Łucja Czyżewska-Majchrzak

OCENA STĘŻENIA WYBRANYCH ANTYOKSYDANTÓW DROBNOcząSTECZKOWYCH I STANU ODŻYWienia U OSÓB STOSUJĄCYCH DIETY WEGETARIAŃSKIE

Rozprawa doktorska
Promotor: dr hab. med. Henryk Witmanowski, prof. UMK

Poznań 2014
Słowa kluczowe: dieta laktoowowegetariańska, witaminy antyoksydacyjne, stan odżywienia

Key words: lactoovovegetarian diet, antioxidant vitamins, nutritional status
Składam serdecznie podziękowania Promotorowi – Panu Prof. dr. hab. Henrykowi Witmanowskiemu za opiekę naukową, a także mojemu Mążowi i Mamie za motywację i wsparcie
Spis treści

Wykaz skrótów zastosowanych w tekście ................................................. 6

Wstęp ........................................................................................................... 6

Rozdział I
Charakterystyka układu oksydacyjno–antyoksydacyjnego ustroju człowieka ................................................................. 10
  1. Wpływ reaktywnych form tlenu na struktury komórkowe .......................... 10
  2. Rodzaje, kierunki działania i źródła przeciwnietleniczego ...................... 12
      2.1. Enzymy antyoksydacyjne .............................................................. 12
      2.2. Antyoksydanty drobnocząsteczkowe ............................................. 13
      2.3. Antyoksydanty zawarte w żywności ............................................. 16

Rozdział II
Dieta wegetariańska w świetle badań naukowych ................................. 18
  1. Podstawy etyczne i poza etyczne wegetarianizmu ................................ 18
  2. Wpływ diet wegetariańskich na układ antyoksydacyjny. Korzyści i zagrożenia zdrowotne wynikające ze stosowania diety wegetariańskiej............... 19
  3. Kierunki wpływu diety laktoowowegetariańskiej na stan odżywienia człowieka .... 22

Rozdział III
Cele pracy .................................................................................................. 25

Rozdział IV
Metodyka pracy .......................................................................................... 26
  1. Koncepcja badań .................................................................................. 26
  2. Grupy badawcze .................................................................................. 26
  3. Charakterystyka 5-cio tygodniowej diety laktoowowegetariańskiej ........ 27
  4. Ocena stężenia antyoksydantów drobnocząsteczkowych we krwi oraz stanu odżywienia osób badanych ........................................ 31
      4.1. Zastosowane metody badań laboratoryjnych ................................ 31
      4.2. Analiza składu ciała. Metoda bioimpedancji elektrycznej ............ 32
  5. Metody oceny statystycznej .................................................................. 33

Rozdział V
Wyniki badań ............................................................................................. 35
  1. Analiza badań ankietowych ................................................................. 35
  2. Analiza statystyczna wyników badań laboratoryjnych i antropometrycznych ...... 36
      2.1. Wyniki badań grupy laktoowowegetarian długoterminowych i grupy porównawczej .......................................................... 36
      2.2. Wyniki badań grupy krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) .......................................... 39
      2.3. Porównanie wyników badań grupy długoterminowych i krótkoterminowych laktoowowegetarian .................................................. 46
  3. Zestawienie zbiorcze uzyskanych wyników ....................................... 50
Rozdział VI
Dyskusja ........................................................................................................................................53
1. Stężenie witamin antyoksydacyjnych i wybrane parametry stanu odżywienia
długoterminowych laktoowowegetarian oraz u osób odżywiających się tradycyjnie..... 53
2. Wpływ 5-cio tygodniowej diety laktoowowegetariańskiej na stężenie witamin
antyoksydacyjnych oraz wybrane parametry stanu odżywienia ........................................... 60
3. Skutki stosowania krótkoterminowej i długoterminowej diety
laktoowowegetariańskiej - ocena porównawcza ...................................................................... 63

Wnioski ........................................................................................................................................67

Streszczenie ..................................................................................................................................68
Abstract .........................................................................................................................................69

Piśmiennictwo ................................................................................................................................70

Spis tabel i rysunków .......................................................................................................................80

Aneks 1. Jadłospis 5-cio tygodniowej interwencji dietetycznej .......................................................84
Aneks 2. Graficzne porównanie wyników badań w grupie długoterminowych
laktoowowegetarian i grupie porównawczej – uzupełnienie ......................................................93
Aneks 3. Graficzne porównanie wyników badań w grupie krótkoterminowych
laktoowowegetarian (przód i po interwencji dietetycznej) – uzupełnienie ............................. 102
Aneks 4. Graficzne porównanie wyników badań w grupie długoterminowych i grupie
krótkoterminowych laktoowowegetarian – uzupełnienie ......................................................... 107
Aneks 5. Dokumentacja badań empirycznych ............................................................................... 115
Aneks 6. Zgoda Komisji Bioetycznej ............................................................................................. 131
Wykaz skrótów zastosowanych w tekście

ADA – (ang. American Diet Association) amerykańskie stowarzyszenie dietetyczne
AI – (ang. Adequate Intake) wystarczające spożycie
CPM – całkowita przemiana materii
EDTA – (ang. Ethylenediaminetetraacetic acid) kwas polikarboksylowy
HCT – (ang. Hematocrite) hematokryt
HGB – (ang. Hemoglobin) hemoglobina
HPLC – (ang. High Performance Liquid Chromatography) wysokosprawna chromatografia cieczowa
IŻŻ – Instytut Żywności i Żywienia w Warszawie
LDL – (ang. low density lipoprotein) lipoproteina o niskiej gęstości
MCH – (ang. Mean Corpuscular Hemoglobin) średnia masa hemoglobiny w krwince czerwonej
MCHC – (ang. Mean Corpuscular Hemoglobin Concentration) średnie stężenie hemoglobiny w erytrocytach
MCV – (ang. Mean Corpuscular Volume) średnia objętość krwinki czerwonej
MTHFR – (ang. Methylenetetrahydrofolate reductase) reduktaza tetrahydrofolianowa
PLT – (ang. Platelets) ilości płytek krwi w mm$^3$ krwi
PPM – podstawowa przemiana materii
RBC – (ang. Red Blood Cells) liczba erytrocytów
RDA – zalecane dzienne spożycie
RFT – reaktywne formy tlenu
w.e.d. – wartość energetyczna diety
WBC – (ang. White Blood Cells) liczba leukocytów
Wstęp


Obecnie badania nad znaczeniem diety sięgają zakresu biologii i fizjologii człowieka a także obszaru genetyki oraz biologii molekularnej. W dostępnych pracach zaznacza się znaczący udział sposobu żywienia w funkcjonowaniu podstawowych szlaków metabolicznych mających wpływ na zdrowie człowieka i jego stan odżywienia. Z definicji
stan odżywienia to: „stan zdrowia wynikający ze zwyczajowego spożycia żywności, przebiegu procesów trawienia, wchłaniania i wykorzystania składników odżywczych oraz oddziaływania na te procesy czynników patologicznych” [26]. Mają na niego wpływ przemiany metaboliczne wszystkich substancji odżywczych dostarczanych do organizmu. Warto zaznaczyć, iż każdy z tych procesów determinowany jest w dużym stopniu przez czynniki molekularne. Do czynników tych należy m.in. właściwa aktywność enzymów, których funkcjonowanie uzależnione jest od dostępności witamin oraz składników mineralnych, będących katalizatorami reakcji biochemicznych [142]. Istotną rolę odgrywają witaminy antyoksydacyjne, mające wielokierunkowy wpływ na funkcjonowanie komórki oraz efektywność szlaków metabolicznych [11,13,103,121]. Z punktu widzenia badań medycznych odzwierciedleniem stanu odżywienia oraz efektywności wspomnianych przemian może być m.in. właściwy obraz morfologii krwi.


Poza wzrostem edukacji żywieniowej we wszystkich grupach społecznych, obserwuje się obecnie coraz częstsze stosowanie tzw. diet alternatywnych polegających m.in. na wykluczeniu danego produktu lub grupy produktów z dieci. Jedną z popularniejszych diet tego rodzaju jest dieta wegetariańska [120,129,160]. Istnieją liczne doniesienia naukowe świadczące o korzyściach zdrowotnych tego sposobu odżywiania [27,71,94,151]. Równocześnie liczne źródła wskazują, iż w świetle współcześnie panujących warunków środowiskowych i społecznych może on zwiększyć ryzyko wystąpienia niedoborów żywniowych [104,109], problem ten omówiono w rozdziale II. Należy zwrócić uwagę, iż stosowanie diety wegetariańskiej nie jest równoznaczne z terminem „wegetarianizm”. Pojęcie
wegetarianizmu definiuje styl życia, którego nadrzędną ideą jest dobrobyt wszystkich istot żywych [131]. Dieta stanowi jedynie element umożliwiający właściwą dbałość o stan zdrowia oraz realizację idei ograniczania cierpienia innych istot żywych – zwierząt.

Istotnym czynnikiem warunkującym właściwości każdej diety jest zawartość antyoksydantów drobnocząsteczkowych w żywności a także ich stężenie w organizmie człowieka. Do głównych antyoksydantów dostarczanych wraz z dietą należą witaminy antyoksydacyjne A, C oraz E. Są one jednymi z kluczowych elementów odpowiadających za utrzymanie homeostazy oraz prawidłowy przebieg licznych procesów biochemicznych. Ich wysoka zawartość bywa często charakterystyczna dla diet wegetariańskich. W związku ze znacznym udziałem tych substancji w zachowaniu zdrowia, a także nie w pełni wyjaśnionym wpływem diety wegetariańskiej na funkcjonowanie organizmu człowieka, w prezentowanej pracy podjęto próbę powiązania tego sposobu odżywiania ze stężeniem wymienionych witamin antyoksydacyjnych we krwi a także z parametrami antropometrycznymi oraz biochemicznymi świadczącymi o stanie odżywienia. W związku z istnieniem wielu odmian wegetarianizmu (przedstawionych w rozdziale II) za kryterium wyboru rodzaju diety której wpływ poddano analizie w niniejszych badaniach przyjęto stosunkowo niskie ryzyko wystąpienia niedoborów żywieniowych a także dostępność produktów spożywczych stanowiących podstawę wybranego sposobu żywienia. W omawianych badaniach uwzględniono zatem stosowanie diety laktoowowegetariańskiej.

Czas stosowania diety ma zasadniczy wpływ na efekty zdrowotne związane z realizowaniem danego sposobu żywienia. Długoterminowe (wieloletnie) stosowanie diety laktoowowegetariańskiej może sprzyjać zarówno osiąganiu liczkach korzyści prozdrowotnych jak również zwiększa ryzyko wystąpienia niedoborów żywieniowych. Istnieją również liczne sprzeczne dane literackie dotyczące długoterminowego stosowania diety laktoowowegetariańskiej i jej wpływu na stężenie antyoksydantów drobnocząsteczkowych we krwi i stan odżywienia osób badanych. Równocześnie niektóre prace wskazują, iż już po kilkutygodniowym okresie stosowania tego rodzaju diety dochodzi do zmian w wybranych procesach biochemicznych ustroju. Do tych można zaliczyć m.in. procesy związane z metabolizmem lipidów. Krótkoterminowa zmiana sposobu żywienia, bazująca na wprowadzeniu dużych ilości białka roślinnego może być przyczyną modyfikacji w zakresie składu mikroflory jelitowej [34], a także odmiennej sekcji enzymów trzustkowych, związanej z ilością oraz składem jakościowym dostarczanych protein [157]. Nie ukazały się dotychczas prace dokumentujące wpływ krótkoterminowej diety laktoowowegetariańskiej w zakresie oddziaływania na stężenie witamin antyoksydacyjnych.
Zakładając korzystne oddziaływanie wymienionego sposobu żywienia na równowagę systemu antyoksydacyjnego, krótkotrwała zmiana sposobu żywienia na taki rodzaj diety mogłaby stanowić korzystną alternatywę dla osób w okresach silnego stresu oksydacyjnego: np. w przypadku zatruć polekowych, w przypadku rekonwalescencji po przebytych chorobach, zabiegach chirurgicznych a także wśród sportowców, którzy narażeni są na skutki wzmożonego stresu oksydacyjnego. Co więcej, krótki okres stosowania diety może istotnie zmniejszać ryzyko wystąpienia niedoborów żywieniowych.

W związku z powyższym, w niniejszej dysertacji zaprezentowano wyniki dwóch niezależnych modeli stosowania diety laktoowowegariańskiej: diety krótkoterminowej (5-cio tygodniowej) oraz długoterminowej (stosowanej w okresie >3 lat). Ocena tych parametrów we wskazanych grupach badawczych może stanowić istotny wkład w rozwój nauk dietetycznych oraz medycznych.
Rozdział I
Charakterystyka układu oksydacyjno–antyoksydacyjnego ustroju człowieka

1. Wpływ reaktywnych form tlenu na struktury komórkowe

Dieta laktoowowegarianka może być istotnym czynnikiem wpływającym na poziom antyoksydantów drobnocząsteczkowych i status antyoksydacyjny we krwi, ponieważ za podstawę tego sposobu żywienia uznańę się regularne spożywanie owoców i warzyw zawierających znaczne ilości antyoksydantów żywieniowych w tym witamin A, C i E. Długotrwałe stosowanie tego rodzaju diety korzystnie wpływa na całkowity status antyoksydacyjny organizmu [74,138]. Reaktywne formy tlenu (RFT) stanowią obecnie istotny czynnik zwiększający ryzyko wystąpienia chorób cywilizacyjnych, m.in. cukrzycy, miażdży, nowotworów a także otyłości [72,93,96,100,114,133,167]. W związku z powyższym, prawidłowe funkcjonowanie procesów obrony antyoksydacyjnej organizmu wydaje się być kluczowym czynnikiem zachowania zdrowia.

Odpowiadają za aktywność białek, co w konsekwencji w znaczny sposób wpływa na regulację szlaków przekazywania sygnału i ekspresję niektórych genów [166].


Niekorzystnemu wpływowi działania wolnych rodników ulegają także cząsteczki lipidów w procesie tzw. peroksydacji. Utlenianie tego rodzaju cząsteczek mogą inicjować różne formy RFT, m.in. rodnik hydroksylowy, nadtlenkowy czy też alkilowy. Konsekwencją oddziaływania RFT z lipidami są zmiany w ich strukturze oraz funkcji. Zmodyfikowane lipidy reagują nieswoicie z pozostałymi cząsteczkami obecnymi w komórce, co może powodować powstanie kolejnych cząsteczek RFT. Równocześnie uszkodzone kwasy tłuszczowe zmieniają prawidłową strukturę błon komórkowych, modyfikując aktywność enzymów transporterów błonowych, a co więcej mogą indukować również zmiany w procesach transkrypcji DNA, powodując np. nadekspresję wybranych genów [83]. W celu zapobiegania występowaniu uszkodzeń wynikających z działania RFT, na obszarze komórki dochodzi do uaktywnienia komórkowych mechanizmów obronnych. Wyróżniamy dwa typy
cząsteczek odpowiedzialnych za eliminację wolnych rodników. Należą do nich enzymy antyoksydacyjne [51,52,92] oraz antyoksydanty drobnocząsteczkowe [166]. Poziom wybranych antyoksydantów drobnocząsteczkowych w tym witamin A, C i E w ustroju związany jest ścisłe z ilością tych związków dostarczanych wraz z pożywieniem. Jak zaznaczono powyżej stosowanie diety laktowo-wegetariańskiej może powodować wzrost stężenia tych związków we krwi, a tym samym być istotnym czynnikiem obrony antyoksydacyjnej ustroju.

2. Rodzaje, kierunki działania i źródła przeciwtleniaczy

2.1. Enzymy antyoksydacyjne

Enzymy antyoksydacyjne stanowią tzw. pierwszą linię obrony przed szkodliwym wpływem wolnych rodników tlenowych na struktury komórkowe. Do enzymów tych zaliczamy dysmutację ponadtlennkową, katalazę, oraz peroksydację glutatjonu [40,146,166]. Dysmutaza ponadtlennkowa oraz katalaza katalizują reakcje dysmutacji oraz dysproporcjonowania, którym podlegają RFT. Dysmutaza ponadtlennkowa bierze udział w reakcji dysmutacji anionorodnika ponadtlennkowego. Produktem tej przemiany jest nadtlenek wodoru metabolizowany do wody i tlenu wskutek działania katalazy lub peroksydazy glutatjonu. Równocześnie katalaza, przy stosunkowo niskich stężeniach H₂O₂ wykazuje także aktywność peroksydazową, tj. posiada zdolność równoczesnego usuwania H₂O₂ oraz utleniania związku organicznego. Peroksydaza glutatjonu natomiast poza usuwaniem nadtlenu wodoru umożliwia redukcję nadtlennków organicznych przy równoczesnym utlenianiu cząsteczki glutatjonu [107,111,166]. Poszczególne enzymy antyoksydacyjne zlokalizowane są na obszarze różnych struktur komórkowych oraz w różnych typach komórek. Ich lokalizację oraz charakterystykę struktury centrum aktywnego i funkcji przedstawiono w Tabeli 1.

