sindbis, wirus grypy typu A podtypy H1N1, H3N2, wirus grypy typu B. Natomiast wirusy bezotoczkowe wykazywały oporność na badany typ inaktywacji. Otrzymane wyniki potwierdzają informacje dostępne w piśmiennictwie na temat mechanizmów fotodynamicznej inaktywacji zgodnie, z którymi tlen singletowy powstały w wyniku naświetlania fotouczulacza reaguje z nienasyconymi kwasami tłuszczowymi, cholesterolem i innymi molekułami zawartymi w otoczce wirusa.
VI. PODSUMOWANIE I WNIOSKI

Przeprowadzono kompleksową ocenę porfirazyn **Pz1 – Pz3** oraz ftalocyjanin **Pc1 – Pc6** pod kątem zastosowania w terapii fotodynamicznej, nowatorskiej metodzie leczenia nie tylko nowotworów, ale także infekcji wirusowych. Wyniki przeprowadzonych badań umożliwiają sformułowanie następujących wniosków:

- Wszystkie związki makrocykliczne zarówno porfirazyny Pz1 Pz3 oraz ftalocyjaniny Pc1 – Pc6 spełniają kryteria czystości stawiane fotouczulaczom w PDT; zawartość porfirazyn i ftalocyjanin w próbkach do badań wynosiła >95%.
- 2. Widma UV-Vis makrocykli posiadają charakterystyczne dla porfirynoidów pasma absorpcji tj. pasmo Soreta (300 400 nm) oraz pasmo Q (600 850 nm).
- Z wyjątkiem Pc4 i Pc6 wszystkie badane makrocykle wykazywały zdolność do fluorescencji. Największą wydajność kwantową fluorescencji posiadała ftalocyjanina Pc2.
- Podstawniki dimetylopirolilowe ograniczają zdolność porfirazyn Pz1 Pz3 do agregacji. Ftalocyjaniny Pc1 – Pc6 najczęściej tworzyły agregaty typu J, a tylko w niektórych przypadkach typu H.
- Porfirazyny Pz1 Pz3 oraz ftalocyjaniny Pc1 Pc6 wykazywały zdolność generowania tlenu singletowego, najefektywniejszym generatorem wśród porfirazyn była Pz2, a wśród ftalocyjanin Pc2. Wydajność kwantowa generowania tlenu singletowego rosła w szeregu:

 $Pz3 \sim Pc3 \sim Pc4 \sim Pc6 < Pc5 << Pz1 < Pz2 < Pc1 < Pc2$

- 6. Fotodegradacja porfirynoidów najczęściej była procesem fotowybielania. Proces fototransformacji zachodził tylko w warunkach ograniczonego dostępu tlenu.
- 7. W badaniach *in vitro* przeprowadzonych na komórkach nowotworowych najaktywniejszymi fotodynamicznie związkami były Pc2 i Pc3, których IC₅₀ wyraża się w nM. Największy współczynnik fototoksyczny (PI) charakteryzował ftalocyjaninę Pc3, co wskazuje na największą potencjalną użyteczność w PDT.
- Porfirazyna Pz2 efektywnie inaktywuje wirusy opryszczki typu 1 i 2, ospy oraz wirusa pęcherzykowatego zapalenia jamy ustnej, natomiast Pc6 inaktywuje wirusa: Sindbis, opryszczki typu 1, paragrypy 3, Punta Toro, grypy typu A

podtypu H1N1 i H3N2 oraz wirusa grypy typu B. Makrocykle skuteczniej inaktywują wirusy z otoczką, niż wirusy bezotoczkowe.

VII. STRESZCZENIE

Ocena fotochemiczna porfirazyn i ftalocyjanin z podstawnikami heterocyklicznymi i alkoksylowymi o potencjalnym zastosowaniu w terapii fotodynamicznej

W części literaturowej pracy dokonano przeglądu piśmiennictwa na temat fotodynamicznej inaktywacji wirusów. Przedstawiono mechanizm terapii fotodynamicznej oraz fotouczulacze zdolne do fotoinaktywacji wirusów. Ponadto opisano fotodynamiczne systemy do sterylizacji preparatów krwiopochodnych i krwi.

Część doświadczalna pracy obejmuje ocenę właściwości fotochemicznych oraz biologicznych porfirynoidów z grupy porfirazyn i ftalocyjanin. Materiałem do badań było dziewięć porfirynoidów, w tym trzy porfirazyny i sześć ftalocyjanin zawierających podstawniki heterocykliczne i alkoksylowe, które są związkami autorskimi otrzymanymi w Katedrze i Zakładzie Technologii Chemicznej Środków Leczniczych UM w Poznaniu.

1. Porfirazyny;

- Magnez(II) [2,7,12,17-tetrakis(dimetyloamino)-3,8,13,18-tetrakis(2,5-dimetylo-1*H*-pirolilo)porfirazyna] Pz1
- b. Cynk(II) [2,7,12,17-tetrakis(dimetyloamino)-3,8,13,18-tetrakis(2,5-dimetylo-1*H*-pirolilo)porfirazyna] Pz2
- c. 2,7,12,17-Tetrakis(dimetyloamino)-3,8,13,18-tetrakis(2,5-dimetylo-1*H*-pirol-1-ilo)porfirazyna **Pz3**

2. Ftalocyjaniny;

- a. Magnez(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioksanonylo)ftalocyjanina] Pc1
- b. Cynk(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioksanonylo)ftalocyjanina] Pc2
- c. 1,4,8,11,15,18,22,25-Oktakis(1,4,7-trioksanonylo)-29H,31H-ftalocyjanina Pc3
- Chlorek mangan(III) [1,4,8,11,15,18,22,25-Oktakis(1,4,7-trioksanonylo)ftalocyjaniny]
 -Pc4
- $e. \quad Kobalt(II) \ [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioksanonylo) ftalocyjanina] Pc5$
- f. Miedź(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioksanonylo)ftalocyjanina] Pc6

W pierwszym etapie oceniono czystość chemiczną porfirynoidów metodą HPLC i stwierdzono, że wszystkie związki spełniają kryteria czystości stawiane potencjalnym fotouczulaczom. Następnym etapem była analiza właściwości spektralnych, która obejmowała badania absorpcyjne i emisyjne. W widmach UV-Vis badanych porfirynoidów zidentyfikowano dwa charakterystyczne pasma absorpcji tj. pasmo Soreta (300 – 400 nm) oraz pasmo Q (600 – 850 nm). Natomiast zdolność fluorescencji wyznaczono metodą porównawczą, jako wzorzec wykorzystano niepodstawioną

ftalocyjaninę cynkową (ZnPc). Największą wydajność kwantową fluorescencji (Φ_{FL}) spośród grupy porfirazyn wykazywała Pz1; uzyskano wartości Φ_{FL} =4,55 \cdot 10⁻² oraz $\Phi_{\rm FL} = 1,19\cdot10^{-2}$, odpowiednio w DMF i DMSO, a wśród ftalocyjanin dla **Pc2** $\Phi_{FL} = 10,12 \cdot 10^{-2}$ w DMF i $\Phi_{FL} = 2,23 \cdot 10^{-2}$ w DMSO. Kolejnym etapem pracy była ocena wydajności generowania tlenu singletowego ($^{1}O_{2}$) (Φ_{Λ}), którą wyznaczono metodą pośrednią z zastosowaniem DPBF jako chemicznego wygaszacza ¹O₂. Najefektywniejszym generatorem tlenu singletowego była **Pc2**, wykazując $\Phi_{\Delta} = 0.46$ w DMF oraz $\Phi_{\Delta} = 0.47$ w DMSO, natomiast najsłabszymi okazały się **Pz3** i **Pc3** – **Pc6**. Wykorzystując metodę spektrofotometryczną oceniono podatność porfirynoidów do tworzenia form zagregowanych. Porfirazyny Pz1 – Pz3 nie wykazywały tendencji do agregacji w przeciwieństwie do grupy ftalocyjanin, spośród których najsilniej agregowały Pc1 i Pc2. Program badań obejmował również ocenę trwałości fotochemicznej porfirynoidów poprzez wyznaczenie wydajności kwantowej fotodegradacji (Φ_P). Wykazano, że największa trwałość fotochemiczna wykazywały pochodne najsłabiej generujące tlen singletowy tj. Pz3, Pc3 – Pc6. Najszybciej ulegały rozpadowi pochodne **Pz1**, **Pz2** i **Pc1**, dla których wyznaczono $\Phi_{\rm P} = 1.8 \cdot 10^{-4}$ w DMF. Ostatnim etapem rozprawy doktorskiej były badania aktywności biologicznej, które przeprowadzono na liniach komórkowych:

- 1. raka szyjki macicy (HeLa)
- 2. linii komórek CEM wywodzących się z ludzkich komórek ostrej białaczki limfoblastycznej
- 3. komórek czerniaka (SK-MEL-5)

Doświadczenia wykonane w fazie jasnej tj. z naświetlaniem hodowli komórkowej promieniowaniem o długości fali odpowiadającej maksimum pasma Q fotouczulacza oraz bez dostępu światła. Z wyjątkiem **Pc4**, fotouczulacze wykazały większą aktywność w fazie jasnej niż w fazie ciemnej. Najbardziej aktywnym związkiem okazała się pochodna **Pc2** w fazie jasnej z IC₅₀ = 500 nM na komórkach CEM, 72 nM na HeLa oraz 81 nM na SK-MEL-5. Przeprowadzono również doświadczenia fotoinaktywacji wirusów z wykorzystaniem **Pz2** oraz **Pc6**. Okazało się, że porfirazyna **Pz2** efektywnie inaktywuje: wirusa opryszczki typu 1 i 2, wirusa ospy oraz pęcherzykowatego zapalenia jamy ustnej. Natomiast ftalocyjanina **Pc6** inaktywuje wirusa: Sindbis, opryszczki typu 1, paragrypy 3, Punta Toro, grypy typu A podtypu H1N1 i H3N2 oraz wirusa grypy typu B.

VIII. ABSTRACT

Photochemical assessment of porphyrazines and phthalocyanines with heterocyclic and alkoxy substituents of potential application in photodynamic therapy

Literature part is focused on photodynamic inactivation of viruses. Mechanism of action and photosensitizers able to photoinactivate viruses were described. Additionally, sterilization systems for blood products by photodynamic inactivation were discussed.

In the experimental part photodynamic properties of porphyrazines Pz1 - Pz3 and phthalocyanines Pc1 - Pc6 were presented. Compounds were synthesized at the Department of Chemical Technology of Drugs, Poznan University of Medical Sciences.

1. Porphyrazines;

- Magnesium(II) [2,7,12,17-tetrakis(dimethylamino)-3,8,13,18-tetrakis(2,5-dimethyl-1*H*-pyrrol-1-yl)porphyrazine] Pz1
- b. Zinc(II) [2,7,12,17-tetrakis(dimethylamino)-3,8,13,18-tetrakis(2,5-dimethyl-1*H*-pyrrol-1-yl)porphyrazine] Pz2
- c. 2,7,12,17-Tetrakis(dimethylamino)-3,8,13,18-tetrakis(2,5-dimethyl-1*H*-pyrrol-1-yl)porphyrazine **Pz3**

2. Phthalocyanines;

- a. Magnesium(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioxanonyl)phthalocyanine] Pc1
- b. Zinc(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioxanonyl)phthalocyanine] Pc2
- c. 1,4,8,11,15,18,22,25-Oktakis(1,4,7-trioxanonyl)-29H,31H-phthalocyanine Pc3
- d. Chlor manganese(III) [1,4,8,11,15,18,22,25-Oktakis(1,4,7-trioxanonyl)phthalocyanine]
 -Pc4
- e. Cobalt(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioxanonyl)phthalocyanine] Pc5
- f. Copper(II) [1,4,8,11,15,18,22,25-oktakis(1,4,7-trioxanonyl)phthalocyanine] Pc6

The following studies were performed: purity determination of samples, examination of absorption and emission properties, tendency to form aggregates, photostability, ability to generate singlet oxygen and biological activity against cancer cells and viruses.

It was found that all investigated compounds comply with purity requirements for porphyrinoids as potential photosensitizers. In the UV-Vis spectra there were identified two typical absorption bands for porphyrinoids: Soret band (300 - 400 nm) and Q band (600 - 850 nm). Fluorescence quantum yields were assessed using comparative method. Unsubstitued zinc phthalocyanine (ZnPc) was used as a reference with well-known

quantum yield of fluorescence (Φ_{FL}). The most efficient fluorophore in the phthalocyanine group was **Pc2** with $\Phi_{FL} = 10,12 \cdot 10^{-2}$ in DMF and $\Phi_{FL} = 2,23 \cdot 10^{-2}$ in DMSO, whereas in the porphyrazine group: **Pz1** with $\Phi_{FL} = 4,55 \cdot 10^{-2}$ and Φ_{FL} = 1,19·10⁻², respectively in DMF and DMSO. The next step was to determine quantum yields of singlet oxygen generation ($^{1}O_{2}$) (Φ_{Λ}). Comparative method with unsubstituted zinc phthalocyanine as a reference was applied. The mixture of chemical quencher of singlet oxygen (DPBF) and the tested compound was irradiated with light, the wavelength of which equaled to the maximum of the Q band of the tested porphyrinoid. The degradation of quencher (photobleaching) was monitored spectrophotometrically and then kinetic parameters were compared with reference ones. The most efficient singlet oxygen generator was Pc2 with $\Phi_{\Lambda} = 0.46$ in DMF and $\Phi_{\Delta} = 0,47$ in DMSO, whereas the weakest were found: Pz3, Pc3, Pc4, Pc6 and Pc5. The tendency to form aggregates of porphyrinoids was studied using spectrophotometric method. Porphyrazines Pz1 – Pz3 have not shown any tendency to form aggregates. Different phenomenon was observed for phthalocyanine group, where the highest aggregation tendency revealed Pc1 and Pc2. Photostability experiments of tested compounds were performed with visible light irradiation of samples. Photodegradation quantum yields (Φ_P) were calculated. Results indicate that the weakest singlet oxygen generators reveal good photostability (Pz3, Pc3, Pc4, Pc6 and **Pc5**). The most unstable compounds were **Pz1**, **Pz2** i **Pc1** with $\Phi_{\rm P} = 1.8 \cdot 10^{-4}$ in DMF. Finally, the photocytotoxicity of compounds on cancer cells and photoinactivation of viruses were assessed. Photodynamic experiments were performed on HeLa, CEM and SK-MEL-5 cell lines. Studies were performed in light phase (with irradiation of cell cultures) and in dark phase (without irradiation). Except for Pc4, all porphyrinoids studied reveal higher activity in the light phase than in the dark. The most active compound was Pc2 with IC₅₀=500 nM against CEM, 72 nM against HeLa and 81 nM against SK-MEL-5. Photoinactivation tests of viruses with Pz2 and Pc6 were also performed. **Pz2** successfully inactivated herpes simplex virus type 1 and 2, vaccinia virus, vesicular stomatitis virus. Pc6 inactivated efficiently Sindbis virus, herpes simplex virus type 1, Parainfluenza virus, Punta Toro virus, Influenza virus type A subtype H1N1 and H3N2 and Influenza virus type B.