**Tabela 1. Charakterystyka enzymów antyoksydacyjnych**

<table>
<thead>
<tr>
<th>Nazwa enzymu</th>
<th>Lokalizacja w komórce</th>
<th>Centrum aktywne</th>
<th>Funkcja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysmutaza ponadtlennkowa</td>
<td>Cytoplazma Mitochondria</td>
<td>Miedź, cynk, mangan</td>
<td>Dysmutacja anionorodnika ponadtlennkowego</td>
</tr>
<tr>
<td>Katalaza</td>
<td>Cytoplazma Peroksymy</td>
<td>Grupa hemowa NADPH</td>
<td>Rozkład nadtlenu wodoru</td>
</tr>
<tr>
<td>Peroksydaza glutatjonu</td>
<td>Mitochondria</td>
<td>Reszty selenocysteiny</td>
<td>Rozkład nadtlenu wodoru, Redukcja nadtlennków organicznych Utlenianie glutatjonu</td>
</tr>
</tbody>
</table>

Źródło: opracowanie własne na podstawie [166]
2.2. Antyoksydanty drobnocząsteczkowe

Do antyoksydantów drobnocząsteczkowych (niskocząsteczkowych) zaliczamy występujące w komórce związki pochodzenia endogennego jak i egzogennego. Do tych pierwszych należą m.in. glutatjon, kwas moczy, a także pochodne estradiołu, białka takie jak ceruloplasmina, ferrytyna oraz transferyna. Glutation jest peptydem występującym powszechnie w wielu typach komórek. Zbudowany jest z trzech aminokwasów: kwasu glutaminowego, cysteiny i glicyny, a jego syntezę nie wymaga matrycy RNA. Posiada właściwości redukujące, oddziałując z nadtlenkiem wodoru oraz nadtlenkami organicznymi. Równocześnie umożliwia regenerację witamin antyoksydacyjnych, a także utrzymanie grup tiołowych białek w stanie zredukowanym. Jest jednym z zasadniczych czynników wpływających na stan oksydoredukcyjny w komórce [15,117,166]. Wymienione powyżej białka osocza posiadają zdolność wiązania metali przejściowych. Ceruloplasmina wychwytuje jony miedzi, natomiast ferrytyna oraz transferyna wiążą jony żelaza. Podobne właściwości charakteryzują także kwas moczy, który dodatkowo posiada zdolność dezaktywacji rodnika hydroksylowego [115].

W grupie antyoksydantów niskocząsteczkowych o charakterze egzogennym znajdują się witaminy antyoksydacyjne A, C i E. Witamina C – główny antyoksydant cytozolu i osocza odgrywa istotną rolę w usuwaniu tlenu singletowego i rodnika hydroksylowego a także przeciwdziała uszkodzeniom wywołanym aktywnością H₂O₂ [163]. W komórce najczęściej występuje w postaci askorbinianu. Charakterystyczną właściwością tego związku jest zdolność redukującą, wynikającą z budowy chemicznej cząsteczki. Ta właściwość odgrywa kluczową rolę w działaniu antyoksydacyjnym witaminy C [53,76]. Wskutek oddysocjowania jonów wodorowych od kwasu askorbinowego dochodzi do neutralizacji wolnych rodników tlenowych i powstania niereaktywnych rodzajów skupinowych. Związki te mogą ponownie ulec konwersji do kwasu askorbinowego przy współudziale cząsteczki glutationu. Kwas askorbinowy jest aktywnym antyutleniaczem, ale również uczestniczy w procesach regeneracji innych antyoksydantów takich jak beta-karoten czy też alfa-tokoferol [110]. Uczestniczy również w komórkowych mechanizmach umożliwiających zachowanie cząsteczek w stanie zredukowanym, np. wymienionej cząsteczki glutationu. Liczne badania potwierdziły korzystne działanie witaminy C w prewencji oksydacyjnych uszkodzeń DNA [53]. Wydaje się jednak, iż efekt ten może być ścisłe zależny od stężenia witaminy C. W niektórych przypadkach witamina C może wręcz nasilać oksydacyjne uszkodzenia DNA. Dane te jednak dotyczą eksperymentów z zastosowaniem syntetycznych źródeł witaminy C.
W przypadku eksperymentów opartych na stosowaniu odpowiedniej diety bogatej w ten związek rezultaty są bardziej jednoznaczne i potwierdzają korzystny wpływ witaminy C w procesach zapobiegania oksydacyjnym uszkodzeniom materiału genetycznego, a także jej roli w mechanizmach naprawczych DNA, zachodzących poprzez regulację działania enzymów naprawczych [20]. Co więcej, zidentyfikowano geny, których ekspresja jest zależna od witaminy C, i w wyniku której dochodzi do wzmożenia tych mechanizmów. Do genów tych należą m.in. sekwencje DNA odpowiedzialne za indukcję syntezy białka MLH1 oraz indukcję syntezy białka P73 [23]. Witamina C, wg niektórych źródeł, może nasilać także procesy prooksydacyjne w wyniku zdolności wiązania metali przejściowych przez kwas askorbinowy. Równocześnie badania in vivo nie potwierdziły jednoznacznie tej właściwości [20,39].

Witamina A w organizmie człowieka występuje głównie pod postacią retinolu i 3,4 didehydroretinolu. Związki te w efekcie przemian metabolicznych utleniają się do aldehydów a następnie kwasów. Witamina A w żywności pochodzenia roślinnego występuje pod postacią karotenoidów, mogących mieć charakter prowitaminy A, która w wyniku działania enzymów przekształca się do wspomnianych cząsteczek aldehydów. Pokarmy pochodzenia zwierzęcego są źródłem aldehydów. Pokarmy pochodzenia zwierzęcego są natomiast źródłem cząsteczek retinolu. Podobnie jak w przypadku witaminy C, potwierdzono właściwości antyoksydacyjne witaminy A [20]. Istotnym czynnikiem korzystnego działania tego związku jest właściwe ciśnienie parcjalne tlenu w komórkach. Zarówno karotenoidy jak i retinol odgrywają znamienią rolę w usuwaniu rodników nadtlenowych i tlenu singletowego [53].

Liczne badania naukowe wskazują na korzystny wpływ diety zawierającej dużą ilość owoców i warzyw bogatych w karotenoidy w prewencji nowotworów: okrężnicy, stercza, piersi oraz płuc [20,53,55,87]. Korzystne wyniki uzyskano w szczególności w przypadku badań nad jednym z karotenoidów – likopenem [45,53,87,141]. Wskazywały one na istotny udział tego związku w zmniejszeniu ryzyka występowania raka płuc, żołądka oraz prostaty. Z drugiej strony, podobnie jak w przypadku witaminy C, witamina A i jej cząsteczki prekursorowe mogą wykazywać działanie prooksydacyjne. W tym przypadku jednak warunkiem jest wysokie ciśnienie parcjalne tlenu, które charakterystyczne jest dla nabłonków dróg oddechowych. Warto jednakże wspomnieć, że beta-karoten może ulegać utlenieniu pod wpływem RFT np. obecnych w dymie tytoniowym [165]. W efekcie zmodyfikowane cząsteczki tego związku istotnie wpływają na metabolizm komórkowy m.in. wskutek indukcji działania enzymów cytochromu P-450 [30,53].

W dostępnych danych literaturowych coraz większą uwagę zwraca się także na udział wszystkich wymienionych witamin antyoksydacyjnych tj. witamin A, C i E w procesach regulacji ekspresji genów. Działanie to odnosi się zarówno do zmian w szlakach przekaźnictwa komórkowego, wskutek regulacji aktywności enzymów, jak również zmian w zakresie funkcjonowania wybranych czynników transkrypcyjnych. W przypadku witaminy A i jej pochodnych dotyczy to m.in. procesów związanych z ekspresją genów koneksyny, genu n-myc czy też bcl-2. Witamina C natomiast może wpływać na zmiany ekspresji np. genu cox-2. Liczne badania potwierdzają także regulacyjny wpływ witaminy E w regulacji ekspresji m.in. genów związanych z kontrolą przebiegu cyklu komórkowego, zaangażowanych w powstanie odpowiedzi zapalnej czy też genów odpowiedzialnych za procesy degradacji tokoferoli [5,56,112].

Witamine antyoksydacyjne A, C i E obecne w żywności wykazują korzystne działanie w zapobieganiu powstawaniu uszkodzeń wywołanych przez RFT. Wysoka podaż tych składników wraz z dietą może zatem zmniejszać ryzyko występienia chorób i stanów patologicznych, których podłoże związane jest z oddziaływaniem wolnych rodników tlennych na struktury komórkowe. Do chorób tych można zaliczyć m.in. choroby serca, miażdżycę, cukrzycę, wybrane nowotwory, a także otyłość [22,24,148]. Równocześnie autorzy licznych badań podkreślają, iż korzystny wpływ dostarczania do organizmu dużej ilości witamin antyoksydacyjnych istotnie wiąże się z ich źródłem. Lepsze wyniki w wielu
przypadkach osiągnięto w badaniach analizujących wpływ antyoksydantów zawartych w żywności, w porównaniu z syntetycznymi formami witamin antyoksydacyjnych [20]. Całkowita zdolność antyoksydacyjna organizmu zależy jest w dużym stopniu od cząsteczek antyoksydacyjnych dostarczanych ze środowiska zewnętrznego, wraz z pożywieniem. W związku z powyższym można przypuszczać, że właściwie zbilansowana dieta laktoowowegetariańska, o wysokiej zawartości składników pochodzenia roślinnego może korzystnie oddziaływać na stan odżywienia, a w konsekwencji na ogólny stan zdrowia.

2.3. Antyoksydanty zawarte w żywności

Żywność jest źródłem licznych związków o charakterze antyoksydacyjnym, które dostarczane są do organizmu egzogennie. Należą do nich wymienione witaminy A, C i E, ale także karotenoidy, polifenole, związki mineralne (selen, cynk, wapń) czy też produkty reakcji Millarada tj. melanoidy. Witaminy antyoksydacyjne w znacznych ilościach znajdują się w surowych nieprzetworzonych owocach i warzywach. Produkty cechujące się stosunkowo wysoką zawartością witamin A, C i E przedstawiono w Tabeli 2. Melanoidy są to związki

| Tabela 2. Zawartość witamin antyoksydacyjnych A, C i E w wybranych produktach spożywczych |
|---------------------------------|---------------------------------|
| **Rodzaj produktu** | **Zawartość witaminy A [równoważnik retinolu µg na 100 g części jadalnych]** |
| Wątroba wieprzowa | 3304 |
| Marchew | 1656 |
| Zółtiko jaja kurzego | 770 |
| Szpinak | 707 |
| Papryka czerwona | 528 |
| Morele | 254 |
| Pomidor | 100 |

| **Rodzaj produktu** | **Zawartość witaminy C (kwas L-askorbowy) mg na 100 g części jadalnych** |
| Papryka czerwona | 139 |
| Brukselka | 94 |
| Kalafior | 70 |
| Pomarańcze | 49 |
| Kapusta biała | 48 |
| Pomidor | 23 |
| Jabłko | 9,2 |

| **Rodzaj produktu** | **Zawartość witaminy E [równoważnik alfatokoferolu mg na 100 g części jadalnych]** |
| Orzechy łaskowe | 38,7 |
| Olej rzepakowy | 26,7 |
| Oliwa | 11,9 |
| Orzechy włoskie | 2,6 |
| Szpinak | 1,8 |
| Kapusta biała | 1,67 |

Źródło: Opracowanie własne na podstawie [46]
o silnym charakterze antyoksydacyjnym powstałe w wyniku poddania produktów spożywczych działaniu wysokiej temperatury przez określony czas. Wskazuje się, iż w wyniku prawidłowego procesu ogrzewania można poprawić jakość i wartości zdrowotne owoców oraz warzyw, zwiększając ich potencjał antyoksydacyjny [130]. Wybrane produkty o wysokiej zawartości witamin A, C i E stanowiły istotny element eksperymentalnej diety stosowanej w trakcie opisywanych badań.
Rozdział II

Dieta wegetariańska w świetle badań naukowych

1. Podstawy etyczne i poza etyczne wegetarianizmu


Racje pozaetyczne dotykają badań środowiskowych oraz medycznych. Niektóre badania wskazują, iż procesy produkcji mięsa w tym chów zwierząt przyczyniają się do nadmiernego zużycia pożywienia roślinnego oraz wody pitnej [58]. Zwolennicy wegetarianizmu podkreślają aspekt ten w szczególności z uwagi na głód panujący w skali świata. Wskazuje się także na wysokie zanieczyszczenie środowiska związane z masową hodowlą zwierząt. Równie istotnym problemem wydaje się być powszechne stosowanie...
i podawanie antybiotyków zwierzętom, które w efekcie przedostania się do środowiska naturalnego, przyczyniają się do uodpornienia na te związki mikroorganizmów chorobotwórczych [58]. Kolejnym argumentem są potencjalne prozdrowotne skutki stosowania tego rodzaju diety.

2. Wpływ diet wegetariańskich na układ antyoksydacyjny. Korzyści i zagrożenia zdrowotne wynikające ze stosowania diety wegetariańskiej

Należy zaznaczyć, iż wpływ diety wegetariańskiej na organizm ścisłe uzależniony jest od rodzaju tej diety i stopnia wyeliminowanych produktów pochodzenia zwierzęcego. Ze względu na ich rodzaj wyodrębnia się kilka najczęściej stosowanych wariantów diety wegetariańskiej [150,168,169]:

- dieta laktoowo-wegetariańska – wyklucza stosowanie mięsa oraz ryb. W diecie obecne są natomiast jaja oraz nabiał,
- dieta laktowegetariańska – wyklucza stosowanie mięsa, ryb oraz jaj. Można jaja i nabiał,
- dieta pescowegetariańska/semiwegetariańska – cechą tej diety jest możliwość włączenia do jadłospisu niewielkich ilości ryb i drobiu. Przez wielu naukowców nie jest uznawana za odmianę wegetarianizmu,
- dieta wegańska – jedna z najbardziej restrykcyjnych form diety wegetariańskiej. Wyklucza ona spożywanie wszystkich produktów pochodzenia zwierzęcego.

zwiększenie ilości tłuszczów pochodzenia roślinnego, zawartych w nasionach zbóż, orzechów i roślin strączkowych. W konsekwencji stosunek kwasów tłuszczowych nasyconych i nienasyconych jest korzystniejszy niż u osób stosujących tradycyjny sposób żywienia, czego odzwierciedleniem są korzystne zmiany w profilu lipidowym krwi w odniesieniu do osób stosujących diety „tradycyjną” [35,43]. Równocześnie z powodu dostarczania dużej ilości witaminy E wraz z diety, procesy utleniania kwasów tłuszczowych oraz ilość wolnych rodników tlenowych powstających podczas tych procesów osiągają niższe wartości. Korzystny wpływ na profil lipidowy skutkuje zmniejszeniem ryzyka wystąpienia chorób serca, zawału a także miażdży [44, 132]. Niejednokrotnie badania potwierdzają pozytywne efekty stosowania diety laktoowowegetariańskiej także u osób chorujących na cukrzycę typu II [148,149,151]. W tym przypadku ograniczenie mechanizmów oksydacyjnych może być kluczowym czynnikiem decydującym o poprawieniu profilu glikemicznego [7,155]. Równocześnie spożywanie dużej ilości błonnika oraz produktów o niskim indeksie glikemicznym, np. pełnoziarniste kasze, czy ryż wspomaga ten proces [154]. Dieta laktoowowegetariańska może sprzyjać także redukcji masy ciała oraz zmniejszać ryzyko wystąpienia otyłości [148]. Warto zaznaczyć, że również w tym przypadku otyłość ściśle związana jest z brakiem równowagi składu odżywczego-antyoksydacyjnego [134,155], na którą istotnie wpływają mechanizmy antyoksydacyjne oraz podaż antyoksydantów wraz z dietą. Sugeruje się również korzystny wpływ tego sposobu żywienia w powszechnej wystąpieniu nowotworów, a szczególności nowotworów przewodu pokarmowego [147,155], co autorzy badań wiążą ze składem jakościowym diety, a w konsekwencji większą stabilnością DNA oraz bardziej efektywnym działaniem systemu antyoksydacyjnego u osób stosujących diety wegetariańskie. Prozdrowotne skutki diety wegetariańskiej można zatem przypisać w dużej mierze jej właściwościom antyoksydacyjnym. Równocześnie jednak istnieją metaanalizy wskazujące, że efekty prozdrowotne m.in. w zakresie powszechnej występowania chorób nowotworowych można uzyskać stosując zbilansowany pod względem podstawowych składników odżywczych tradycyjny sposób żywienia, obejmujący mięso oraz ryby [48]. Dane wskazujące na korzystne efekty stosowania diety laktoowowegetariańskiej dotyczą zazwyczaj długookresowego stosowania wymienionej diety. Można przypuszczać, iż potencjalny antyoksydacyjny wpływ krótkookresowej diety laktoowowegetariańskiej również mogłyby stanowić korzystną alternatywę w przypadku wspomagania terapii wybranych chorób i zaburzeń funkcjonowania organizmu. Nadmierny stres oksydacyjny towarzyszy m.in. zatruciom polekowym [38]. Równocześnie w przebiegu wielu infekcji o podłożu wirusowym lub bakteryjnym także dochodzi do zachwiania równowagi oksydacyjno-
antyoksydacyjnej [137]. W wymienionych przypadkach stymulacja układu antyoksydacyjnego np. poprzez zastosowanie krótkookresowej diety lakoowowegietariańskiej mogłaby stanowić istotny element terapii a także rekonwalescencji. Zachwianie równowagi oksydacyjno-antyoksydacyjnej obserwuje się również u sportowców. Jest ono wówczas wynikiem intensywnego wysiłku fizycznego [108]. W takim przypadku wspomaganie eliminacji nadmiaru wolnych rodników poprzez właściwie dobraną dietę tlenowych mogłoby dodatnio wpłynąć na wydolność fizyczną organizmu i procesy jego regeneracji. W związku z powyższym niezbędne są dalsze badania dotyczące udziału diety wegetariańskiej, czasu jej trwania, składu jakościowego oraz zastosowania w prewencji chorób a także stanów patologicznych, w szczególności tych, w przypadku których występuje stres oksydacyjny.


Należy zwrócić uwagę na problem deficytu witaminy D w szczególności w dietach wegetariańskich. Badania szacują, iż ok. miliard ludzi na świecie cierpi na niedobór witaminy D. Wśród tej grupy znajdują się zarówno osoby starsze jak i w młodym wieku w szczególności mieszkańcy miast USA oraz Europy [152]. Liczne badania wskazują, iż niedobory witaminy D są także powszechne wśród Polaków z uwagi na strefę klimatyczną i poziom nasłonecznienia w ciągu roku, a także przyzwyczajenia żywieniowe obejmujące zbyt małą konsumpcję produktów zawierających witaminę D, a szczególnie ryb. 90% aktywnej postaci tego związku ma pochodzenie endogenne, jednak warunkiem syntezy jego aktywnej formy jest wystarczająco długa ekspozycja na promieniowanie UV o określonej długości. W strefie klimatu umiarkowanego ciepłego założenia te mogą być spełnione wyłącznie w okresach letnich, w związku z czym istotną rolę w prewencji wystąpienia niedoborów tej witaminy odgrywa spożywanie produktów spożywczych w nią bogatych [3,152]. Witamina D pełni rolę w licznych procesach metabolicznych m.in. w prawidłowym utrzymaniu gospodarki wapniowo-fosforanowej czy też w prawidłowej funkcji układu sercowonaczyniowego. Należy zaznaczyć, iż działanie tego związku jest plejotropowe, a procesy, w które jest on zaangażowany na poziomie molekularnym dotyczą aspektu regulacji
aktywności wielu genów. W związku z powyższym przewiduje się, iż witamina D może odgrywać rolę w procesach starzenia się i powstawania nowotworów. Biorąc pod uwagę powyższe dane należy zaznaczyć, że dieta eliminująca ryby, w tym dieta laktoowowegetariańska, stwarza znaczne ryzyko niedostatecznej podaży tego związku, a w konsekwencji, przy braku jego suplementacji, wzrost ryzyka wystąpienia licznych schorzeń [126].

W związku z tym, że podstawą zbilansowanej diety laktoowowegetariańskiej stanowią owoce i warzywa można przypuszczać, iż ilość dostarczanych składników odżywczych pochodzących z tych produktów także będzie większa w porównaniu z osobami stosującymi tradycyjny sposób żywienia. Owoce i warzywa, a także nasiona roślin strączkowych należą do grup produktów o wysokiej zawartości antyoksydantów drobnocząsteczkowych w postaci witamin A, C i E. Są one także głównym źródłem flavonoidów, antocyjanów i karotenoidów. Związki o charakterze antyoksydacyjnym stanowią istotny element obrony organizmu przed uszkodzeniami wywołanymi przez RFT. Jednocześnie warto zwrócić uwagę na możliwość wystąpienia negatywnych skutków zbyt dużej ilości antyoksydantów dostarczanych wraz z dietą, w tym na wspomniane nasilenie procesów prooksydacyjnych. Co więcej, należy zaznaczyć, iż wiele spośród produktów roślinnych, w tym nasion, zawiera wysoko stężenia metali ciężkich, w tym kadmu. Istnieją jednak prace, sugerujące, że prawidłowo zbilansowana dieta wegetariańska dostarcza dostateczną ilość antyoksydantów, niwelującą szkodliwy wpływ tych substancji [82].

3. Kierunki wpływu diety laktoowowegetariańskiej na stan odżywienia człowieka

Stan odżywienia definiuje się jako „stan zdrowia wynikający ze zwyczajowego spożycia żywności, przebiegu procesów trawienia, wchłaniania i wykorzystania składników odżywczych oraz oddziaływania na te procesy czynników patologicznych” [26]. Kierunki oddziaływania diety na stan odżywienia można rozpatrywać zarówno na poziomie fizjologicznym jak i w zakresie wpływu na mechanizmy komórkowe. Wzięcie pod uwagę obu tych aspektów stanowi istotne kryterium oceny stanu odżywienia i stanu zdrowia człowieka.

Dienda laktoowowegetariańska obfitująca w warzywa, owoce oraz nasiona o wysokiej zawartości witamin A, C i E, może oddziaływać na mechanizmy komórkowe m.in. poprzez wpływ na stężenie witamin antyoksydacyjnych we krwi i ich udział w mechanizmach antyoksydacyjnych. Niniejszym, w pracy rozpatrzono związek ilości antyoksydantów żywieniowych tj. witamin A, C i E dostarczanych wraz z dietą ze stężeniem
tych związków we krwi osób stosujących dietę laktoowowegetariańską. Wysokie stężenia witamin antyoksydacyjnych we krwi mogą być uznawane za istotny czynnik obrony ustroju przed niekorzystnym działaniem RFT. Jak wspomniano w poprzednim rozdziale uszkodzenia wolnorodnikowe stanowią przyczynę licznych nieprawidłowości w procesach metabolicznych związanych z przemianami lipidów, białek oraz prawidłową syntezą DNA. Prawidłowy przebieg wymienionych szlaków metabolicznych jest natomiast podstawą właściwego wykorzystania składników odżywczych zawartych w diecie i w ten sposób wpływa na stan odżywienia organizmu. W przypadku małej efektywności procesów antyoksydacyjnych wzrasta ryzyko wystąpienia zaburzeń wymienionych procesów. Witaminy A i C, poza działaniem antyoksydacyjnym biorąc udział w innych szlakach komórkowych, które pośrednio mogą wpływać także na stan odżywienia. Witamina C jako kofaktor uczestniczy m.in. w procesie syntezy hormonów, neuroprzekaźników kolagenu, a także reguluje działanie lizosomalnych fosfataz odpowiadających za metabolizm proteoglikanów siarkowych [16]. Witamina A natomiast bierze udział w prawidłowym odbiorze bodźców wzrokowych oraz regeneracji tkanek wpływając korzystnie m.in. na stan nabłonków wyściełających błony śluzowe przewodu pokarmowego [46]. Równocześnie w postaci kwasu retinowego uczestniczy w powstawaniu kolagenu IV, a także w różnicowaniu komórek: osteoblastów, keranocytów i fibroblastów [19]. Witaminy E przypisuje się natomiast rolę głównie w procesach antyoksydacyjnych oraz udział w regulacji transkrypcji licznych genów [5,56,112].

Poza opisanym możliwym oddziaływaniem diety i jej składników na mechanizmy komórkowe należy rozpatrywać jej wpływ na stan odżywienia również na poziomie procesów fizjologicznych w organizmie. W zakresie wpływu wymienionej diety na procesy fizjologiczne w ustroju w niniejszej pracy zwrócono uwagę na morfologię krwi – jako obraz prawidłowego przebiegu procesów fizjologicznych – a także na stężenie żelaza i witaminy B₁₂, jako związków na których niedobór w większym stopniu mogą być narażone osoby stosujące dietę laktoowowegetariańską i których stężenie znacząco wpływa na parametry biochemiczne krwi.

Prawidłowy obraz morfologii krwi związany jest z wielokierunkowymi przemianami biochemicznymi i fizjologicznymi uwarunkowanymi m.in. dostępnością wszystkich niezbędnych składników odżywczych dostarczanych wraz z dietą. Wielkość krwinek, ilość hemoglobiny, a w konsekwencji efektywność dostarczania tlenu do wszystkich tkanek organizmu zależą od obecności takich związków jak: żelazo, kwas foliowy oraz witamina B₁₂. Substancje te mają zatem zasadnicze znaczenie dla funkcjonowania organizmu: zaopatrzenia
tkanek w tlen i wykorzystania pozostałych substancji odżywczych, a w konsekwencji odpowiadają pośrednio za właściwe funkcjonowanie wszystkich szlaków metabolicznych oraz za stan odżywienia człowieka. Co więcej, prawidłowa morfologia krwi może być także odzwierciedleniem właściwego wchłaniania składników odżywczych m.in. wspomnianego żelaza, witaminy B₁₂ i kwasu foliowego a wybrane parametry biochemiczne wskazują także na możliwości wystąpienia patologii w funkcjonowaniu przewodu pokarmowego, mogących mieć związek ze stanem odżywienia organizmu.

Istotnym wskaźnikiem stanu odżywienia człowieka są także parametry antropometryczne takie jak masa i wysokość ciała oraz skład ciała. Dotychczas przeprowadzono nieliczne badania dotyczące budowy i składu ciała laktoowowegarian. Najczęściej autorzy porównują te parametry wśród wegetarian stosujących różnego typu diety wegetariańskie [42,106] lub z pominięciem rozgraniczenia na grupy stosujące odmienne typy tego sposobu żywienia, co wpływa na ich odmienne rezultaty [29,43,74]. Określenie parametrów składu ciała laktoowowegarian oraz analiza procentowego udziału poszczególnych rodzajów tkanek w organizmie i odniesienie do współcześnie obowiązujących norm mogą pozwolić na stwierdzenie nieprawidłowości i wskazywać na ich związek ze stanem odżywienia.
Rozdział III

Cele pracy

W niniejszej pracy przyjęto hipotezę, iż stosowanie diety wegetariańskiej może mieć wpływ na zmiany stężenia wybranych antyoksydantów drobnocząsteczkowych tj. witamin antyoksydacyjnych A, C, E oraz stan odżywienia człowieka. Za wyznaczniki stanu odżywienia uznano wybrane parametry antropometryczne oraz biochemiczne krwi w tym morfologię krwi oraz stężenie żelaza i witaminy B₁₂. W związku z rosnącą częstością stosowania krótkoterminowych diet w tym wegetariańskich oraz możliwością ich wykorzystania we wspomaganiu terapii wybranych zaburzeń, jak również niepełnymi badaniami dotyczącymi stanu zdrowia osób stosujących diety wegetariańskie krótkoterminowo i długoterminowo, zdefiniowano następujące cele:

- porównanie stężeń witamin antyoksydacyjnych we krwi osób stosujących dietę laktoowowegetariańską długoterminowo, krótkoterminowo, a także w grupie osób stosujących dietę zawierającą mięso oraz ryby,
- weryfikację stanu odżywienia poprzez określenie wybranych parametrów biochemicznych krwi a także antropometrycznych w grupie vegetarian stosujących dietę laktoowowegetariańską długoterminowo, krótkoterminowo oraz w grupie osób stosujących dietę zawierającą mięso oraz ryby.

Poprzez zrealizowanie powyższych celów pracy podjęto próbę określenia potencjalnego wpływu różnoterminowych diet wegetariańskich na stan zdrowia człowieka.
Rozdział IV

Metodyka pracy

1. Koncepcja badań

Dla oceny stężenia wybranych antyoksydantów drobnocząsteczkowych i stanu odżywienia osób stosujących diety wegetariańskie zebrano 60 osobową grupę badawczą, którą podzielono na trzy podgrupy: grupę długoterminowych laktoowowegertarian, grupę porównawczą oraz grupę osób decydujących się na zmianę sposobu żywienia na laktoowowegertariański w okresie 5-ciu tygodni (tj. interwencję dietetyczną). Osoby należące do każdej z grup spełniały kryteria włączenia do badania ujęte w podrozdziale 2. Badanie zakładało jednokrotne pobranie krwi w przypadku grupy długoterminowych laktoowowegertarian i grupy porównawczej oraz dwukrotne pobranie krwi w przypadku osób decydujących się na zmianę sposobu żywienia. W tym przypadku pobranie krwi miało miejsce przed rozpoczęciem diety i po jej zakończeniu. Przed każdym pobranim krwi osoby ze wszystkich grup badawczych zostały poddane badaniom anketowym, antropometrycznym oraz analizie składu ciała a ich stan zdrowia został oceniony przez lekarza przed rozpoczęciem badania. Osoby zdecydowane na zmianę diety otrzymały od dietetyka wszystkie wskazówki dotyczące stosowania diety laktoowowegertariańskiej a także gotowy jadłospis indywidualnie dostosowany do stanu zdrowia i zapotrzebowania energetycznego.

Powyższa koncepcja badań została pozytywnie zaopiniowana przez Komisję Biotyczną przy Uniwersytecie Medycznym im. Karola Marcinkowskiego w Poznaniu (Uchwała nr 958/10 z dnia 2.12.2010 r. i Uchwała nr 525/12 z dnia 10.05.2012 r. – por. Aneks 6.).

2. Grupy badawcze

Łącznie w badaniach uczestniczyło 60 osób różnej płci. Spośród nich wyodrębniono 3 grupy o liczebności 20 osób każda. Pierwszą (I) grupę stanowiły osoby stosujące dietę laktoowowegertariańską długoterminowo. Drugą (II) grupę stanowiła grupa porównawcza, do której należały osoby odżywiające się w sposób określany mianem tradycyjnego, spożywające mięso oraz ryby. Trzecią (III) grupę stanowiły osoby decydujące się na zmianę sposobu żywienia na laktoowowegertariański (interwencję dietetyczną) przez okres 5-ciu tygodni. Dane uzyskane od pacjentów tej grupy podzielono na:
• IIIa - dane osób uzyskane przed rozpoczęciem interwencji dietetycznej,
• IIIb - dane osób uzyskane po zakończeniu interwencji dietetycznej.

Dla wszystkich grup badanych przyjęto następujące **kryteria włączenia** do badań:

• wiek 18-35 lat,
• dobry ogólny stan zdrowia,
• brak chorób przewlekłych,
• brak nałogów,
• niespożywanie suplementów diety (witamin, minerałów) przez okres minimum 3 miesięcy przed badaniem lub rozpoczęciem interwencji dietetycznej,
• umiarkowana aktywność fizyczna.

Dodatkowo, w odniesieniu do grupy I kryterium włączenia obejmowało stosowanie diety laktoowowegetariańskiej przez minimum 3 lata - eliminowanie z diety mięsa i ryb oraz wszystkich produktów mięsnych: pasztetów, mielonek, konserw itp., a także podpuszczki i żelatyny. Pożądane było spożywanie owoców i warzyw w ilości przynajmniej 2-3 porcji dziennie. W przypadku grupy II oraz III dodatkowym kryterium włączenia było spożywanie produktów mięsnych i ryb co najmniej kilka razy w tygodniu.

Jako **kryterium wyłączenia** oraz zaprzestania udziału w badaniu przyjęto:

• wystąpienie ostrej infekcji w okresie tygodnia poprzedzającego wykonanie pomiarów lub w trakcie stosowania diety

Wskazane powyżej kryteria włączenia poddane zostały weryfikacji poprzez wypełnienie przez ochotników ankiety żywieniowej. Jednocześnie uczestnicy badania zobowiązani byli do zgłoszenia każdego pogorszenia stanu zdrowia w trakcie badania.

3. **Charakterystyka 5-cio tygodniowej diety laktoowowegetariańskiej**

Intervencje dietetyczne w badaniach naukowych stają się coraz częstszym narzędziem badawczym [1,102,121,157]. W związku z charakterem badania ilość osób badanych i podjętych kontrol dietetycznej w jednym czasie jest ograniczona. W niniejszej pracy osoby zakwalifikowane do badania podjęły się stosowania diety laktoowowegetariańskiej przez 5 tygodni w okresie luty-kwiecień, w dwóch odrębnych grupach liczących po 10 osób. Wybór 5-cio tygodniowego okresu trwania diety oparto na dostępnych badaniach wskazujących na minimalny czas trwania interwencji dietetycznej, po którym możliwe jest osiągnięcie zmian metabolicznych [119,157,158]. Równocześnie okres ten był optymalny ze względu na niskie ryzyko wystąpienia potencjalnych negatywnych skutków stosowanej diety. Dobór sezonu
uwarunkowany został terminem badań poprzedniej analizowanej grupy (długoterminowych laktoowowegetarian). W związku z charakterem badania i wysokim wpływem spożywanej żywności na efekty eksperymentu został spełniony warunek sezonowości wykonywanych badań. Analizy wszystkich grup badawczych odbyły się we wskazanym okresie od lutego do kwietnia w dwóch następujących po sobie latach. Wszystkie osoby przed rozpoczęciem diety zostały zbadane przez lekarza oraz dietetyka. Wykonano także pomiary antropometryczne przy wykorzystaniu analizatora składu ciała firmy Tanita BC-545. Mierzone parametry oraz opis metody przedstawiono w podrozdziale 4.1.