IX. WYKAZ SKRÓTÓW

ALA	-	kwas 5-aminolewulinowy
ATP	-	adenozynotrójfosforan
C ₆₀	-	fuleren
CEM	-	komórki wywodzące się z ludzkich komórek ostrej białaczki limfoblastycznej
CMV	-	cytomegalowirus
DAD	-	detektor diodowy
DMA	-	N,N-dimetyloacetamid
DMEM	-	medium hodowlane – Dulbecco's Modified Eagle Medium
DMF	-	N,N-dimetyloformamid
DMSO	-	dimetylosulfotlenek
DNA	-	kwas deoksyrybonukleinowy
DPBF	-	1,3-difenyloizobenzofuranu
EPR	-	zwiększona przepuszczalność naczyń krwionośnych (ang. enhanced
		permeability and retention)
EV71	-	enterowirus 71
gp120	-	glikoproteiną wirusa HIV
HAV	-	wirus wirusowego zapalenia wątroby typ A
HBV	-	wirus wirusowego zapalenia wątroby typ B
HCV	-	wirus wirusowego zapalenia wątroby typ C
HEL	-	ludzkie fibroblasty embrionalne komórek płuc
HeLa	-	komórki raka szyjki macicy
Hepes	-	kwas 4-(2-hydroksyetylo)piperazyno-1-etanosulfonowy
HIV	-	wirus niedoboru odporności
HMME	-	eteru monometylowego hematoporfiryny
номо	-	najwyższy obsadzony orbital molekularny
HPLC	-	wysokosprawna chromatografia cieczowa
HPV	-	wirus brodawczaka ludzkiego
HRV	-	ludzki rinowirus
HSV	-	wirus opryszczki
INF	-	wirus grypy
iPDT	-	śródmiąższową terapię fotodynamiczną (ang. interstitial PDT)
LDL	-	Lipoproteina niskiej gęstości
LMCT	-	przeniesienie ładunku ligand→metal (ang. <i>ligand-metal charge transfer</i>)
LUMO	-	najniższy nieobsadzony orbital molekularny

MC 540	-	merocyjanina 540
MDCK	-	komórki nabłonkowe nerki psa Madin-Darby
МО	-	orbital molekularny
MDI	-	obrazowanie metodą rezonansu magnetycznego (ang. magnetic resonanse
MKI		imaging)
NIR	-	promieniowanie bliskiej podczerwieni (ang. near-infrared)
ODBB	-	o-dibenzoilobenzen
ра ст	-	terapia fotodynamiczna skierowana przeciw mikroorganizmom (ang.
PACI		Photodynamic Antimicrobial Chemotherapy)
PBS	-	bufor – Dulbecco's Phosphate-Buffered Saline
PFD	-	diagnostyka fluorescencyjna (ang. Photosensitizer fluorescence detection)
PDD	-	diagnostyką fotodynamiczną (ang. Photodynamic diagnosi)
PDT	-	terapia fotodynamiczna (ang. Photodynamic therapy)
RFT	-	reaktywne formy tlenu
RNA	-	kwas rybonukleinowy
DT DCD		ilościowa reakcja łańcuchowa polimerazy DNA (ang. real time polimerase
KI-PCK	-	chain reaction)
RV5	-	rinowirus typ 5
SFV	-	wirus Semliki forest
SIV	-	małpi wirus niedoboru odporności
SK-MEL-5	-	komórki czerniaka
THF	-	tetrahydrofuran
UV	-	promieniowanie nadfioletowe
VERO	-	komórki nerki afrykańskiej małpy zielonej
Vis	-	promieniowanie widzialne
VSV	-	wirus pęcherzykowatego zapalenia jamy ustnej
WHO	-	Światowa Organizacja Zdrowia (ang. World Health Organization)
WNV	-	wirus Zachodniego Nilu
ZnPc	-	ftalocyjanina cynkowa niepodstawiona
$\Phi_{\rm F}$	-	wydajność kwantowa fluorescencji
Φ_{P}	-	wydajność kwantowa fotorozpadu
Φ_{Δ}	-	wydajność kwantowa generowania tlenu singletowego

X. PIŚMIENNICTWO

- [1] Kadish KM, Smith KM, Guilard R. The porphyrin handbook. San Diego: Academic Press; 2000.
- [2] Vogel E. Novel porphyrinoids. Pure Appl Chem 1990;62:557–64.
- [3] Lash TD. Origin of aromatic character in porphyrinoid systems. J Porphyr Phthalocyanines 2011;15:1093–115.
- [4] Harvey RA, Ferrier DR. Biochemistry. Philadelphia: Wolters Kluwer Health; 2010.
- [5] Blankenship RE. Molecular mechanisms of photosynthesis. Oxford; Malden, MA: Blackwell Science; 2002.
- [6] Allison RR, Downie GH, Cuenca R, Hu X-H, Childs CJ, Sibata CH. Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther 2004;1:27–42.
- [7] Huang Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat 2005;4:283.
- [8] Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: An update. CA Cancer J Clin 2011;61:250–81.
- [9] Martin NE, Hahn SM. Interstitial photodynamic therapy for prostate cancer: a developing modality. Photodiagnosis Photodyn Ther 2004;1:123–36.
- [10] Sobotta Ł. Terapia fotodynamiczna: stosowane leki i perspektywy. Część 1: Porfiryny i chloryny. Farm Pol 2011;67:788–95.
- [11] Sobotta Ł. Terapia fotodynamiczna: stosowane leki i perspektywy. Część 2. Teksafiryny, ftalocyjaniny, porfirazyny i inne. Farm Pol 2012;68:358–62.
- [12] Yano S, Hirohara S, Obata M, Hagiya Y, Ogura S, Ikeda A, et al. Current states and future views in photodynamic therapy. J Photochem Photobiol C Photochem Rev 2011;12:46–67.
- [13] Lovell JF, Liu TWB, Chen J, Zheng G. Activatable Photosensitizers for Imaging and Therapy. Chem Rev 2010;110:2839–57.
- [14] Nishiyama N, Morimoto Y, Jang W-D, Kataoka K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv Drug Deliv Rev 2009;61:327–38.
- [15] Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization. Chem Rev 2010;110:2795–838.
- [16] Felber TD, Smith EB, Knox JM, Wallis C, Melnick JL. Photodynamic inactivation of herpes simplex: Report of a clinical trial. JAMA 1973;223:289–92.
- [17] Wainwright M. Local treatment of viral disease using photodynamic therapy. Int J Antimicrob Agents 2003;21:510–20.
- [18] Lambrecht B, Mohr H, Knüver-Hopf J, Schmitt H. Photoinactivation of viruses in human fresh plasma by phenothiazine dyes in combination with visible light. Vox Sang 1991;60:207–13.
- [19] Floyd RA, Schneider JE, Dittmer DP. Methylene blue photoinactivation of RNA viruses. Antiviral Res 2004;61:141–51.
- [20] Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part onephotosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 2004;1:279–93.
- [21] Konopka K, Goslinski T. Photodynamic therapy in dentistry. J Dent Res 2007;86:694–707.
- [22] Suzuki N, Mizumoto I, Itami T, Takahashi Y, Tanaka R, Hatate H, et al. Virucidal effect of singlet oxygen on penaeid white spot syndrome virus. Fish Sci 2000;66:166–8.
- [23] Wainwright M. Photoinactivation of viruses. Photochem Photobiol Sci 2004;3:406.
- [24] Costa L, Tomé JPC, Neves MGPMS, Tomé AC, Cavaleiro JAS, Faustino MAF, et al. Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Res 2011;91:278–82.