W okresie poprzedzającym rozpoczęcie interwencji dietetycznej ochotnikom udzielone zostały szczegółowe informacje dotyczące zasad laktoowowegetariańskiego sposobu żywienia. Wszystkie osoby zapoznały się także z zaleceniami dotyczącymi wprowadzania racjonalnej, zbilansowanej diety laktoowowegetariańskiej. Opracowana dieta dostosowana była indywidualnie do zapotrzebowania kalorycznego każdej z badanych osób. Uwzględniono również indywidualne uwarunkowania stosowania diety, m.in. alergie pokarmowe. Równocześnie przyjęty sposób żywienia był dietą zbilansowaną pod względem dostarczenia wszystkich niezbędnych witamin oraz mineralów, których ilości oszacowano w oparciu o normy IŻŻ z 2012 r. Plan żywieniowy przygotowany dla wszystkich osób badanych uwzględniał procentowy udział poszczególnych składników odżywczych zgodny z wymienionymi normami, w którym: ok. 15,5% wartości energetycznej diety pochodziło z białka, ok. 34% wartości energetycznej diety stanowiły tłuszcze, a węglowodany ok. 50% wartości energetycznej diety. Dietę opracowano przy użyciu oprogramowania Dietetyk 2012. Schemat postępowania dietetycznego zamieszczono w aneksie 1. Poniżej natomiast przedstawiono ocenę wartości odżywczych zastosowanej diety (por. Tabela 3.).

Tabela 3. Ocena wartości odżywczej diety laktoowowegetariańskiej

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość kaloryczna</td>
<td>2170 Kcal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procentowy udział energii</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z tłuszcza</td>
<td>34,28 %</td>
<td>35</td>
<td>35</td>
<td>%</td>
</tr>
<tr>
<td>z białka</td>
<td>15,50 %</td>
<td>15</td>
<td>15</td>
<td>%</td>
</tr>
<tr>
<td>z węglowodanów w tym:</td>
<td>50,04 %</td>
<td>50</td>
<td>50</td>
<td>%</td>
</tr>
<tr>
<td>energia z sacharozy</td>
<td>7,16 %</td>
<td>10</td>
<td>10</td>
<td>%</td>
</tr>
</tbody>
</table>

cd. na następnej stronie
| Średnia dzienna zawartość składników mineralnych w diecie |  |
|---|---|---|---|---|
| sód | 1995 mg | 1500 | 1500 | AI |
| potas | 5883 mg | 4700 | 4700 | AI |
| wapń | 1082 mg | 1000 | 1000 | RDA |
| fosfor | 2164 mg | 700 | 700 | RDA |
| magnez | 746 mg | 310 | 400 | RDA |
| żelazo | 22,2 mg | 18 | 10 | RDA |
| cynk | 15,6 mg | 8 | 11 | RDA |
| miedź | 3 mg | 0,9 | 0,9 | RDA |

| Średnia dzienna zawartość witamin w diecie |  |
|---|---|---|---|---|
| witamina A (równoważnik retinolu) | 2361 µg | 700 | 900 | RDA |
| witamina D | 1,85 µg | 5 | 5 | AI |
| witamina E | 25,8 mg | 8 | 10 | AI |
| witamina C | 330 mg | 75 | 90 | RDA |
| folacyna | 728 µg | 400 | 400 | RDA |
| witamina B₁ | 1,9 mg | 1,1 | 1,3 | RDA |
| witamina B₂ | 2,13 mg | 1,1 | 1,3 | RDA |
| witamina B₆ | 3,12 mg | 1,3 | 1,3 | RDA |
| witamina B₁₂ | 2,6 µg | 2,4 | 2,4 | RDA |
| niacyna | 17,6 mg | 14 | 16 | RDA |

| Średnia dzienna zawartość białka w diecie |  |
|---|---|---|---|---|
| Białko ogółem, w tym: | 85 g | 59 g | 26 g | Proponowane spożycie u osób dorosłych od 0,8-2 g białka na kg masy ciała |
| białko roślinne |  |  |  |
| białko zwierzęce |  |  |  |

| Średnia dzienna zawartość tłuszczów w diecie |  |
|---|---|---|---|---|---|
| Tłuszcz ogółem | 82,7 (17) g (%) | 35 | 35 | (%) Górna granica w.e.d. |  |
| Cholesterol ogółem | 250 mg | 300 | 300 | Górna granica [mg] |  |
| Kwasy omega 3 | 2,5 g | | Nie ustalono |  |
| Kwasy omega 6 | 21,6 g | | Nie ustalono |  |
| Kwasy tłuszczowe nasycone | 29,5 % | | Tak niskie jak to jest możliwe przy uzyskaniu diety zbilansowanej |  |
| Kwasy tłuszczowe jednonienasycone | 33,6 % | | Nie ustalono |  |
| Kwasy tłuszczowe wielonienasycone | 29 % | | Nie ustalono |  |
| P/N/S | 1:1,1,4;0,99 | |  |  |
| Wskaźnik aterogenności diety Keysa | 29,88 | 28-32 | 28-32 |  |

| Średnia dzienna zawartość węglowodanów w diecie |  |
|---|---|---|---|---|
| Węglowodany ogółem | 323 g | 50 | 50 | (%) Dolna granica |  |
| Blonnik pokarmowy | 53,5 g | 25 | 25 | AI |  |
| Skrobia | 148,6 g | | | Nie ustalono |

źródło: opracowanie własne z wykorzystaniem oprogramowania Dietetyk 2012 i norm żywienia dla populacji polskiej 2012 [69].
Przygotowany jadłospis laktoowowychgetariański został dostosowany względem zapotrzebowania energetycznego do każdej z osób badanych. W celu jego obliczenia uwzględniono masę ciała, wzrost a także aktywność fizyczną badanych osób. Podstawą przemiany materii (PPM), a także całkowitą przemianę materii (CPM) obliczono wykorzystując 8 elektrodowy analizator składu ciała Tanita BC-545. Ujęte w powyższej tabeli wartości są wartościami średnimi finalnie określonymi względem parametrów antropometrycznych osób badanych. W celu właściwego zbilansowania diety jadłospisu uwzględniał zapotrzebowanie na poszczególne składniki odżywcze zarówno w grupie kobiet jak i w grupie mężczyzn. Równocześnie przyjętym kryterium ułożenia diety było zachowanie ustalonego procentowego udziału białek, węglowodanów oraz tłuszczu w wartości energetycznej diety a także maksymalnie jednorodny skład jadłospisu pod względem jakościowym. W oszacowanej wartości odżywczej diety zwraca uwagę kilka aspektów. Jadłospis zakłada wysoką zawartość witamin antyoksydacyjnych: A, C oraz E. W przypadku witaminy A, zawartość w diecie w istotnym stopniu przekracza zalecaną normę. Równocześnie jednak należy zauważyć, iż wartość ta wyrażona została w jednostce równoważnika retinolu. Zgodnie z definicją określającą tę jednostkę uwzględnia ona spożywanie zarówno retinolu (wraz z pokarmem pochodzenia zwierzęcego) oraz karotenoidów (dostarczanych z produktami pochodzenia roślinnego). W związku z faktem, iż w diecie laktoowowychgetariańskiej większość witaminy A pochodzi z surowców roślinskich, z których jedynie połowa ulega konwersji do aktywnej postaci - retinolu, a 1/4 - 1/6 zostaje wykorzystana, ustalenie istotnie większej niż zalecana zawartości tego związku w diecie nie odzwierciedla faktycznego stanu stężenia wykorzystywanej metabolicznie witaminy A. Podobna zależność dotyczy wysokiej zawartości witaminy E. W tym przypadku warto również zauważyć, iż zapotrzebowanie na tę witaminę jest tym wyższe im wyższa jest zawartość wielonienasyconych kwasów tłuszczowych w codziennie spożywanych produktach. W oszacowaniu właściwej dziennej zawartości witaminy E w diecie stosuje się także wskaźnik Harrisa który określa stosunek alfa-tokoferolu wyrażony w mg do 1 g wielonienasyconych kwasów tłuszczowych. Za minimalną wartość przyjmuje się 0,6 g. W niniejszej diecie wartość tego współczynnika była właściwa i wynosiła ok. 0,8 g. W przypadku witaminy C, przyjęta dzienna ilość dostarczana wraz przekraczała ok. 3 krotnie zalecane dzienne spożycie. Zgodnie z dostępnymi danymi literaturo wymi i wewnątrzustrojowym metabolizmem tej witaminy [95] przyjęto, iż wartość ta jest bezpieczna i nie stwarza ryzyka nadmiernej ilości tego związku we krwi.
Niepokojąco niską zawartość w codziennym jadłospisie przyjęto w przypadku witaminy D. Jednakże jak wspomniano we poprzednim rozdziale deficyt tego związku w diecie (w przypadku braku suplementacji) jest charakterystyczny ze względu na wyłączenie z jadłospisu ryb. Równocześnie nie jest możliwym właściwe zbliżanie innych składników pokarmowych przy zwiększeniu podaży produktów takich jak np. jajka czy masło, których stosowanie dozwolone jest w przypadku diety laktoowogewetariańskiej. Uznano, iż krótkotrwała zmiana sposobu żywienia jaką jest 5 tygodni nie spowoduje istotnego metabolicznego niedoboru witaminy D ze względu na rezerwy tego związku zgromadzone m.in. w tkance tłuszczowej.

W przedstawionej ocenie wartości odżywczej diety uwzględniono dość wysoką podaż tłuszczu (ok. 34% w.e.d.) i białka ok. (15% w.e.d.). Przygotowanie diety w oparciu o takie proporcje umożliwiło osiągnięcie maksymalnej wartości odżywczej diety i jej właściwe zbliżanie pod względem pozostałych witamin i pierwiastków pomimo wyłączenia mięsa i ryb. Istotną zaletą jadłospisu jest uwzględnienie stosunkowo niskiej wartości współczynnika aterogenności Keysa i wysokiej (jednakże mieszczącej się w granicach normy) podaży błonnika pokarmowego.

4. Ocena stężenia antyoksydantów drobnocząsteczkowych we krwi oraz stanu odżywienia osób badanych

4.1. Zastosowane metody badań laboratoryjnych

W celu oceny stężenia wybranych antyoksydantów drobnocząsteczkowych oraz stanu odżywienia osób badanych przeprowadzono badania morfologii krwi, oznaczono poziom żelaza, witaminy B₁₂ oraz witamin antyoksydacyjnych A, C i E we krwi. Do badań morfologii krwi wykorzystano krew pełną pobraną do probówek z zawartości wersenianu sodowo-potasowego (EDTA). Badanie wykonano z zastosowaniem hematologicznego, automatycznego analizatora Sysmex K-1000 (Sysmex Corporation)¹. Oznaczanie stężenia żelaza² przeprowadzono metodą kolorymetryczną z wykorzystaniem ferrozyny³. Do

¹ Wartości referencyjne w zakresie leukocytów, erytrocytów, płytek krwi, hematokrytu, hemoglobiny wynoszą odpowiednio: 4,0-10,0 x 10⁹/µl, 3,5-6,50 x 10⁹/µl, 125-340 x 10⁵/µl, 35,0-55,0%, 11,0-17,0 g/dl. W przypadku MCV (ang. *Mean Corpuscular Volume* – Średnia Objętość Krwinki) wartości referencyjne kształtują się u kobiet na poziomie 81-99 fl, a u mężczyzn 80-94 fl, z kolei dla MCH (ang. *Mean Corpuscular Hemoglobin* - Średnia Masa Hemoglobiny w krwince) wartości referencyjne wynoszą dla kobiet 27-31 pg oraz 27-34 pg dla mężczyzn. W odniesieniu do MCHC (ang. *Mean Corpuscular Hemoglobin Concentration*, Średnie Stężenie Hemoglobiny w erytrocytach) wartości referencyjne to 32-36 g/dl.

² Stężenie żelaza w surowicy jest miarą ilości tego pierwiastka związanego z transferryną.

³ Reakcja barwna zachodzi w środowisku kwaśnym pH<2,0. Przebiega ona w trzech etapach, które obejmują dysocjację połączeń białkowych, redukcję Fe³⁺ do Fe²⁺ oraz reakcję barwną [Kompleks transferyna-Fe →
wykonania tego badania użyto bichromatyczny analizator chemiczny - POINTE 180 (Pointe Scientific)
4. Powyższe analizy przeprowadzono we współpracy z laboratorium analitycznym Spółdzielni Pracy Lekarsko-Specjalistycznej w Poznaniu. Ze względu na zmienną okołodobową stężenia żelaza w surowicy krwi, w przypadku trzech badanych grup osób ujednolicono czas pobrania krwi, a w interpretacji wyników uwzględniono dane o sposobie żywienia osoby badanej oraz w przypadku kobiet informacje dotyczące nasilenia krwawienia miesięcznego. Stężenie witaminy B12 zostało określone z zastosowaniem płynowego czytnika luminescencji (chemilumonometrii bezpośredniej z odczynnikiem V B12 firmy Siemens) w Laboratorium Analiz Lekarskich ALAB w Poznaniu5.


4.2. Analiza składu ciała. Metoda bioimpedancji elektrycznej

Metoda pomiaru składu ciała oparta o zjawisko impedancji bioelektrycznej (ang. bioelectrical impedance analysis) jest powszechnie wykorzystywana metodą zarówno w badaniach dietetycznych jak i medycznych [73,67,84,105,113]. Impedancja elektryczna jest to rodzaj oporu elektrycznego tkanek złożonego z rezystancji i reaktancji. W trakcie badania przez tkanki przepuszczany jest prąd elektryczny. Częstotliwość pomiaru wynosiła 50 kHz. W związku z tym, że poszczególne rodzaje tkanek charakteryzują się odmiennymi właściwościami przewodzenia elektrycznego, możliwe jest określenie zawartości poszczególnych tkanek w organizmie: tkanki tłuszczowej, mięśniowej oraz zawartości wody [90].
5. Metody oceny statystycznej

W przeprowadzonym badaniu ocena statystyczna wyników polegała na ocenie istotności różnic pomiędzy porównywanymi grupami. Porównanie dotyczyło:

- Grupy laktooowegetarian długoterminowych i grupy porównawczej (I i II),
- Grupy ochotników objętych interwencją dietetyczną w zakresie przed i po stosowaniu diety (IIIa i IIIb),
- Grupy laktooowegetarian długoterminowych i grupy ochotników po zakończeniu stosowania 5-cio tygodniowej (krótkoterminowej) diety laktooowegetariańskiej.

W tym celu w pierwszej kolejności zweryfikowano normalność rozkładów badanych zmiennych wykorzystując test Shapiro-Wilka ([139]).

W pierwszym porównaniu, w przypadku zmiennych, których rozkłady nie odbiegały istotnie od rozkładu normalnego konieczna była weryfikacja jednorodności wariancji, czego dokonano wykorzystując test Levene’a. Dla zmiennych niezależnych, do porównań między grupami badanymi zastosowano test t-studenta, zaś w przypadku niejednorodnych wariancji test Cochrana-Coxa. Z kolei przy analizie rozkładów odbiegających od normalności zastosowano nieparametryczny test U Manni-Whitneya ([144,145]).

W odniesieniu do drugiego porównania w przypadku zmiennych o rozkładzie normalnym do porównań między poszczególnymi danymi wykorzystano parametryczny test t (Studenta) dla zmiennych powiązanych. W sytuacji, gdy rozkład co najmniej jednej zmiennej istotnie odbiegał od normalności zastosowano test Wilcoxona [144].

Trzecie porównanie wymagało procedury analogicznej do porównania pierwszego.

We wszystkich powyższych analizach przyjęto poziom istotności α=0,05. Hipotezy zerowe zostały odrzucone, gdy poziom istotności spełniał założenie p<0,05. Analizę statystyczną przeprowadzono przy pomocy oprogramowania MS Excel oraz Statistica 10.0 PL.

Uzyskane wyniki przedstawione zostały w formie tabelarycznej oraz graficznej. W przypadku zmiennych różniących się istotnie statystycznie pomiędzy badanymi próbami wykresy umieszczono pod odpowiadającymi im tabelami, pozostałe ujęto w aneksach 2-4.
Rysunek 1. Schemat wykorzystywanych metod statystycznych

Źródło: Opracowanie własne
Rozdział V

Wyniki badań

1. Analiza badań ankietowych

Grupę I stanowiło 20 ochotników. Po przeprowadzeniu ankiety żywieniowej zakwalifikowano do badania 14 kobiet, 6 mężczyzn, którzy co najmniej od trzech lat eliminowali z diety mięso i ryby oraz wszystkie produkty mięsne: pasztety, mielonki, konserwy itp. a także podpuszkę i żelatynę. Z przeprowadzonych ankiet wynika, iż czas trwania diety badanych osób wynosił od 3 do 26 lat, średnio 11 lat. W diecie laktoowowegetariańskiej osoby badane uwzględniały spożywanie owoców i warzyw po ok. 2-3 porcje dziennie. Były umiarkowanie aktywne fizycznie, częstość uprawianego sportu wynosiła średnio 2 razy w tygodniu.

Do grupy II zakwalifikowano 20 osób odżywiających się w sposób tradycyjny, spożywających mięso oraz ryby. Na podstawie sporządzonej ankiety stwierdzono, iż osoby te spożywały mięso min. kilka razy w tygodniu, ryby najczęściej 1-2 razy w tygodniu oraz wędliny lub przetwory mięsne min. kilka razy w tygodniu. Najczęściej spożywanym gatunkiem mięsa był drób oraz wieprzowina. Spośród gatunków ryb najczęściej preferowany był łosoś oraz dorsz. Osoby badane były umiarkowanie aktywne fizycznie, częstość uprawianego sportu wynosiła średnio 2 razy w tygodniu.

W przypadku grupy III, po przeprowadzeniu ankiety, do badania zakwalifikowano 20 osób, 16 kobiet i 4 mężczyzn. Przeprowadzone ankiety wykazały, iż osoby które wzięły udział w badaniu spożywaly mięso kilka razy w tygodniu, ryby najczęściej 1-2 razy w tygodniu, przetwory mięsne (wędliny podroby) co najmniej kilka razy w tygodniu. Spożywany gatunek mięsa najczęściej stanowił drób oraz wieprzowina. Najczęściej spożywaną rybą był łosoś oraz dorsz. Warzywa i owoce przed rozpoczęciem interwencji dietetycznej spożywane były w ilości średnio 2 porcje owoców dziennie, 1-2 porcje warzyw dziennie. Wszystkie osoby były umiarkowanie aktywne fizycznie (wysiłek fizyczny średnio 2 razy w tygodniu). Poziom aktywności fizycznej porównywalny był do grupy laktoowowegetarian długoterminowych i do grupy kontrolnej. Sposób żywienia zmienił się, na przyjętą w założeniach badań dietę laktoowowegetariańską, przedstawioną w rozdziale IV (podrozdział 3.). Dane osób dotyczące prowadzonego stylu życia, zdrowia w tym aktywności fizycznej nie zmieniły się w stosunku do danych uzyskanych przed eksperymentem. Osoby
deklarowały ogólne bardzo dobre samopoczucie w czasie trwania eksperymentu. Średnio dietę udało przestrzegać się im w ok. 85%. W żadnym przypadku nie pojawiły się takie objawy jak: nadmierna senność, zmęczenie, czy też skurcze mięśni. W większości przypadków osoby zgłaszały jednak częstszes ból brzucha, wzmożoną perystaltykę jelit oraz wzdęcia w stosunku do okresu przed rozpoczęciem diety laktoowowegetariańskiej.

2. Analiza statystyczna wyników badań laboratoryjnych i antropometrycznych

2.1. Wyniki badań grupy laktoowowegetarian długoterminowych i grupy porównawczej

Wyniki badań biochemicznych w zakresie morfologii krwi (WBC, RBC, HGB, MCV, MCH, MCHC, PLT) nie różniły się istotnie w grupie badanych długoterminowych laktoowowegetarian oraz w grupie kontrolnej. Wykazano natomiast istotną statystycznie różnicę w stężeniach żelaza w surowicy krwi osób badanych w obu grupach. W grupie laktoowowegetarian długoterminowych stężenie żelaza wynosiło: 87,95 µg/dl natomiast w grupie osób spożywających mięso i ryby wynik ten osiągnął wartość 111,9 µg/dl. Równocześnie nie wykazano istotnych różnic w stężeniu witaminy B₁₂ w obu grupach (por. Tabela 4., Rysunek 2.).

Tabela 4. Parametry morfologii krwi, poziomu żelaza oraz witaminy B₁₂ w grupie długoterminowych laktoowowegetarian i grupie porównawczej

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Grupa</th>
<th>Średnia</th>
<th>Mediana</th>
<th>Dolny kwartyl</th>
<th>Górny kwartyl</th>
<th>SD</th>
<th>U</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba erytrocytów (RBC) we krwi [M/μl]</td>
<td>Badana</td>
<td>4,57</td>
<td>4,49</td>
<td>4,26</td>
<td>4,93</td>
<td>0,42</td>
<td>191,5</td>
<td>0,8390</td>
</tr>
<tr>
<td></td>
<td>Porównawcza</td>
<td>4,59</td>
<td>4,50</td>
<td>4,44</td>
<td>4,62</td>
<td>0,38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartość hematokrytu (HCT) we krwi [%]</td>
<td>Badana</td>
<td>40,11</td>
<td>39,00</td>
<td>37,00</td>
<td>42,00</td>
<td>3,38</td>
<td>191,5</td>
<td>0,8390</td>
</tr>
<tr>
<td></td>
<td>Porównawcza</td>
<td>39,52</td>
<td>39,00</td>
<td>38,00</td>
<td>40,00</td>
<td>2,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnia masa hemoglobiny (MCH) w krwince [pg]</td>
<td>Badana</td>
<td>31,05</td>
<td>31,00</td>
<td>30,00</td>
<td>32,00</td>
<td>1,27</td>
<td>136,5</td>
<td>0,0905</td>
</tr>
<tr>
<td></td>
<td>Porównawcza</td>
<td>30,29</td>
<td>30,00</td>
<td>30,00</td>
<td>31,00</td>
<td>1,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnie stężenie hemoglobiny w krwince (MCHC) [g/dl]</td>
<td>Badana</td>
<td>35,26</td>
<td>35,00</td>
<td>34,00</td>
<td>36,00</td>
<td>1,52</td>
<td>178</td>
<td>0,5695</td>
</tr>
<tr>
<td></td>
<td>Porównawcza</td>
<td>35,00</td>
<td>35,00</td>
<td>34,00</td>
<td>35,00</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cd. na następnej stronie
CZĘŚĆ B.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Średnia</th>
<th>t</th>
<th>df</th>
<th>P</th>
<th>SD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba leukocytów (WBC) we krwi [K/μl]</td>
<td>5,41</td>
<td>5,75</td>
<td>-0,67</td>
<td>38</td>
<td>0,5063</td>
<td>1,52</td>
</tr>
<tr>
<td>Zawartość hemoglobiny (HGB) w krwi [g/dl]*</td>
<td>14,31</td>
<td>13,96</td>
<td>0,88</td>
<td>24,2</td>
<td>0,4038</td>
<td>1,65</td>
</tr>
<tr>
<td>Średnia objętość krwinki (MCV) [fl]</td>
<td>87,58</td>
<td>86,62</td>
<td>0,87</td>
<td>38</td>
<td>0,3898</td>
<td>3,44</td>
</tr>
<tr>
<td>Liczba płytek krwi (PLT) [K/μl]</td>
<td>231,21</td>
<td>233,62</td>
<td>-0,16</td>
<td>38</td>
<td>0,8775</td>
<td>49,19</td>
</tr>
<tr>
<td>Stężenie żelaza we krwi [μg/dl]</td>
<td>87,95</td>
<td>111,90</td>
<td>-2,05</td>
<td>38</td>
<td>0,0473</td>
<td>39,29</td>
</tr>
</tbody>
</table>

(*) oznacza, że w tym przypadku test Levene’a dał wynik istotny (wariancje nie są jednorodne) i do weryfikacji hipotezy użyto testu Cochrana-Coxa z niezależną estymacją wariancji.

Źródło: Opracowanie na podstawie badań własnych

Rysunek 2. Stężenie żelaza we krwi w grupie długoterminowych laktooovegetarian i grupie porównawczej [μg/dl]

Źródło: Opracowanie na podstawie badań własnych
Tabela 5. Stężenie witamin antyoksydacyjnych w krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Średnia</th>
<th>porównaw cza</th>
<th>t</th>
<th>df</th>
<th>P</th>
<th>SD</th>
<th>Levene'a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stężenie witaminy A [µg/l]</td>
<td>539,68</td>
<td>559,38</td>
<td>-0,52</td>
<td>38</td>
<td>0,6068</td>
<td>131,25</td>
<td>108,65</td>
</tr>
<tr>
<td>Stężenie witaminy C [mg/l]*</td>
<td>14,68</td>
<td>7,14</td>
<td>5,04</td>
<td>23,08</td>
<td>0,0000</td>
<td>5,84</td>
<td>2,69</td>
</tr>
<tr>
<td>Stężenie witaminy E [mg/l]</td>
<td>10,71</td>
<td>11,48</td>
<td>-1,16</td>
<td>38</td>
<td>0,2542</td>
<td>2,06</td>
<td>2,11</td>
</tr>
</tbody>
</table>

(*) oznacza, że w tym przypadku test Levene’a dał wynik istotny (wariancje nie są jednorodne) i do weryfikacji hipotezy użyto testu Cochrana-Coxa z niezależną estymacją wariancji.

Źródło: Opracowanie na podstawie badań własnych

Po wykonaniu analiz stężeń witamin antyoksydacyjnych stwierdzono istotnie wyższe stężenia witaminy C u laktoowowegetarian, które wynosiło:14,68 mg/l (wegetarianie), a w grupie porównawczej 7,14 mg/l. Zawartość witamin A i E nie różniła się istotnie w grupie kontrolnej i badanej (por. Tabela 5., Rysunek 3.).
Tabela 6. Parametry antropometryczne i wskaźniki składu ciała w grupie długoterminowych lakoowo-wegetarian i grupie porównawczej

CZĘŚĆ A.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Grupa</th>
<th>Średnia</th>
<th>Mediana</th>
<th>Dolny kwartyl</th>
<th>Górny kwartyl</th>
<th>SD</th>
<th>U</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Masa ciała [kg]</strong></td>
<td>Badana</td>
<td>63,2</td>
<td>61,3</td>
<td>55,5</td>
<td>73</td>
<td>10,3</td>
<td>195</td>
<td>0,9137</td>
</tr>
<tr>
<td></td>
<td>Porównaw cza</td>
<td>65,4</td>
<td>59,6</td>
<td>54,4</td>
<td>74,5</td>
<td>14,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Zawartość tkanki tłuszczowej wisceralnej [wskaźnik 1-59]</strong></td>
<td>Badana</td>
<td>2,26</td>
<td>2,00</td>
<td>1,00</td>
<td>3,00</td>
<td>1,24</td>
<td>161</td>
<td>0,4233</td>
</tr>
<tr>
<td></td>
<td>Porównaw cza</td>
<td>2,10</td>
<td>1,00</td>
<td>1,00</td>
<td>3,00</td>
<td>1,62</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Masa mięśniowa [kg]</strong></td>
<td>Badana</td>
<td>46,84</td>
<td>42,70</td>
<td>40,30</td>
<td>54,70</td>
<td>9,37</td>
<td>184</td>
<td>0,6846</td>
</tr>
<tr>
<td></td>
<td>Porównaw cza</td>
<td>48,64</td>
<td>43,00</td>
<td>41,00</td>
<td>59,50</td>
<td>11,11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CZĘŚĆ B.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Średnia</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>SD</th>
<th>p Levene'a</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Wzrost osób badanych [cm]</strong></td>
<td>171,00</td>
<td>-0,45</td>
<td>38</td>
<td>0,6562</td>
<td>8,10</td>
<td>0,7475</td>
</tr>
<tr>
<td><strong>Tkanka tłuszczowa ogółem [%]</strong></td>
<td>22,39</td>
<td>0,77</td>
<td>38</td>
<td>0,4435</td>
<td>7,39</td>
<td>0,4534</td>
</tr>
<tr>
<td><strong>Zawartość wody w ciele [%]</strong></td>
<td>56,64</td>
<td>-0,11</td>
<td>38</td>
<td>0,9109</td>
<td>4,71</td>
<td>0,4250</td>
</tr>
</tbody>
</table>

Źródło: Opracowano na podstawie badań własnych

Przeprowadzona analiza statystyczna wyników pomiarów antropometrycznych nie wykazała także istotnych statystycznie różnic w obu grupach (por. Tabela 6.).

2.2. Wyniki badań grupy krótkoterminowych lakoowo-wegetarian (przed i po interwencji dietetycznej)

Przeprowadzona analiza statystyczna wyników pomiędzy danymi uzyskanymi przed interwencją dietetyczną jak i po jej zakończeniu wykazała istotne różnice w parametrach morfologii krwi. Istotnie niższe wartości uzyskano w przypadku osób badanych po przeprowadzeniu eksperymentu w przypadku następujących parametrów: RBC, HGB, HCT, MCV. Średnia zawartość RBC przed rozpoczęciem diety wynosiła 4,71 M/μl, a po jej zakończeniu osiągnęła 4,61 M/μl. Stężenie HGB przed interwencją dietetyczną wynosiło 13,83 g/dl a po jej zakończeniu obniżyło się do 13,53 g/dl. Podobnie wartość hematokrytu uległa zmianie z 40,65%, osiągając wynik 38,95% po zakończeniu badania. Przed rozpoczęciem diety MCV wynosiła 86,45 fl natomiast po okresie 5 tygodni trwania diety 84,55 fl. Równocześnie istotnej zmianie uległo stężenie witaminy B12 (378,85 pg/ml przed
eksperymentem, 334,62 pg/ml po eksperymencie), podczas gdy średnie stężenie żelaza nie różniło się istotnie przed i po eksperymencie (por Tabela 7., Rysunek 4-9.). Odwrotny kierunek zmian charakteryzowała jedynie wartość MCHC, która wyjściowo wynosiła 33,7 g/dl a po eksperymencie 34,45 g/dl.

Tabela 7. Parametry morfologii krwi, stężenie żelaza oraz witaminy B₁₂ w grupie krótkoterminowych laktoow-vegetarian (przed i po interwencji dietetycznej)

**CZĘŚĆ A.**

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Zmienna</th>
<th>Średnia</th>
<th>Mediana</th>
<th>Dolny kwartyl</th>
<th>Górný kwartyl</th>
<th>SD</th>
<th>T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba leukocytów (WBC) we krwi [K/µl]</td>
<td>Pomiar I</td>
<td>5,73</td>
<td>5,10</td>
<td>4,15</td>
<td>7,30</td>
<td>1,90</td>
<td>81</td>
<td>0,3703</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>5,34</td>
<td>4,95</td>
<td>3,95</td>
<td>6,00</td>
<td>1,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liczba erytrocytów (RBC) we krwi [M/µl]</td>
<td>Pomiar I</td>
<td>4,71</td>
<td>4,65</td>
<td>4,45</td>
<td>4,87</td>
<td>0,39</td>
<td>44,50</td>
<td>0,0239</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>4,61</td>
<td>4,57</td>
<td>4,29</td>
<td>4,87</td>
<td>0,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zawartość hemoglobiny (HGB) w krwi [g/dl]</td>
<td>Pomiar I</td>
<td>13,83</td>
<td>13,90</td>
<td>13,40</td>
<td>14,45</td>
<td>1,30</td>
<td>47,00</td>
<td>0,0304</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>13,53</td>
<td>13,50</td>
<td>12,70</td>
<td>14,60</td>
<td>1,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnia masa hemoglobiny w krwince (MCH) [pg]</td>
<td>Pomiar I</td>
<td>29,15</td>
<td>29,00</td>
<td>29,00</td>
<td>30,00</td>
<td>1,76</td>
<td>6</td>
<td>0,6858</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>29,10</td>
<td>29,00</td>
<td>29,00</td>
<td>30,00</td>
<td>1,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stężenie żelaza [µg/dl]</td>
<td>Pomiar I</td>
<td>73,30</td>
<td>65,50</td>
<td>56,00</td>
<td>91,00</td>
<td>25,09</td>
<td>93,5</td>
<td>0,9519</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>72,65</td>
<td>68,00</td>
<td>53,00</td>
<td>89,00</td>
<td>26,34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**CZĘŚĆ B.**