- [25] Mark Wainwright KBC. Photosensitising agents—circumventing resistance and breaking down biofilms: a review. Int Biodeterior Amp Biodegrad 2004:119–26.
- [26] Kim SY, Kwon OJ, Park JW. Inactivation of catalase and superoxide dismutase by singlet oxygen derived from photoactivated dye. Biochimie 2001;83:437–44.
- [27] Grandadam M, Ingrand D, Huraux J-M, Aveline B, Delgado O, Vever-Bizet C, et al. Photodynamic inactivation of cell-free HIV strains by a red-absorbing chlorin-type photosensitizer. J Photochem Photobiol B 1995;31:171–7.
- [28] Ulatowska-Jarża A, Zychowicz J, Hołowacz I, Bauer J, Razik J, Wieliczko A, et al. Antimicrobial PDT with chlorophyll-derived photosensitizer and semiconductor laser. Med Laser Appl 2006;21:177–83.
- [29] Vanyur R, Heberger K, Jakus J. Prediction of Anti-HIV-1 Activity of a Series of Tetrapyrrole Molecules. J Chem Inf Model 2003;43:1829–36.
- [30] Wagner SJ, Robinette D, Storry J, Chen XY, Shumaker J, Benade L. Differential sensitivities of viruses in red cell suspensions to methylene blue photosensitization. Transfusion (Paris) 1994;34:521–6.
- [31] Pamphilon D. Viral inactivation of fresh frozen plasma. Br J Haematol 2000;109:680–93.
- [32] Owada T, Yamada Y, Abe H, Hirayama J, Ikeda H, Sekiguchi S, et al. Elucidation of the HIV-1 virucidal mechanism of methylene blue photosensitization and the effect on primary isolates. J Med Virol 2000;62:421–5.
- [33] Li Y, Yin H, Zheng Y. Cleaning blood of human immunodeficiency virus. SPIE Newsroom 2011.
- [34] Schagen FHE, Moor ACE, Cheong SC, Cramer SJ, Van Ormondt H, Van der Eb AJ, et al. Photodynamic treatment of adenoviral vectors with visible light: an easy and convenient method for viral inactivation. Gene Ther 1999;6:873–81.
- [35] Wainwright M, Baptista MS. The application of photosensitisers to tropical pathogens in the blood supply. Photodiagnosis Photodyn Ther 2011;8:240–8.
- [36] WHO Guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products. 2004.
- [37] Abe H, Wagner SJ. Analysis of viral DNA, protein and envelope damage after methylene blue, phthalocyanine derivative or merocyanine 540 photosensitization. Photochem Photobiol 1995;61:402–9.
- [38] Garwood M, Cardigan RA, Drummond O, Hornsey V, Turner CP, Young D, et al. The effect of methylene blue photoinactivation and methylene blue removal on the quality of fresh-frozen plasma. Transfusion (Paris) 2003;43:1238–47.
- [39] Mohr H, Lambrecht B, Selz A. Photodynamic virus inactivation of blood components. Immunol Invest 1995;24:73–85.
- [40] Specht KG. The role of DNA damage in PM2 viral inactivation by methylene blue photosensitization. Photochem Photobiol 1994;59:506–14.
- [41] Wallis C, Melnick JL. Photodynamic Inactivation of Animal Viruses: A Review. Photochem Photobiol 1965;4:159–70.
- [42] Zeiler T, Riess H, Wittmann G, Hintz G, Zimmermann R, Müller C, et al. The effect of methylene blue phototreatment on plasma proteins and in vitro coagulation capability of singledonor fresh-frozen plasma. Transfusion (Paris) 1994;34:685–9.
- [43] Macopharma. Macopharma 2014. www.macopharma.com (dostęp 28 listopad 2014).
- [44] Marotti J, Aranha ACC, Eduardo CDP, Ribeiro MS. Photodynamic Therapy Can Be Effective as a Treatment for Herpes Simplex Labialis. Photomed Laser Surg 2009;27:357–63.
- [45] Wong T-W, Huang H-J, Wang Y-F, Lee Y-P, Huang C-C, Yu C-K. Methylene blue-mediated photodynamic inactivation as a novel disinfectant of enterovirus 71. J Antimicrob Chemother 2010;65:2176–82.
- [46] Tsugita A, Okada Y, Uehara K. Photosensitized inactivation of ribonucleic acids in the presence of riboflavin. Biochim Biophys Acta 1965;103:360–3.
- [47] Douki T, Cadet J. Modification of DNA bases by photosensitized one-electron oxidation. Int J Radiat Biol 1999;75:571–81.

- [48] Schuyler R. Use of riboflavin for photoinactivation of pathogens in blood components. Transfus Apher Sci 2001;25:189–90.
- [49] Ruane PH, Edrich R, Gampp D, Keil SD, Leonard RL, Goodrich RP. Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light. Transfusion (Paris) 2004;44:877–85.
- [50] Harris F, Pierpoint L. Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial Agent: Antimicrobial Use Of Photodynamic Therapy Based On 5-aminolevulinic Acid. Med Res Rev 2012;32:1292–327.
- [51] Huijuan Yin, Yingxin Li, Zhaohui Zou, Wentao Qiao, Xue Yao, Yang Su, et al. Inactivation of bovine immunodeficiency virus by photodynamic therapy with HMME. Chin Opt Lett 2008;6:944–6.
- [52] Yin H, Li Y, Zheng Y, Ye X, Zheng L, Li C, et al. Photoinactivation of cell-free human immunodeficiency virus by hematoporphyrin monomethyl ether. Lasers Med Sci 2012;27:943– 50.
- [53] Stief TW. Singlet oxygen -oxidazable lipids in the HIV membrane, new targets for AIDS therapy? Med Hypotheses 2003;60:575–7.
- [54] Dairou J, Veverbizet C, Brault D. Interaction of sulfonated anionic porphyrins with HIV glycoprotein gp120: photodamages revealed by inhibition of antibody binding to V3 and C5 domains. Antiviral Res 2004;61:37–47.
- [55] Vzorov AN, Dixon DW, Trommel JS, Marzilli LG, Compans RW. Inactivation of Human Immunodeficiency Virus Type 1 by Porphyrins. Antimicrob Agents Chemother 2002;46:3917– 25.
- [56] Tomé JPC, Neves MGPMS, Tomé AC, Cavaleiro JAS, Mendonça AF, Pegado IN, et al. Synthesis of glycoporphyrin derivatives and their antiviral activity against herpes simplex virus types 1 and 2. Bioorg Med Chem 2005;13:3878–88.
- [57] Silva EMP, Giuntini F, Faustino MAF, Tomé JPC, Neves MGPMS, Tomé AC, et al. Synthesis of cationic β-vinyl substituted meso-tetraphenylporphyrins and their in vitro activity against herpes simplex virus type 1. Bioorg Med Chem Lett 2005;15:3333–7.
- [58] Ayala F, Grimaldi E, Perfetto B, Donnarumma M, De Filippis A, Donnarumma G, et al. 5-Aminolaevulinic acid and photodynamic therapy reduce HSV-1 replication in HaCat cells through an apoptosis-independent mechanism. Photodermatol Photoimmunol Photomed 2008;24:237–43.
- [59] Dai T, Huang Y-Y, Hamblin MR. Photodynamic therapy for localized infections–State of the art. Photodiagnosis Photodyn Ther 2009;6:170–88.
- [60] Smetana Z, Malik Z, Orenstein A, Mendelson E, Ben-Hur E. Treatment of viral infections with 5-aminolevulinic acid and light. Lasers Surg Med 1997;21:351–8.
- [61] Nobbe S, Trüeb RM, French LE, Hofbauer GF. Herpes simplex virus reactivation as a complication of photodynamic therapy. Photodermatol Photoimmunol Photomed 2011;27:51–2.
- [62] Perlin M, Mao JC, Otis ER, Shipkowitz NL, Duff RG. Photodynamic inactivation of influenza and herpes viruses by hematoporphyrin. Antiviral Res 1987;7:43–51.
- [63] Wen W-H, Lin M, Su C-Y, Wang S-Y, Cheng Y-SE, Fang J-M, et al. Synergistic Effect of Zanamivir–Porphyrin Conjugates on Inhibition of Neuraminidase and Inactivation of Influenza Virus. J Med Chem 2009;52:4903–10.
- [64] Casteel MJ, Jayaraj K, Gold A, Ball LM, Sobsey MD. Photoinactivation of hepatitis A virus by synthetic porphyrins. Photochem Photobiol 2004;80:294–300.
- [65] Szeimies R-M. Photodynamic Therapy for Human Papilloma Virus-Related Diseases in Dermatology. Med Laser Appl 2003;18:107–16.
- [66] Stender IM, Lock-Andersen J, Wulf HC. Recalcitrant hand and foot warts successfully treated with photodynamic therapy with topical 5-aminolaevulinic acid: a pilot study. Clin Exp Dermatol 1999;24:154–9.
- [67] Stender I-M, Na R, Fogh H, Gluud C, Wulf HC. Photodynamic therapy with 5-aminolaevulinic acid or placebo for recalcitrant foot and hand warts: randomised double-blind trial. The Lancet 2000;355:963–6.

- [68] Inada NM, Costa MM da, Guimarães OCC, Ribeiro E da S, Kurachi C, Quintana SM, et al. Photodiagnosis and treatment of condyloma acuminatum using 5-aminolevulinic acid and homemade devices. Photodiagnosis Photodyn Ther 2012;9:60–8.
- [69] Wang H-W, Wang X-L, Zhang L-L, Guo M-X, Huang Z. Aminolevulinic acid (ALA)-assisted photodynamic diagnosis of subclinical and latent HPV infection of external genital region. Photodiagnosis Photodyn Ther 2008;5:251–5.
- [70] Schneede P, Münch P, Wagner S, Meyer T, Stockfleth E, Hofstetter A. Fluorescence urethroscopy following instillation of 5-aminolevulinic acid: a new procedure for detecting clinical and subclinical HPV lesions of the urethra. J Eur Acad Dermatol Venereol JEADV 2001;15:121–5.
- [71] Trushina OI, Novikova EG, Sokolov VV, Filonenko EV, Chissov VI, Vorozhtsov GN. Photodynamic therapy of virus-associated precancer and early stages cancer of cervix uteri. Photodiagnosis Photodyn Ther 2008;5:256–9.
- [72] Shikowitz MJ, Abramson AL, Freeman K, Steinberg BM, Nouri M. Efficacy of DHE photodynamic therapy for respiratory papillomatosis: immediate and long-term results. The Laryngoscope 1998;108:962–7.
- [73] Egyeki M, Turóczy G, Majer Z, Tóth K, Fekete A, Maillard P, et al. Photosensitized inactivation of T7 phage as surrogate of non-enveloped DNA viruses: efficiency and mechanism of action. Biochim Biophys Acta BBA - Gen Subj 2003;1624:115–24.
- [74] Lim D-S, Ko S-H, Kim S-J, Park Y-J, Park J-H, Lee W-Y. Photoinactivation of vesicular stomatitis virus by a photodynamic agent, chlorophyll derivatives from silkworm excreta. J Photochem Photobiol B 2002;67:149–56.
- [75] Gaspard S, Tempête C, Werner GH. Studies on photoinactivation by various phthalocyanines of a free or replicating non-enveloped virus. J Photochem Photobiol B 1995;31:159–62.
- [76] Smetana Z, Ben-Hur E, Mendelson E, Salzberg S, Wagner P, Malik Z. Herpes simplex virus proteins are damaged following photodynamic inactivation with phthalocyanines. J Photochem Photobiol B 1998;44:77–83.
- [77] Vzorov A, Marzilli L, Compans R, Dixon D. Prevention of HIV-1 infection by phthalocyanines. Antiviral Res 2003;59:99–109.
- [78] Lim ME, Lee Y, Zhang Y, Chu JJH. Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials 2012;33:1912–20.
- [79] Ben-Hur E, Rywkin S, Rosenthal I, Geacintov NE, Horowitz B. Virus inactivation in red cell concentrates by photosensitization with phthalocyanines: protection of red cells but not of vesicular stomatitis virus with a water-soluble analogue of vitamin E. Transfusion (Paris) 1995;35:401–6.
- [80] Ben-Hur E, Geacintov NE, Studamire B, Kenney ME, Horowitz B. The effect of irradiance on virus sterilization and photodynamic damage in red blood cells sensitized by phthalocyanines. Photochem Photobiol 1995;61:190–5.
- [81] Ben-Hur E, Zuk MM, Kenney ME, Oleinick NL, Mulvihill J, Horowitz B. Action spectra (660–700 nm) for virus inactivation and red cell damage photosensitized by the silicon phthalocyanine Pc 4. Lasers Med Sci 1996;11:221–5.
- [82] Ben-Hur E, Oetjen J, Horowitz B. Silicon Phthalocyanine Pc 4 and Red Light Causes Apoptosis in HIV-infected Cells. Photochem Photobiol 1997;65:456–60.
- [83] Moor AC, Gompel AE, Brand A, Dubbelman TM, VanSteveninck J. Primary targets for photoinactivation of vesicular stomatitis virus by AIPcS4 or Pc4 and red light. Photochem Photobiol 1997;65:465–70.
- [84] Markovic Z, Trajkovic V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 2008;29:3561–73.
- [85] Ji H, Yang Z, Jiang W, Geng C, Gong M, Xiao H, et al. Antiviral activity of nano carbon fullerene lipidosome against influenza virus in vitro. J Huazhong Univ Sci Technolog Med Sci 2008;28:243–6.
- [86] Käsermann F, Kempf C. Photodynamic inactivation of enveloped viruses by buckminsterfullerene. Antiviral Res 1997;34:65–70.