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Zmienna</th>
<th>Średnia</th>
<th>SD</th>
<th>Różnica</th>
<th>SD Różnica</th>
<th>t</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość hematokrytu (HCT) we krwi [%]</td>
<td>Pomiar I</td>
<td>40,65</td>
<td>3,48</td>
<td>1,7</td>
<td>2,13</td>
<td>3,57</td>
<td>19</td>
<td>0,0020</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>38,95</td>
<td>3,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnia objętość krwinki (MCV)[fl]</td>
<td>Pomiar I</td>
<td>86,45</td>
<td>4,50</td>
<td>1,9</td>
<td>2,79</td>
<td>3,05</td>
<td>19</td>
<td>0,0066</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>84,55</td>
<td>4,49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnie stężenie hemoglobiny w krwince (MCHC) [g/dl]</td>
<td>Pomiar I</td>
<td>33,70</td>
<td>1,17</td>
<td>-0,75</td>
<td>0,79</td>
<td>-4,27</td>
<td>19</td>
<td>0,0004</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>34,45</td>
<td>1,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liczba płytek krwi (PLT)[K/µl]</td>
<td>Pomiar I</td>
<td>253,10</td>
<td>34,46</td>
<td>2,1</td>
<td>30,31</td>
<td>0,31</td>
<td>19</td>
<td>0,7601</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>251,00</td>
<td>45,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stężenie witaminy B₁₂ [pg/ml]</td>
<td>Pomiar I</td>
<td>378,85</td>
<td>87,15</td>
<td>44,23</td>
<td>85,56</td>
<td>2,31</td>
<td>19</td>
<td>0,0322</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>334,62</td>
<td>94,88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Źródło: Opracowanie na podstawie badań własnych
Rysunek 4. Liczba erytrocytów (RBC) we krwi w grupie krótkoterminowych laktoowowegarian (przed i po interwencji dietetycznej) [M/μl]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 5. Zawartość hemoglobiny (HGB) we krwi w grupie krótkoterminowych laktoowowegarian (przed i po interwencji dietetycznej) [g/dl]

Źródło: Opracowanie na podstawie badań własnych
Rysunek 6. Wartość hematokrytu (HCT) w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [%]

źródło: Opracowanie na podstawie badań własnych

Rysunek 7. Średnia objętość krwinki (MCV) w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej)

źródło: Opracowanie na podstawie badań własnych
Rysunek 8. Średnie stężenie hemoglobiny w krwine (MCHC) w grupie krótkoterminowych laktoowowogietarian (przed i po interwencji dietetycznej) [g/dl]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 9. Stężenie witaminy B12 w grupie krótkoterminowych laktoowowogietarian (przed i po interwencji dietetycznej) [pg/ml]

Źródło: Opracowanie na podstawie badań własnych
Tabela 8. Stężenie witamin antyoksydacyjnych w krwi w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej)

**CZĘŚĆ A.**

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Zmienna</th>
<th>Średnia</th>
<th>Mediana</th>
<th>Dolny kwartył</th>
<th>Górny kwartył</th>
<th>SD</th>
<th>T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stężenie witaminy C [mg/l]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomiar I</td>
<td>9,97</td>
<td>8,60</td>
<td>6,60</td>
<td>11,20</td>
<td>4,87</td>
<td></td>
<td>82,5</td>
<td>0,6149</td>
</tr>
<tr>
<td>Pomiar II</td>
<td>9,92</td>
<td>7,75</td>
<td>5,50</td>
<td>13,45</td>
<td>6,75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**CZĘŚĆ B.**

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Zmienna</th>
<th>Średnia</th>
<th>SD</th>
<th>Różnica</th>
<th>SD</th>
<th>t</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stężenie witaminy A [µg/l]</td>
<td>Pomiar I</td>
<td>529,45</td>
<td>90,63</td>
<td>24,05</td>
<td>94,17</td>
<td>1,14</td>
<td>19</td>
<td>0,2676</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>505,40</td>
<td>100,19</td>
<td>11,34</td>
<td>19,30</td>
<td>1,14</td>
<td>19</td>
<td>0,2676</td>
</tr>
<tr>
<td>Stężenie witaminy E [mg/l]</td>
<td>Pomiar I</td>
<td>12,24</td>
<td>2,58</td>
<td>0,99</td>
<td>1,37</td>
<td>3,24</td>
<td>19</td>
<td>0,0043</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>11,25</td>
<td>2,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Źródło: Opracowanie na podstawie badań własnych

Rysunek 10. Stężenie witaminy E w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [mg/l]

źródło: Opracowanie na podstawie badań własnych
**Tabela 9. Parametry antropometryczne i wskaźniki składu ciała w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej)**

**Część A.**

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Zmienna</th>
<th>Średnia</th>
<th>Mediana</th>
<th>Dolny kwartyl</th>
<th>Górny kwartyl</th>
<th>SD</th>
<th>T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa ciała [kg]</td>
<td>Pomiar I</td>
<td>69,71</td>
<td>64,60</td>
<td>57,20</td>
<td>77,60</td>
<td>16,80</td>
<td>45</td>
<td>0,0442</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>68,91</td>
<td>63,60</td>
<td>57,35</td>
<td>74,70</td>
<td>15,94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zawartość tkanki tłuszczowej wisceralnej [wskaźnik 1-59]</td>
<td>Pomiar I</td>
<td>3,25</td>
<td>1,00</td>
<td>1,00</td>
<td>3,50</td>
<td>3,99</td>
<td>5,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>3,25</td>
<td>1,50</td>
<td>1,00</td>
<td>4,00</td>
<td>3,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masa mięśniowa [kg]</td>
<td>Pomiar I</td>
<td>49,84</td>
<td>46,65</td>
<td>41,35</td>
<td>57,30</td>
<td>10,96</td>
<td>79,00</td>
<td>0,3317</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>49,56</td>
<td>45,80</td>
<td>41,85</td>
<td>54,80</td>
<td>10,40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Część B.**

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Zmienna</th>
<th>Średnia</th>
<th>SD</th>
<th>Różnica</th>
<th>SD Różnica</th>
<th>t</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tkanka tłuszczowa ogółem [%]</td>
<td>Pomiar I</td>
<td>24,20</td>
<td>6,86</td>
<td>0,53</td>
<td>2,01</td>
<td>1,17</td>
<td>19</td>
<td>0,2569</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>23,68</td>
<td>6,50</td>
<td>-0,34</td>
<td>1,50</td>
<td>-1,00</td>
<td>19</td>
<td>0,3315</td>
</tr>
<tr>
<td>Zawartość wody w ciele [%]</td>
<td>Pomiar I</td>
<td>55,44</td>
<td>4,65</td>
<td>-0,34</td>
<td>1,50</td>
<td>-1,00</td>
<td>19</td>
<td>0,3315</td>
</tr>
<tr>
<td></td>
<td>Pomiar II</td>
<td>55,78</td>
<td>4,41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

źródło: opracowanie na podstawie badań własnych

---

![Diagram](image-url)  
**Rysunek 11. Masa ciała w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [kg]**

źródło: opracowanie na podstawie badań własnych.
Istotne zmiany zaobserwowano w stężeniu witaminy E w omawianym przypadku. Uzyskało ono znamiennie niższą wartość po zakończeniu interwencji dietetycznej (stężenie witaminy E przed eksperymentem wynosiło 12,24 mg/l, stężenie witaminy E po eksperymencie wynosiło 11,25 mg/l) (por. Tabela 8., Rysunek 10.).

Pomiar antropometryczne także wykazały znamienną zmiany, które dotyczyły średniej masy ciała. Średnia masa ciała osób badanych przed eksperymentem wynosiła 69,71 kg natomiast po pięciu tygodniach osiągnęła poziom 68,91 kg (por. Tabela 9., Rysunek 11.).

2.3. Porównanie wyników badań grupy długoterminowych i krótkoterminowych laktoowowegetarian

Analizie statystycznej poddano różnice w wynikach badań w grupie długoterminowych wegetarian oraz w grupie danych uzyskanych po zakończeniu krótkoterminowej diety laktoowowegetariańskiej (krótkoterminowi laktoowowegetarianie). W przypadku parametrów morfologii krwi istotną zmianę wykazano pomiędzy badanymi grupami w przypadku parametrów: MCV oraz MCH (wartości te były niższe w przypadku diety krótkoterminowej i wynosiły odpowiednio 29,10 pg względem 31,05 pg oraz 87,58 fl względem 84,55 fl), (por. Tabela 10., Rysunek 12-13.). W pozostałych badanych parametrach nie wykazano istotnych różnic, poza istotnie większym stężeniem witaminy C u osób stosujących dietę laktoowowegetariańską długoterminowo – 14,68 mg/l w stosunku do 9,92 mg/l (por. Tabela 11-12., Rysunek 14.).

Tabela 10. Parametry morfologii krwi, stężenie żelaza oraz witaminy B<sub>12</sub> w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Grupa</th>
<th>Średnia</th>
<th>Mediana</th>
<th>Dolny kwartył</th>
<th>Górný kwartył</th>
<th>SD</th>
<th>U</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba leukocytów (WBC) we krwi [K/µl]</td>
<td>długoterminowi</td>
<td>5,41</td>
<td>5,30</td>
<td>4,30</td>
<td>6,60</td>
<td>1,52</td>
<td>173,5</td>
<td>0,6530</td>
</tr>
<tr>
<td></td>
<td>krótkoterminowi</td>
<td>5,34</td>
<td>4,95</td>
<td>3,95</td>
<td>6,00</td>
<td>1,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnia masa hemoglobin (MCH) w krwince [pg]</td>
<td>długoterminowi</td>
<td>31,05</td>
<td>31,00</td>
<td>30,00</td>
<td>32,00</td>
<td>1,27</td>
<td>64</td>
<td>0,0004</td>
</tr>
<tr>
<td></td>
<td>krótkoterminowi</td>
<td>29,10</td>
<td>29,00</td>
<td>29,00</td>
<td>30,00</td>
<td>1,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stężenie witaminy B&lt;sub&gt;12&lt;/sub&gt; [pg/ml] we krwi</td>
<td>długoterminowi</td>
<td>300,95</td>
<td>288,00</td>
<td>222,00</td>
<td>345,00</td>
<td>100,05</td>
<td>145</td>
<td>0,2112</td>
</tr>
</tbody>
</table>
CZĘŚĆ B.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Średnia</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>SD</th>
<th>p Levene'a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba erytrocytów (RBC) we krwi [M/µl]</td>
<td>4,57</td>
<td>4,61</td>
<td>-0,27</td>
<td>0,7905</td>
<td>0,42</td>
<td>0,42</td>
</tr>
<tr>
<td>Zawartość hemoglobin (HGB) we krwi [g/dl]</td>
<td>14,31</td>
<td>13,53</td>
<td>1,60</td>
<td>0,1187</td>
<td>1,65</td>
<td>1,40</td>
</tr>
<tr>
<td>Wartość hematokrytu (HCT) we krwi [%]</td>
<td>40,11</td>
<td>38,95</td>
<td>1,04</td>
<td>0,3061</td>
<td>3,38</td>
<td>3,56</td>
</tr>
<tr>
<td>Średnia objętość krwinki (MCV) [fl]</td>
<td>87,58</td>
<td>84,55</td>
<td>2,36</td>
<td><strong>0,0238</strong></td>
<td>3,44</td>
<td>4,49</td>
</tr>
<tr>
<td>Średnie stężenie hemoglobin w krwince (MCHC) [g/dl]</td>
<td>35,26</td>
<td>34,45</td>
<td>1,89</td>
<td>0,0664</td>
<td>1,52</td>
<td>1,15</td>
</tr>
<tr>
<td>Liczba płytek (PLT) krwi [K/µl]</td>
<td>231,21</td>
<td>251,00</td>
<td>-1,31</td>
<td>0,1991</td>
<td>49,19</td>
<td>45,33</td>
</tr>
<tr>
<td>Stężenie żelaza we krwi [µg/dl]</td>
<td>87,95</td>
<td>72,65</td>
<td>1,42</td>
<td>0,1653</td>
<td>39,29</td>
<td>26,34</td>
</tr>
</tbody>
</table>

Źródło: Opracowanie na podstawie badań własnych

Rysunek 12. Średnia masa hemoglobin (MCH) w krwinkach w grupie długoterminowych i grupie krótkoterminowych laktoowowegarian [pg]

źródło: Opracowanie na podstawie badań własnych
Rysunek 13. Średnia objętość krwinki (MCV) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegietarian [II]

źródło: Opracowanie na podstawie badań własnych

Tabela 11. Stężenie witamin antyoksydacyjnych w grupie długoterminowych i grupie krótkoterminowych laktoowowegietarian

Część A.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Grupa</th>
<th>Średnia</th>
<th>Mediana</th>
<th>Dolny kwartyl</th>
<th>Górný kwartyl</th>
<th>SD</th>
<th>U</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stężenie witaminy C [mg/l] we krwi</td>
<td>długoterminowi</td>
<td>14,68</td>
<td>13,00</td>
<td>10,70</td>
<td>16,80</td>
<td>5,84</td>
<td>88</td>
<td>0,0075</td>
</tr>
<tr>
<td></td>
<td>krótkoterminowi</td>
<td>9,92</td>
<td>7,75</td>
<td>5,50</td>
<td>13,45</td>
<td>6,75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Część B.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Średnia</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>SD Długo-terminowi</th>
<th>Krótko-terminowi</th>
<th>p Levene'a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stężenie witaminy A [µg/l] we krwi</td>
<td>539,68</td>
<td>505,40</td>
<td>0,92</td>
<td>0,3636</td>
<td>131,25</td>
<td>100,19</td>
<td>0,2727</td>
</tr>
<tr>
<td>Stężenie witaminy E [mg/l] we krwi</td>
<td>10,71</td>
<td>11,25</td>
<td>-0,71</td>
<td>0,4830</td>
<td>2,06</td>
<td>2,60</td>
<td>0,5293</td>
</tr>
</tbody>
</table>

źródło: Opracowanie na podstawie badań własnych
Rysunek 14. Stężenie witaminy C we krwi w grupie długoterminowych i grupie krótkoterminowych lakoowowegarian [mg/l]

Źródło: Opracowanie na podstawie badań własnych

Tabela 12. Parametry antropometryczne i wskaźniki składu ciała w grupie długoterminowych i grupie krótkoterminowych lakoowowegarian

### CZĘŚĆ A.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Grupa</th>
<th>Średnia</th>
<th>Mediana</th>
<th>Dolny kwARTyl</th>
<th>Górny kwARTyl</th>
<th>SD</th>
<th>U</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Masa ciała [kg]</strong></td>
<td>długoterminowi</td>
<td>63,18</td>
<td>61,30</td>
<td>55,50</td>
<td>73,00</td>
<td>10,33</td>
<td>155</td>
<td>0,3324</td>
</tr>
<tr>
<td></td>
<td>krótkoterminowi</td>
<td>68,91</td>
<td>63,60</td>
<td>57,35</td>
<td>74,70</td>
<td>15,94</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tkanka tłuszczowa wisceralna</strong></td>
<td></td>
<td>2,26</td>
<td>2,00</td>
<td>1,00</td>
<td>3,00</td>
<td>1,24</td>
<td>188</td>
<td>0,9664</td>
</tr>
<tr>
<td>[wskaźnik 1-59]</td>
<td>długoterminowi</td>
<td>3,25</td>
<td>1,50</td>
<td>1,00</td>
<td>4,00</td>
<td>3,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>krótkoterminowi</td>
<td>3,25</td>
<td>1,50</td>
<td>1,00</td>
<td>4,00</td>
<td>3,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Masa mięśniowa [kg]</strong></td>
<td>długoterminowi</td>
<td>46,84</td>
<td>42,70</td>
<td>40,30</td>
<td>54,70</td>
<td>9,37</td>
<td>157</td>
<td>0,3612</td>
</tr>
<tr>
<td></td>
<td>krótkoterminowi</td>
<td>49,56</td>
<td>45,80</td>
<td>41,85</td>
<td>54,80</td>
<td>10,40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### CZĘŚĆ B.

<table>
<thead>
<tr>
<th></th>
<th>Średnia</th>
<th>t</th>
<th>df</th>
<th>P</th>
<th>SD</th>
<th>P Levene'a</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Wzrost [cm]</strong></td>
<td>Długo-</td>
<td>Krótko-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>terminowi</td>
<td>terminowi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>171,00</td>
<td>172,25</td>
<td>-0,50</td>
<td>37</td>
<td>0,6168</td>
<td>8,10</td>
</tr>
<tr>
<td><strong>Zawartość tkanki tłuszczowej ogółem [%]</strong></td>
<td>Długo-</td>
<td>Krótko-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>terminowi</td>
<td>terminowi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22,39</td>
<td>23,68</td>
<td>-0,58</td>
<td>37</td>
<td>0,5686</td>
<td>7,39</td>
</tr>
<tr>
<td><strong>Zawartość wody w ciele [%]</strong></td>
<td>Długo-</td>
<td>Krótko-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>terminowi</td>
<td>terminowi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56,64</td>
<td>55,78</td>
<td>0,59</td>
<td>37</td>
<td>0,5587</td>
<td>4,71</td>
</tr>
</tbody>
</table>

źródło: Opracowanie na podstawie badań własnych
3. Zestawienie zbiorcze uzyskanych wyników

Poniżej (por. Tabela 13.) zamieszczono zestawienie zbiorcze wyników badań laboratoryjnych oraz antropometrycznych uzyskanych od 4 grup badawczych tj.: grupy długoterminowych lakoowo-wegetarian (grupa I), grupy porównawczej (grupa II), grupy eksperymentalnej IIIa (pomiar I, przed eksperymentem) i IIIb (pomiar II, po eksperyencjencie). Parametry różniące się istotnie pomiędzy poszczególnymi grupami zaznaczono kolorem czerwonym.