- [87] Käsermann F, Kempf C. Buckminsterfullerene and photodynamic inactivation of viruses. Rev Med Virol 1998;8:143–51.
- [88] Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K, et al. Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg Med Chem Lett 2005;15:1107–9.
- [89] Zarubaev VV, Belousova IM, Kiselev OI, Piotrovsky LB, Anfimov PM, Krisko TC, et al. Photodynamic inactivation of influenza virus with fullerene C60 suspension in allantoic fluid. Photodiagnosis Photodyn Ther 2007;4:31–5.
- [90] Ion RM, Calin MA. Comparative study of some nano- and micro sensitizers in photodynamic inactivation of microorganisms. J Optoelectron Adv Mater 2007;9:1933–8.
- [91] Rud Y, Prylutska S, Buchatskyy L, Prylutskyy Y, Ritter U, Scharff P. Photodynamic inactivation of mosquito iridovirus (MIV) by C60 fullerenes. Mater Werkst 2011;42:136–8.
- [92] Cimino GD, Gamper HB, Isaacs ST, Hearst JE. Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu Rev Biochem 1985;54:1151–93.
- [93] Corash L. Inactivation of viruses, bacteria, protozoa, and leukocytes in platelet concentrates: Current research perspectives. Transfus Med Rev 1999;13:18–30.
- [94] Harutyunyan S, Kumar M, Sedivy A, Subirats X, Kowalski H, Köhler G, et al. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3'-end. PLoS Pathog 2013;9:e1003270.
- [95] Wollowitz S. Targeting DNA and RNA in Pathogens: Mode of Action of Amotosalen HCl. Transfus Med Hemotherapy 2004;31:11–6.
- [96] Eble BE, Corash L. Duck Hepatitis B Virus Inactivation and 8-Methoxypsoralen Photoadduct Formation in Human Platelet Concentrates. Photochem Photobiol 1998;67:700–13.
- [97] Singh Y, Sawyer LS, Pinkoski LS, Dupuis KW, Hsu JC, Lin L, et al. Photochemical treatment of plasma with amotosalen and long-wavelength ultraviolet light inactivates pathogens while retaining coagulation function. Transfusion (Paris) 2006;46:1168–77.
- [98] Intercept Blood System. Intercept Blood Syst n.d. www.interceptbloodsystem.com (dostęp 1 wrzesień 2014).
- [99] Lenard J, Rabson A, Vanderoef R. Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation. Proc Natl Acad Sci 1993;90:158–62.
- [100] Hudson JB, Lopez-Bazzocchi I, Towers GH. Antiviral activities of hypericin. Antiviral Res 1991;15:101–12.
- [101] Yip L, Hudson JB, Gruszecka-Kowalik E, Zalkow LH, Neil Towers GH. Antiviral activity of a derivative of the photosensitive compound Hypericin. Phytomedicine Int J Phytother Phytopharm 1996;3:185–90.
- [102] Hudson JB, Imperial V, Haugland RP, Diwu Z. Antiviral activities of photoactive perylenequinones. Photochem Photobiol 1997;65:352–4.
- [103] Park J, English DS, Wannemuehler Y, Carpenter S, Petrich JW. The role of oxygen in the antiviral activity of hypericin and hypocrellin. Photochem Photobiol 1998;68:593–7.
- [104] Daub ME, Herrero S, Chung K-R. Photoactivated perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiol Lett 2005;252:197–206.
- [105] Rogowska-Szadkowska D, Chlabicz S. Primary HIV infection. HIV AIDS Rev 2008;7:10-4.
- [106] Whitley RJ, Roizman B. Herpes simplex virus infections. The Lancet 2001;357:1513–8.
- [107] Anhang R, Goodman A, Goldie SJ. HPV communication: review of existing research and recommendations for patient education. CA Cancer J Clin 2004;54:248–59.
- [108] Hole K, Clavijo A, Pineda LA. Detection and Serotype-Specific Differentiation of Vesicular Stomatitis Virus Using a Multiplex, Real-Time, Reverse Transcription-Polymerase Chain Reaction Assay. J Vet Diagn Invest 2006;18:139–46.
- [109] Stanley M. Pathology and epidemiology of HPV infection in females. Gynecol Oncol 2010;117:S5–10.

- [110] Lichty BD, Power AT, Stojdl DF, Bell JC. Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 2004;10:210–6.
- [111] Patick AK. Rhinovirus chemotherapy. Antiviral Res 2006;71:391–6.
- [112] Rollinger JM, Schmidtke M. The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Med Res Rev 2011;31:42–92.
- [113] Bledsoe GH. The West Nile virus: a lesson in emerging infections. Wilderness Environ Med 2004;15:113–8.
- [114] Poersch C de O, Pavoni DP, Queiroz MH, Borba L de, Goldenberg S, Santos CND dos, et al. Dengue virus infections: comparison of methods for diagnosing the acute disease. J Clin Virol 2005;32:272–7.
- [115] Dény P, Zoulim F. Hepatitis B virus: from diagnosis to treatment. Pathol Biol (Paris) 2010;58:245–53.
- [116] Wang S-Y, Lin T-L, Chen H-Y, Lin T-S. Early and rapid detection of enterovirus 71 infection by an IgM-capture ELISA. J Virol Methods 2004;119:37–43.
- [117] Kautner I, Robinson MJ, Kuhnle U. Dengue virus infection: epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention. J Pediatr 1997;131:516–24.
- [118] Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 2010;10:778–90.
- [119] Wojciech Szczołko. Synteza, charakterystyka i właściwości biologiczne nowych układów porfirynoidowych o rozbudowanych grupach peryferyjnych. Rozprawa doktorska. Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, 2013.
- [120] Wierzchowski M, Sobotta L, Skupin-Mrugalska P, Kruk J, Jusiak W, Yee M, et al. Phthalocyanines functionalized with 2-methyl-5-nitro-1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity. J Inorg Biochem 2013;127:62–72.
- [121] Cosimelli B, De Filippis MP, Dei D, Fantetti L, Jori G, Masini I, et al. Zinc-phthalocyanines and corresponding conjugates, their preparation and use in photodynamic therapy and as diagnostic agents. Google Patents; 1999.
- [122] Nombona N, Antunes E, Nyokong T. The synthesis and fluorescence behaviour of phthalocyanines unsymmetrically substituted with naphthol and carboxy groups. Dyes Pigments 2010;86:68–73.
- [123] Birks JB. Fluorescence quantum yield measurements. J Res Natl Bur Stand Sect Phys Chem 1976;80A:389.
- [124] Ogunsipe A, Maree D, Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct 2003;650:131–40.
- [125] Seotsanyana-Mokhosi I, Kuznetsova N, Nyokong T. Photochemical studies of tetra-2, 3pyridinoporphyrazines. J Photochem Photobiol Chem 2001;140:215–22.
- [126] Goslinski T, Osmalek T, Mielcarek J. Photochemical and spectral characterization of peripherally modified porphyrazines. Polyhedron 2009;28:3839–43.
- [127] Paula Cormick M, Rovera M, Durantini EN. Synthesis, spectroscopic properties and photodynamic activity of a novel Zn(II) phthalocyanine substituted by fluconazole groups. J Photochem Photobiol Chem 2008;194:220–9.
- [128] Ogunsipe A, Durmuş M, Atilla D, Gürek AG, Ahsen V, Nyokong T. Synthesis, photophysical and photochemical studies on long chain zinc phthalocyanine derivatives. Synth Met 2008;158:839–47.
- [129] Shen X, Lu W, Feng G, Yao Y, Chen W. Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine. J Mol Catal Chem 2009;298:17–22.
- [130] Howard JA, Mendenhall GD. Autoxidation and Photooxidation of 1,3-Diphenylisobenzofuran: A Kinetic and Product Study. Can J Chem 1975;53:2199–201.
- [131] Głowacka IE, Balzarini J, Wróblewski AE. Novel Acyclic Phosphonylated 1,2,3-Triazolonucleosides with an Acetamidomethyl Linker: Synthesis and Biological Activity: [(1,2,3-Triazol-1-yl)acetamido]methylphosphonates. Arch Pharm (Weinheim) 2014;347:506–14.

- [132] Naik A, Rubbiani R, Gasser G, Spingler B. Visible-Light-Induced Annihilation of Tumor Cells with Platinum-Porphyrin Conjugates. Angew Chem Int Ed 2014;53:6938–41.
- [133] Gangarapu K, Manda S, Jallapally A, Thota S, Karki SS, Balzarini J, et al. Synthesis of thiocarbohydrazide and carbohydrazide derivatives as possible biologically active agents. Med Chem Res 2014;23:1046–56.
- [134] The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Q3B (R2).pdf 2006.
- [135] Brodniewicz T, Grynkiewicz G. Preclinical drug development. Acta Pol Pharm 2010;67:578-85.
- [136] US Pharmacopeia. Monograph of Verteporfin.pdf n.d.
- http://www.pharmacopeia.cn/v29240/usp29nf24s0_m88105.html (dostęp 10 październik 2014). [137] Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics: basic principles and clinical
- applications. Drug Discov Today 1999;4:507–17. [138] Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: A clinical review.
- Photodiagnosis Photodyn Ther 2010;7:61–75.
- [139] Meyer V. Practical high-performance liquid chromatography. 4th ed. Chichester; New York: John Wiley; 2004.
- [140] Brykina GD, Uvarova MI, Shpigun OA. RP-HPLC of some metal phthalocyanines. Microchim Acta 1998;128:251–4.
- [141] Jiang Z, Shao J, Yang T, Wang J, Jia L. Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photosensitizer for cancer photodynamic therapy. J Pharm Biomed Anal 2014;87:98–104.
- [142] Uvarova MI, Brykina GD, Shpigun OA. Porphyrins and phthalocyanines in high-performance liquid chromatography. J Anal Chem 2000;55:910–25.
- [143] Crippa PR, Cristofoletti V, Romeo N. A band model for melanin deduced from optical absorption and photoconductivity experiments. Biochim Biophys Acta BBA Gen Subj 1978;538:164–70.
- [144] Sarna T, Sealy RC. Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin. Photochem Photobiol 1984;39:69–74.
- [145] omlc n.d. http://omlc.ogi.edu/spectra/hemoglobin/index.html (dostęp 14 luty 2014).
- [146] omlc n.d. http://omlc.ogi.edu/ (dostęp 14 luty 2014).
- [147] Kou L, Labrie D, Chylek P. Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Appl Opt 1993;32:3531–40.
- [148] Sibert JW, Baumann TF, Williams DJ, White AJP, Barrett AGM, Hoffman BM. gemini-Porphyrazines: The Synthesis and Characterization of Metal-Capped cis- and trans-Porphyrazine Tetrathiolates. J Am Chem Soc 1996;118:10487–93.
- [149] Van Nostrum CF, Benneker FB, Brussaard H, Kooijman H, Veldman N, Spek AL, et al. Dithiacrown ether substituted porphyrazines: synthesis, single-crystal structure, and control of aggregation in solution by complexation of transition-metal ions. Inorg Chem 1996;35:959–69.
- [150] Kandaz M, Özkaya AR, Koca A, Salih B. Water and alcohol-soluble octakismetalloporphyrazines bearing sulfanyl polyetherol substituents: Synthesis, spectroscopy and electrochemistry. Dyes Pigments 2007;74:483–9.
- [151] Cook MJ, Jafari-Fini A. Phthalocyanine-related macrocycles: cross cyclotetramerisation products from 3, 4-dicyanothiophenes, 2, 3-dicyanothiophene and 3, 6-dialkylphthalonitriles. Tetrahedron 2000;56:4085–94.
- [152] Stuzhin PA, Bauer EM, Ercolani C. Tetrakis (thiadiazole) porphyrazines. 1. Syntheses and properties of tetrakis (thiadiazole) porphyrazine and its magnesium and copper derivatives. Inorg Chem 1998;37:1533–9.
- [153] Aoudia M, Cheng G, Kennedy VO, Kenney ME, Rodgers MA. Synthesis of a series of octabutoxy-and octabutoxybenzophthalocyanines and photophysical properties of two members of the series. J Am Chem Soc 1997;119:6029–39.
- [154] Kobayashi N, Nakajima S, Ogata H, Fukuda T. Synthesis, Spectroscopy, and Electrochemistry of Tetra-tert-butylated Tetraazaporphyrins, Phthalocyanines, Naphthalocyanines, and Anthracocyanines, together with Molecular Orbital Calculations. Chem - Eur J 2004;10:6294– 312.