**Tabela 13. Porównanie wyników badań w grupie długoterminowych lakoowo-wegetarian i grupie porównawczej**

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Długoterminowi lakoowo-wegetarianie</th>
<th>Grupa porównawcza</th>
<th>Wartości referencyjne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Średnia</td>
<td>SD</td>
<td>Średnia</td>
</tr>
<tr>
<td>MORFOLOGIA, ŻELAZO, B₁₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liczba leukocytów (WBC) we krwi [K/μl]</td>
<td>5,41</td>
<td>1,52</td>
<td>5,75</td>
</tr>
<tr>
<td>Liczba erytrocytów (RBC) we krwi [M/μl]</td>
<td>4,57</td>
<td>0,42</td>
<td>4,59</td>
</tr>
<tr>
<td>Zawartość hemoglobiny (HGB) we krwi [g/dl]</td>
<td>14,31</td>
<td>1,65</td>
<td>13,96</td>
</tr>
<tr>
<td>Wartość hematokrytu (HCT) we krwi [%]</td>
<td>40,11</td>
<td>3,38</td>
<td>39,52</td>
</tr>
<tr>
<td>Średnia objętość krwinki (MCV) [fl]</td>
<td>87,58</td>
<td>3,44</td>
<td>86,62</td>
</tr>
<tr>
<td>Średnia masa hemoglobiny (MCH) w krwince [pg]</td>
<td>31,05</td>
<td>1,27</td>
<td>30,29</td>
</tr>
<tr>
<td>Średnie stężenie hemoglobiny w krwince (MCHC) [g/dl]</td>
<td>35,26</td>
<td>1,52</td>
<td>35,00</td>
</tr>
<tr>
<td>Liczba płytek krwi (PLT) [K/μl]</td>
<td>231,21</td>
<td>49,19</td>
<td>233,62</td>
</tr>
<tr>
<td>Stężenie żelaza we krwi [μg/dl]</td>
<td>87,95</td>
<td>39,29</td>
<td>111,90</td>
</tr>
<tr>
<td>Stężenie witaminy B₁₂ we krwi [pg/ml]</td>
<td>300,95</td>
<td>100,05</td>
<td>355,38</td>
</tr>
<tr>
<td>WITAMINY ANTYOKSYDACYJNE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stężenie witaminy A we krwi [µg/l]</td>
<td>539,68</td>
<td>131,25</td>
<td>559,38</td>
</tr>
<tr>
<td>Stężenie witaminy C we krwi [mg/l]</td>
<td>14,68</td>
<td>5,84</td>
<td>7,14</td>
</tr>
<tr>
<td>Stężenie witaminy E we krwi [mg/l]</td>
<td>10,71</td>
<td>2,06</td>
<td>11,48</td>
</tr>
<tr>
<td>PARAMETRY ANTROPOMETRYCZNE, WSKAŹNIKI SKŁADU CIAŁA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masa ciała [kg]</td>
<td>63,2</td>
<td>10,3</td>
<td>65,4</td>
</tr>
<tr>
<td>Wzrost osób badanych [cm]</td>
<td>171,00</td>
<td>8,10</td>
<td>172,24</td>
</tr>
<tr>
<td>Zawartość tkanki tłuszczowej wisceralnej [wskaźnik 1-59]</td>
<td>2,26</td>
<td>1,24</td>
<td>2,10</td>
</tr>
</tbody>
</table>

cd. na następnej stronie
cd. Tabeli 13

<table>
<thead>
<tr>
<th>Tkanka tłuszczowa ogółem [%]</th>
<th>22,39</th>
<th>7,39</th>
<th>20,57</th>
<th>7,51</th>
<th>8-20 (K) 21-33 (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa mięśniowa [kg]</td>
<td>46,84</td>
<td>9,37</td>
<td>48,64</td>
<td>11,11</td>
<td></td>
</tr>
<tr>
<td>Zawartość wody w ciele [%]</td>
<td>56,64</td>
<td>4,71</td>
<td>56,80</td>
<td>4,19</td>
<td>50-65 (K) 45-60 (M)</td>
</tr>
</tbody>
</table>

Źródło: Opracowanie na podstawie badań własnych

Tabela 14. Porównanie wyników badań w grupie krótkoterminowych laktoowogwietarian (przed i po interwencji dietetycznej)

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Pomiar I</th>
<th>Pomiar II</th>
<th>Wartości referencyjne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Średnia</td>
<td>SD</td>
<td>Średnia</td>
</tr>
<tr>
<td><strong>MORFOLOGIA, ŻELAZO, B12</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liczba leukocytów (WBC) we krwi [K/μl]</td>
<td>5,73</td>
<td>1,90</td>
<td>5,34</td>
</tr>
<tr>
<td>Liczba erytrocytów (RBC) we krwi [M/μl]</td>
<td>4,71</td>
<td>0,39</td>
<td>4,61</td>
</tr>
<tr>
<td>Zawartość hemoglobiny (HGB) we krwi [g/dl]</td>
<td>13,83</td>
<td>1,30</td>
<td>13,53</td>
</tr>
<tr>
<td>Wartość hematokrytu (HCT) we krwi [%]</td>
<td>40,65</td>
<td>2,13</td>
<td>38,95</td>
</tr>
<tr>
<td>Średnia objętość krwinki (MCV) [fl]</td>
<td>86,45</td>
<td>4,50</td>
<td>84,55</td>
</tr>
<tr>
<td>Średnia masa hemoglobiny (MCH) w krwinece [pg]</td>
<td>29,15</td>
<td>1,76</td>
<td>29,10</td>
</tr>
<tr>
<td>Średnie stężenie hemoglobiny w krwinece (MCHC) [g/dl]</td>
<td>33,70</td>
<td>1,17</td>
<td>34,45</td>
</tr>
<tr>
<td>Liczba płytek krwi (PLT) [K/µl]</td>
<td>253,10</td>
<td>34,46</td>
<td>251,00</td>
</tr>
<tr>
<td>Stężenie żelaza we krwi [µg/dl]</td>
<td>73,30</td>
<td>25,09</td>
<td>72,65</td>
</tr>
<tr>
<td>Stężenie witaminy B12 we krwi [µg/ml]</td>
<td>378,85</td>
<td>87,15</td>
<td>334,62</td>
</tr>
</tbody>
</table>

**WITAMINY ANTYOKSYDACYJNE**

| Stężenie witaminy A we krwi [µg/l]         | 529,45   | 90,63    | 505,40   | 100,19   | 200-1200             |
| Stężenie witaminy C we krwi [mg/l]         | 9,97     | 4,87     | 9,92     | 6,75     | 4,6-14,9             |
| Stężenie witaminy E we krwi [mg/l]         | 12,24    | 2,58     | 11,25    | 2,60     | 5-18                 |

**PARAMETRY ANTROPOMETRyczNE, WSKAŹNIKI SKŁADU CIAŁA**

| Masa ciała [kg]                             | 69,71    | 16,80    | 68,91    | 15,94    |                    |
| Tkanka tłuszczowa ogółem [%]                | 24,20    | 6,86     | 23,68    | 6,50     | 8-20 (K) 21-33 (M) |
| Masa mięśniowa [kg]                        | 49,84    | 10,96    | 49,56    | 10,40    |                    |
| Zawartość wody w ciele [%]                 | 55,44    | 4,65     | 55,78    | 4,41     | 50-65 (K) 45-60 (M) |

Źródło: Opracowanie na podstawie badań własnych
Tabela 15 Porównanie wyników badań w grupie długoterminowych i grupie krótkoterminowych laktoow vegetarian

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Długoterminowi laktoow vegetarianie</th>
<th>Krótkoterminowi laktoow vegetarianie</th>
<th>Wartości referencyjne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Średnia</td>
<td>SD</td>
<td>Średnia</td>
</tr>
<tr>
<td>MORFOLOGIA, ŹELAZO, B₁₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liczba leukocytów (WBC) we krwi [K/µl]</td>
<td>5,41</td>
<td>1,52</td>
<td>5,34</td>
</tr>
<tr>
<td>Liczba erytrocytów (RBC) we krwi [M/µl]</td>
<td>4,57</td>
<td>0,42</td>
<td>4,61</td>
</tr>
<tr>
<td>Zawartość hemoglobiny (HGB) we krwi [g/dl]</td>
<td>14,31</td>
<td>1,65</td>
<td>13,53</td>
</tr>
<tr>
<td>Wartość hematokrytu (HCT) we krwi [%]</td>
<td>40,11</td>
<td>3,38</td>
<td>38,95</td>
</tr>
<tr>
<td>Średnia objętość krwinki (MCV) [fl]</td>
<td>87,58</td>
<td>3,44</td>
<td>84,55</td>
</tr>
<tr>
<td>Średnia masa hemoglobiny (MCH) w krwince [pg]</td>
<td>31,05</td>
<td>1,27</td>
<td>29,10</td>
</tr>
<tr>
<td>Średnie stężenie hemoglobiny w krwince (MCHC) [g/dl]</td>
<td>35,26</td>
<td>1,52</td>
<td>34,45</td>
</tr>
<tr>
<td>Liczba płytek krwi (PLT) [K/µl]</td>
<td>231,21</td>
<td>49,19</td>
<td>251,00</td>
</tr>
<tr>
<td>Stężenie żelaza we krwi [µg/dl]</td>
<td>87,95</td>
<td>39,29</td>
<td>72,65</td>
</tr>
<tr>
<td>Stężenie witaminy B₁₂ we krwi [pg/ml]</td>
<td>300,95</td>
<td>100,05</td>
<td>334,62</td>
</tr>
<tr>
<td>WITAMINY ANTYOKSYDACYJNE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stężenie witaminy A we krwi [µg/l]</td>
<td>539,68</td>
<td>131,25</td>
<td>505,40</td>
</tr>
<tr>
<td>Stężenie witaminy C we krwi [mg/l]</td>
<td>14,68</td>
<td>5,84</td>
<td>9,92</td>
</tr>
<tr>
<td>Stężenie witaminy E we krwi [mg/l]</td>
<td>10,71</td>
<td>2,06</td>
<td>11,25</td>
</tr>
<tr>
<td>PARAMETRY ANTROPOMETRYCZNE, WSKAŹNIKI SKŁADU CIAŁA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masa ciała [kg]</td>
<td>63,18</td>
<td>10,33</td>
<td>68,91</td>
</tr>
<tr>
<td>Wzrost osób badanych [cm]</td>
<td>171,00</td>
<td>8,10</td>
<td>172,25</td>
</tr>
<tr>
<td>Zawartość tkanki tłuszczowej wisciernalnej [wskaźnik 1-59]</td>
<td>2,26</td>
<td>1,24</td>
<td>3,25</td>
</tr>
<tr>
<td>Tkanka tłuszczowa ogółem [%]</td>
<td>22,39</td>
<td>7,39</td>
<td>23,68</td>
</tr>
<tr>
<td>Masa mięśniowa [kg]</td>
<td>46,84</td>
<td>9,37</td>
<td>49,56</td>
</tr>
<tr>
<td>Zawartość wody w ciele [%]</td>
<td>56,64</td>
<td>4,71</td>
<td>55,78</td>
</tr>
</tbody>
</table>

Źródło: Opracowanie na podstawie badań własnych
Rozdział VI

Dyskusja

1. Stężenie witamin antyoksydacyjnych i wybrane parametry stanu odżywienia długoterminowych laktoowogotowych oraz u osób odżywiających się tradycyjnie

Przedstawione wyniki wskazują na statystycznie istotne różnice w zakresie stężeń wybranych witamin antyoksydacyjnych, jak również poszczególnych parametrów morfologii krwi, stężenia żelaza, witaminy B₁₂ we krwi oraz parametrów antropometrycznych pomiędzy osobami stosującymi dietę laktoowogotową (grupą długoterminowych laktoowogotowych, gr. I) oraz tradycyjny sposób żywienia (grupą porównawczą, gr. II). Poddając analizie uzyskane wyniki jednym z parametrów, którego wartość jest istotnie różna pomiędzy wymienionymi grupami jest stężenie żelaza w surowicy krwi. W grupie porównawczej jest ono znacznie wyższe niż w grupie długoterminowych laktoowogotowych. Równocześnie w obu przypadkach jego wartość mieści się w zakresie wartości referencyjnych. Żelazo, jak wspomniano we wprowadzeniu, jest kluczowym pierwiastkiem odpowiadającym za prawidłowy przebieg wielu procesów metabolicznych. Poza udziałem w syntezie hemoglobiny jest kofaktorem licznych enzymów w tym katalaz, oksydaz, peroksydaz, dehydrogenaz oraz reduktaz. Prawidłowe funkcjonowanie tych enzymów związane jest m.in. ze stanem antyoksydacyjnym oraz właściwą syntezą kwasów nukleinowych. Równocześnie jony żelaza biorą udział w regulacji cyklu komórkowego poprzez uczestnictwo w procesach regulacji transkrypcji m.in. genów: p21, syntazy tlenu azotu czy też kinazy białkowej C [4].

Zawartość żelaza w surowicy krwi jest ściśle związana z jego właściwościami chemicznymi, które odpowiadają za stan elektronowy tego pierwiastka. W spożywanych produktach spożywczych obecne są dwa rodzaje jonów żelaza: jony dwuwartościowe (żelazo hemowe), a także jony trójwartościowe (żelazo niehemowe) [128]. W odniesieniu do diety wegetariańskiej znaczną część puli dostarczanego żelaza stanowi żelazo trójwartościowe, czyli niehemowe, charakterystyczne dla produktów pochodzenia roślinnego. Żelazo niehemowe cechuje znacznie niższy stopień wchłaniania w porównaniu do żelaza hemowego. Szacuje się, iż poziom jego absorpcji wynosi odpowiednio 2-5% (z ogólnej ilości dostarczanej do organizmu) w przypadku żelaza trójwartościowego i ok. 22% w przypadku żelaza dwuwartościowego. Obniżona wchłanielność żelaza niehemowego wiąże się m.in. z brakiem
możliwości absorpcji takiej postaci pierwiastka w środowisku alkalicznym przewodu pokarmowego, w którym to dochodzi do jego wytrącenia w postaci stratów [4,98,159].

Uzyskane wyniki wskazujące na niższy poziom żelaza w grupie laktoowowegetarian są zbieżne z rezultatami innych badań, w których autorzy wykazują podobną korelację pomiędzy obniżeniem stężenia żelaza i stosowaniem tego rodzaju diety. Równocześnie jednak należy podkreślić, że stężenie żelaza w surowicy krwi zarówno w niniejszych analizach jak i pracach [10,79] osiągało poziom mieszczący się w granicach referencyjnych, co wyklucza jego niedobór. Autorzy badań argumentują ten fakt zdolnością przystosowawczą organizmu i zarówno ograniczeniem wydalania żelaza wraz z kalem, jak również zwiększeniem stopnia jego wchłaniania poprzez zwiększoną podaż witaminy C podczas długoterminowej diety laktoowowegetariańskiej [4]. Warto zwrócić uwagę na prace, w których w celu oceny stężenia żelaza we krwi u wegetarian badano zawartość ferrytyny. Większość z nich wykazała niższe stężenie tego białka we krwi wegetarian, w tym u laktoowowegetarian, w porównaniu z osobami spożywającymi mięso oraz ryby [2,6,89,123]. Równocześnie jednak w pracy [57] nie potwierdzono jednoznacznie tej zależności. Niższe zasoby żelaza w organizmie, mieszczące się jednakże w granicach normy, prawdopodobnie wiążą się z większą insulinowrażliwością tkanek. Warto zwrócić uwagę na badania Hue i wsp. [62]. Autorzy tych analiz wykazali eksperymentalnie w drodze flebotomii osób badanych, że zmniejszenie zasobów wskazanego pierwiastka w organizmie indukuje zwiększoną wrażliwość tkanek na insulinę. Niższe w porównaniu z osobami spożywającymi mięso, zasoby żelaza wyrażone poprzez stężenie ferrytyny oraz zwiększona insulinowrażliwość charakteryzowały grupę badanych laktoowowegetarian. Większa wrażliwość na insulinę jest zjawiskiem korzystnym, związanym z lepszym wykorzystaniem dostarczanej wraz z dietą energii, korelującym długoterminowo z mniejszym ryzykiem wystąpienia m.in. cukrzycy, nadmiernej masy ciała, czy też zespołu metabolicznego. W związku z powyższym obniżenie poziomu żelaza u osób stosujących dietę laktoowowegetariańską w stosunku do wyników badań osób spożywających mięso i ryby nie jest równoznaczne z niedoborem tego pierwiastka we krwi oraz negatywnymi dla stanu zdrowia konsekwencjami.