- [155] Knecht S, Dürr K, Schmid G, Subramanian LR, Hanack M. Synthesis and properties of soluble phthalocyaninatomanganese (III) complexes. J Porphyr Phthalocyanines 1999;3:292–8.
- [156] Zorlu Y, Dumoulin F, Durmuş M, Ahsen V. Comparative studies of photophysical and photochemical properties of solketal substituted platinum(II) and zinc(II) phthalocyanine sets. Tetrahedron 2010;66:3248–58.
- [157] Lyubimtsev A, Iqbal Z, Crucius G, Syrbu S, Taraymovich ES, Ziegler T, et al. Aggregation behavior and UV-vis spectra of tetra- and octaglycosylated zinc phthalocyanines. J Porphyr Phthalocyanines 2011;15:39–46.
- [158] Cong F, Li J, Ma C, Gao J, Duan W, Du X. Tuning J-type dimers of non-peripherally substituted zinc tetra-4-tert-butylphenophthalocyanine. Spectrochim Acta A Mol Biomol Spectrosc 2008;71:1397–401.
- [159] Sessler JL, Jayawickramarajah J, Gouloumis A, Dan Pantos G, Torres T, Guldi DM. Guanosine and fullerene derived de-aggregation of a new phthalocyanine-linked cytidine derivative. Tetrahedron 2006;62:2123–31.
- [160] Andrade SM, Teixeira C, Togashi DM, Costa SMB, Sobral AJFN. Self-association of free base porphyrins with aminoacid substituents in AOT reverse micelles. J Photochem Photobiol Chem 2006;178:225–35.
- [161] Saka ET, Göl C, Durmuş M, Kantekin H, Bıyıklıoğlu Z. Photophysical, photochemical and aggregation behavior of novel peripherally tetra-substituted phthalocyanine derivatives. J Photochem Photobiol Chem 2012;241:67–78.
- [162] Zhao P, Niu L, Zhong C, Dong S, Zhang F. Synthesis, spectral properties of aluminum polymeric phthalocyanine carboxyl with low aggregation in aqueous solution. Chin Sci Bull 2008;53:3159–63.
- [163] Kostka M, Zimcik P, Miletin M, Klemera P, Kopecky K, Musil Z. Comparison of aggregation properties and photodynamic activity of phthalocyanines and azaphthalocyanines. J Photochem Photobiol Chem 2006;178:16–25.
- [164] Michel SLJ, Hoffman BM, Baum SM, Barrett AGM. Peripherally Functionalized Porphyrazines: Novel Metallomacrocycles with Broad, Untapped Potential. Prog. Inorg. Chem., John Wiley & Sons, Inc.; 2001, p. 473–590.
- [165] Kuznetsova NA, Okunchikov VV, Derkacheva VM, Kaliya OL, Lukyanets EA. Photooxidation of metallophthalocyanines: the effects of singlet oxygen and PcM-O 2 complex formation. J Porphyr Phthalocyanines 2005;9:393–7.
- [166] Yanık H, Aydın D, Durmuş M, Ahsen V. Peripheral and non-peripheral tetrasubstituted aluminium, gallium and indium phthalocyanines: Synthesis, photophysics and photochemistry. J Photochem Photobiol Chem 2009;206:18–26.
- [167] George RD, Snow AW, Shirk JS, Barger WR. The alpha substitution effect on phthalocyanine aggregation. J Porphyr Phthalocyanines 1998;2:1–7.
- [168] Bäumler W, Abels C, Szeimies R-M. Fluorescence diagnosis and photodynamic therapy in dermatology. Med Laser Appl 2003;18:47–56.
- [169] Kuznetsova NA, Kaliya OL. Oxidative photobleaching of phthalocyanines in solution. J Porphyr Phthalocyanines 2012;16:705–12.
- [170] Tuhl A, Chidawanayika W, Ibrahim HM, Al-Awadi N, Litwinski C, Nyokong T, et al. Tetra and octa(2,6-di- *iso* -propylphenoxy)-substituted phthalocyanines: a comparative study among their photophysicochemical properties. J Porphyr Phthalocyanines 2012;16:163–74.
- [171] Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer; 2006.
- [172] Montalban AG, Jarrell W, Riguet E, McCubbin QJ, Anderson ME, White AJP, et al. Bis(dimethylamino)porphyrazines: Synthetic, Structural, and Spectroscopic Investigations. J Org Chem 2000;65:2472–8.
- [173] Bonnett R, Martinez G. Photobleaching of sensitisers used in photodynamic therapy. Tetrahedron 2001;57:9513–47.
- [174] Macdonald IJ, Dougherty TJ. Basic principles of photodynamic therapy. J Porphyr Phthalocyanines 2001;5:105–29.

- [175] Carchesio M, Tonucci L, d' Alessandro N, Morvillo A, Boccio PD, Bressan M. Visible photostability of some ruthenium and platinum phthalocyanines in water and in the presence of organic substrates. J Porphyr Phthalocyanines 2010;14:499–508.
- [176] Ishii K. Functional singlet oxygen generators based on phthalocyanines. Coord Chem Rev 2012;256:1556–68.
- [177] Blumenkranz MS, Woodburn KW, Qing F, Verdooner S, Kessel D, Miller R. Lutetium texaphyrin (Lu-Tex): a potential new agent for ocular fundus angiography and photodynamic therapy. Am J Ophthalmol 2000;129:353–62.
- [178] Beesley AH, Palmer M-L, Ford J, Weller RE, Cummings AJ, Freitas JR, et al. Authenticity and drug resistance in a panel of acute lymphoblastic leukaemia cell lines. Br J Cancer 2006;95:1537– 44.
- [179] Beesley AH, Palmer M-L, Ford J, Weller RE, Cummings AJ, Freitas JR, et al. In vitro cytotoxicity of nelarabine, clofarabine and flavopiridol in paediatric acute lymphoblastic leukaemia. Br J Haematol 2007;137:109–16.
- [180] Istomin YP, Zhavrid EA, Alexandrova EN, Sergeyeva OP, Petrovich SV. Dose enhancement effect of anticaner drugs associated with increased temperature in vitro. Exp Oncol 2008;30:56–9.
- [181] Eustace AJ. Investigation of response and resistance to dasatinib in melanoma cell lines. Dublin City University, 2010.
- [182] Espona-Fiedler M, Soto-Cerrato V, Hosseini A, Lizcano JM, Guallar V, Quesada R, et al. Identification of dual mTORC1 and mTORC2 inhibitors in melanoma cells: prodigiosin vs. obatoclax. Biochem Pharmacol 2012;83:489–96.

OŚWIADCZENIE

Wyrażam zgodę na udostępnienie mojej rozprawy doktorskiej w Czytelni Naukowej Biblioteki Głównej Uniwersytetu Medycznego im. K.Marcinkowskiego w Poznaniu oraz w formie elektronicznej w Wielkopolskiej Bibliotece Cyfrowej (www.wbc.poznan.pl).

Poznań, dnia

.....

(podpis)

OŚWIADCZENIE

Niniejszym oświadczam, iż jestem autorem pracy doktorskiej p.t.:

"Ocena fotochemiczna porfirazyn i ftalocyjanin z podstawnikami heterocyklicznymi i alkoksylowymi o potencjalnym zastosowaniu w terapii fotodynamicznej"

Praca ta została przeze mnie napisana samodzielnie (bez jakiegokolwiek udziału osób trzecich), przy wykorzystaniu wykazanej w pracy literatury przedmiotu i materiałów źródłowych, stanowi ona pracę oryginalną, nie narusza praw autorskich oraz dóbr osobistych osób trzecich i jest wolna od jakichkolwiek zapożyczeń.

Oświadczam również, że wymieniona praca nie zawiera danych i informacji, które zostały uzyskane w sposób niedozwolony prawem oraz nie była dotychczas przedmiotem żadnej urzędowej procedury związanej z uzyskaniem stopnia naukowego: **doktor nauk farmaceutycznych**, a złożona przeze mnie dyskietka/płyta CD zawiera elektroniczny zapis przedstawionej przeze mnie pracy.

Jednocześnie oświadczam, że nieodpłatnie udzielam Uniwersytetowi Medycznemu im. Karola Marcinkowskiego w Poznaniu licencji do korzystania z wyżej wymienionej pracy bez ograniczeń czasowych i terytorialnych w zakresie obrotu nośnikami, na których pracę utrwalono przez: wprowadzanie do obrotu, użyczenie lub najem egzemplarzy w postaci elektronicznej a nadto upoważniam Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu do przechowywania i archiwizowania pracy w zakresie wprowadzania jej do pamięci komputera oraz do jej zwielokrotniania i udostępniania w formie elektronicznej oraz drukowanej.

.....

Łukasz Sobotta

Poznań, dnia.....