W odniesieniu do grupy porównawczej, w badanej w niniejszej pracy grupie laktoowowegetarian długoterminowych nie można wykluczyć procentowo większej ilości żelaza wydalanego wraz z krwawieniem miesięczkowym kobiet w stosunku do całej puli żelaza przyzwojonego. Pomimo, iż grupy badawcze były prawie jednorodne względem proporcji badanych mężczyzn i kobiet a do badania zakwalifikowane zostały kobiety zdrowe, których krwawienia miesięczne nie były nadmierne, zgodnie z pracą [4] utrata żelaza
w trakcie prawidłowo przebiegającej miesiączki wahę się pomiędzy 0,5–1,0 mg/dzień. Średnie dzienne spożycie tego pierwiastka wynosi ok. 10-15 mg. Biorąc jednak pod uwagę fakt, iż w przypadku żelaza hemowego przyswajalność płaszczy się na poziomie ok. 22% tj. do ok. 3 mg/dzień a w przypadku żelaza niehemowego, spożywanego w znacznie większej ilości przez wegetarian 2-5%, tj. niespełna 1 mg/dzień, ubytki żelaza, nawet w trakcie prawidłowych cyklicznych krwawień miesięcznych mogą przewyższać ilość żelaza wchłanianego, powodując większy deficyt tego pierwiastka u wegetarianek w porównaniu z grupą porównawczą. Zaobserwowane obniżenie stężenia żelaza u wieloletnich wegetarian nie wpłynęło na ogólny stan odżywienia oraz podstawowe parametry biochemiczne krwi. Nie wykazano istotnych różnic w zakresie RBC, HGB, HCT, MCV, MCHC, w których zaburzenia mogą stanowić istotny marker niewystarczającego poziomu żelaza we krwi, a w konsekwencji predysponować do zaburzeń metabolicznych związanych z niedoborem tego pierwiastka. Niektóre spośród starszych danych literackich wskazują także, iż częstość występowania anemii wywołanej niedoborami żelaza jest porównywalna zarówno w grupie wegetarian (w tym laktoowowegetarian) wegan jak i u osób spożywających mięso oraz ryby [6,65,123]. Warto zaznaczyć także, że znaczną poprawę absorpcji żelaza niehemowego zawartego w produktach pochodzenia roślinnego uzyskuje się poprzez konsumpcję dużej ilości związków redukujących, do których należy m.in. witamina C zawarta w owocach i warzywach [9]. Spozywanie dużej ilości tych produktów zatem istotnie zmniejsza ryzyko wystąpienia niedoborów żelaza u wegetarian. Równocześnie substancje których obecność jest charakterystyczna dla diety wegetariańskiej, takie jak kwas fitynowy, polifenole oraz białko soi hamują wchłanianie tego pierwiastka [9]. W omawianych wynikach badań w grupie długoterminowych laktoowowegetarian zaobserwowano istotnie wyższe stężenie witaminy C w surowicy krwi, które wynosiło 14,68 mg/l. Prace naukowe [77,80] potwierdzają zależność pomiędzy stosowaniem tego sposobu żywienia a wysokim stężeniem wymienionego związku w surowicy krwi. Jak zaznaczono powyżej, wynika to prawdopodobnie ze spożywania większej ilości witaminy C wraz z dietą [95]. Biorąc pod uwagę doniesienia o właściwościach antyoksydacyjnych witaminy C, należałoby sugerować mniejsze ryzyko powstawania uszkodzeń komórkowych w tym uszkodzeń DNA u osób stosujących tego rodzaju dietę. Fakt ten potwierdzają autorzy badań dotyczących wpływu kwasu askorbinowego na ryzyko wystąpienia chorób nowotworowych [95]. Jednakże rozważając konsekwencje podwyższonego stężenia witaminy C w surowicy laktoowowegetarian należy wziąć pod uwagę również prawdopodobieństwo pojawienia się niekorzystnych skutków nadmiaru tej witaminy w organizmie. Badania Rehmanaa i wsp.
wskazują iż wzbogacenie diety witaminą C spowodowało korzystne efekty w postaci zmniejszenia liczby uszkodzeń DNA wyłącznie w grupie osób u których wyjściowe stężenie witaminy C w osoczu było niskie i nie przekraczało 50 µmol/l. W grupie porównawczej natomiast, w której to początkowe stężenie kwasu askorbinowego przekraczało 70 µmol/l, dodatkowe stosowanie witaminy C nie przyniosło korzystnych skutków [125]. Nięktórzy autorzy wskazują także na prooksydacyjne działanie wysokich dawek witaminy C. Co więcej, istnieją dane, iż nadmierna suplementacja witaminą C (>1000 mg witaminy C/dzień) zwiększa ryzyko występienia kamicy nerkowej w szczególności u osób z predyspozycjami do ich tworzenia się [95]. Powyższe dane dotyczą jednak dostarczania bardzo wysokich dawek tego związku w postaci suplementu. Nie można zatem wykluczyć, iż dzienne spożywanie znacznych ilości witaminy C wraz z dietą nie wywołuje wskazanych efektów.

Warto zauważyć, że prace [77,80,138] dotyczące stężenia pozostałych witamin antyoksydacyjnych tj. witamin A, i E wskazują również na wyższe stężenia tych związków w grupie laktowo-wegetarian. Równocześnie badania analizujące kwestionariusze żywieniowe podkreślają większą zawartość tych związków w diecie laktowo-wegetarian w porównaniu z osobami spożywającymi mięso oraz ryby [41,127]. W przedstawionych w niniejszej dysertacji wynikach badań nie stwierdzono wskazanej zależności, a stężenia witamin A i E były porównywalne w obu analizowanych grupach. Uzyskanie takich wyników może mieć związek zarówno ze stosunkowo niewielką grupą badawczą lub z odmiennościami zarówno w kompozycji diety jak i jakości spożywanej żywności w naszej szerokości geograficznej. Dotychczas nie przeprowadzono również badań na dużych grupach badawczych wśród osób dorosłych, których wyniki wskazywałyby na niższe stężenia witaminy A oraz E we krwi laktowo-wegetarian w porównaniu z osobami stosującymi dietę tradycyjną. Ciekawym przykładem jest jednakże praca [28], w której badano poziom homocysteiny oraz stężenie witamin A i E wśród dzieci stosujących dietę laktowo-wegetariańską w Polsce. Wyniki analiz wskazują na niższe (jednakże mieszczące się w granicach wartości referencyjnych) stężenie witaminy E wśród osób z tej grupy badanych w porównaniu z dziećmi spożywającymi mięso i ryby.

Do wyników badań mogących budzić kontrowersje należy także brak uzyskania różnic w stężeniu witaminy B12 we krwi badanych wieloletnich laktowo-wegetarian i w grupie kontrolnej. Pomimo faktu, iż ten rodzaj diety umożliwia spożywanie produktów bogatych w ten związek, tj. produktów pochodzenia zwierzęcego takich jak nabiał oraz jaja dane literaturowe wskazują na niższe stężenia witaminy B12 we krwi laktowo-wegetarian [18,81], a także sugerują, iż rezerwy tego związku w organizmie zmniejszają się wraz z czasem
trwania diety [97]. W niniejszych badaniach średni czas stosowania diety laktoowowegetariańskiej przez osoby badane wynosił 11 lat. Być może okres ten lub stosunkowo niewielka grupa badawcza nie były wystarczające dla uwidocznienia istotnych różnic w stężeniu witaminy B12 w obu grupach. Równocześnie warto zaznaczyć, że średnie stężenie tego związku było niższe w grupie badanych laktoowowegetarian, co wskazuje na tendencje do osiągania mniejszej zawartości witaminy B12 we krwi osób stosujących tego rodzaju dietę. Wielu autorów badań jednak pomimo wykazania istotnych różnic w stężeniu tego związku u wieloletnich laktoowowegetarian i osób odżywiających się tradycyjne podkreśla, że w obu przypadkach stężenie to może mieścić się w zakresie wartości referencyjnych [59,60,64,78,101]. Wartą uwagi jest praca Gilsing i wsp. [47], w której dokonano analizy stężenia witaminy B12 wśród dużych grup badawczych wegetarian (grupę tę w ok. 90% stanowili lakoowowegetarianie), wegan i osób stosujących dietę zawierającą mięso oraz ryby. Wykazano w niej, iż stężenie witaminy B12 wśród wegetarian było niższe niż u osób żyjących się w sposób tradycyjny lecz w blisko 80% procentach przypadków stężenie te osiągało wartości mieszczące się w granicach przyjętych norm. Równocześnie w grupie osób spożywających mięso oraz ryby wartość ta wynosiła 98%. Warto zwrócić uwagę także na fakt, iż w omawianej analizie nie wykazano istotnej zależności pomiędzy stężeniem witaminy B12 w surowicy krwi osób starszych a czasem trwania diety, zarówno wegetariańskiej jak i wegańskiej. Co więcej, zbadano także korelacje pomiędzy stężeniem witaminy B12 we krwi a suplementacją tego związku wśród grupy wegetarian. W tym przypadku nie potwierdzono również istotnych statystycznie różnic pomiędzy stężeniem kobalaminy w surowicy osób stosujących suplementy zwierające B12 oraz osób nie stosujących tych preparatów [47]. Warto zwrócić również uwagę na pracę Kam i wsp. z 2014 r, w której ujęto przegląd piśmiennictwa dotyczący problemu niedoboru witaminy B12 wśród wegetarian, w tym lakoowowegetarian oraz wegan. Autorzy pracy w większym stopniu podkreślają ryzyko wystąpienia niedoboru witaminy B12 nawet w przypadku mało restrykcyjnej diety jaka jest dieta lakoowowegetariańska [17,75,161], co w szczególności wiązać z szerokością geograficzną i regionem z jakiej pochodziły wybrane grupy badawcze. W omawianych analizach podkreślono niedobory kobalaminy występujące m.in. wśród wegetarian (w tym lakoowowegetarian) zamieszkujących na terenie Indii oraz Chin [61,63,85,124,1164]. Równocześnie autorzy wymienionych badań podkreślają, iż stężenie surowiczce witaminy B12 już poniżej 300 pmol/l może stanowić istotny czynnik ryzyka wystąpienia zaburzeń metabolicznych wywołanych niedostateczną podażą tego związku wraz z dietą [136]. Jednakże w przeglądzie piśmiennictwa można znaleźć także prace wskazujące,

57
iż stosowanie diety laktoowowegetariańskiej nie wpływa na obniżenie stężenia witaminy B₁₂ w surowicy krwi w porównaniu do osób stosujących dietę zawierającą mięso oraz ryby [54,99].

Rysunek 15. Uproszczony schemat przemian kwasu foliowego oraz homocysteiny
Źródło: Opracowanie własne na podstawie [33]

Pomimo przyjętych norm dla prawidłowej zawartości witaminy B₁₂ we krwi, stężenie tego związku, optymalne dla danej jednostki, prawdopodobnie jest wartością osobniczą, uzależnioną od metabolizmu a także profilu genetycznego danej osoby. Niewystarczające dla danej jednostki stężenie kobalaminy w organizmie może stanowić przyczynę licznych zaburzeń metabolicznych, w szczególności szlaku związanego z przemianami homocysteiny. Do konsekwencji tych nieprawidłowości należy m.in. nadmiar homocysteiny. Optymalny dla danej jednostki poziom B₁₂ w surowicy krwi związany jest prawdopodobnie z polimorfizmem niektórych genów. Za taki gen można uznać gen MTHFR odpowiadający za syntezę enzymu reduktazy N5/N10 tetrahydrofolianowej. Enzym ten odgrywa kluczową rolę w szlaku metabolicznym przemian kwasu foliowego oraz pośrednio przemian homocysteiny. Za najczęstszym polimorfizmem w obrębie genu MTHFR uważa się tranzycję cytozyny na tyminę w pozycji 677 (C677>T). W efekcie dochodzi do zastąpienia alaniny poprzez walinę, co znacząco wpływa na aktywność enzymu MTHFR, obniżając ją o połowę. Częstość występowania tej mutacji w populacji w rasie białej jest następująca: 10-13% w postaci genotypu homozygotycznego T/T i aż 50% w postaci genotypu heterozygotycznego C/T [33].
Powyższe dane procentowe sugerują iż znaczny odsetek ludności cechuje ograniczoną efektywność działania reduktazy MTHFR. W tym aspekcie warto zaznaczyć problem niedostatecznej podaży witaminy B₁₂. W przypadku genotypu o obniżonej efektywności reduktazy MTHFR nawet utrzymujące się w granicach referencyjnych wartości witaminy B₁₂, jednakże znajdujące się w jej dolnym zasięgu mogą pogłębiać defekt metaboliczny w postaci utrzymującego się znacznego nadmiaru homocysteiny i jego konsekwencji (por. rysunek 15).

W związku z powyższym, długoterminowa dieta wegetariańska predysponująca do osiągania stosunkowo niskich stężeń witaminy B₁₂ w surowicy krwi może stanowić ryzyko nadmiernego poziomu homocysteiny w szczególności u osób z defektem genu MTHFR. Kliniczne konsekwencje zbyt wysokiego stężenia tego związku we krwi wiążą się z podwyższonym ryzykiem wystąpienia chorób sercowo naczyniowych, ale także wad rozwojowych płodu u kobiet ciężarnych, chorób neurodegeneracyjnych oraz wybranych nowotworów [33].

W omawianych wynikach uzyskanych po porównaniu parametrów antropometrycznych w grupie długoterminowych laktowo-wegetarian i grupie porównawczej nie wykazano istotnych różnic w żadnej z analizowanych wartości. Zawartość tkanki tłuszczowej ogółem kształtowała się na poziomie: odpowiednio 22,9% i 20,57%, a wskaźnik tkanki tłuszczowej wisceralnej wynosił 2 w obydwu badanych grupach. Równocześnie odnotowana średnia masa ciała i wzrost także nie różniły się istotnie w badanych grupach. Dane te nie są zgodne z danymi literaturowymi, które wskazują na mniejszą masę ciała oraz zawartość tkanki tłuszczowej ogółem u osób stosujących dietę laktowo-wegetariańską [29,74,127,156] choć można także spotkać się z odmiennymi wynikami, potwierdzającymi rezultaty uzyskane w niniejszej pracy dotyczące porównywalnej średniej masy ciała wśród laktowo-wegetarian oraz wśród osób stosujących tradycyjny model żywienia [43].

W badaniach naukowych najczęściej za przyczynę zaobserwowanych różnic w zawartości tkanki tłuszczowej oraz różnic w odnotowanej masie ciała autorzy wskazują niższą wartość energetyczną diety [97], lepszą jakość spożywanych przez wegetarian tłuszczów, większy udział tłuszczów pochodzenia roślinnego, a w konsekwencji poprawienie parametrów gospodarki lipidowej u tych osób. Badania własne wykazały jednak, iż % udział energii pochodzącej z tłuszczów w grupie laktowo-wegetarian nie różnił się od tego parametru w grupie osób odżywiających się tradycyjnie i w przybliżeniu wynosił 30% d.z.e. Równocześnie badani laktowo-wegetarianie deklarowali regularne spożywanie produktów oleistych typu nasiona dyni, słonecznika, orzechy a także dodatek olejów roślinnych do przygotowywanych potraw. Produkty te, pomimo zawartości korzystnie wpływających na
stan zdrowia tłuszczów nienasyconych, należą do produktów wysokokalorycznych. W badaniach własnych wykazano niższy poziom cholesterolu całkowitego oraz niższy udział frakcji LDL cholesterolu we krwi badanych długoterminowych laktoowowegetarian w porównaniu do grupy kontrolnej, co potwierdza korzystną proporcję spożywania tłuszczów pochodzenia roślinnego i zwierzęcego w tej grupie osób, a także zbieżne jest z doniesieniami [29,74].

Warto także zaznaczyć, iż autorzy badań, wskazujących na niższą zawartość tkanki tłuszczowej w organizmie w grupie badanych wegetarian [74], wzięli po uwagę osoby z innej kategorii wiekowej oraz innego regionu geograficznego. Były to osoby starsze, a średnia wieku wynosiła ok. 55 lat. W związku z powyższym, zarówno tryb życia, stan zdrowia, doświadczenie żywieniowe jak i sama dieta mogły znacząco różnić się w badanych populacjach. Należy także zaznaczyć, iż w badaniach związanych z oddziaływaniem diety na organizm człowieka znaczącą rolę odgrywa czynnik wspomnianego położenia geograficznego obszaru, z którego wyodrębniono próbę badawczą. Jakość żywności a także tradycje kulturowe związane ze świadomością oraz wiedzą na temat diety wegetariańskiej wpływają istotnie na efekty metaboliczne wywołane stosowaniem tego rodzaju odżywiania. Znaczna część badań dotyczących wpływu wegetarianizmu na zdrowie człowieka pochodzi z krajów Indyjskich na obszarze których kultura ukształtowała zachowania i wzorce żywieniowe znacznie różniące się od sposobu żywienia wegetarian w Polsce. Równocześnie jakość żywności pochodzącej z tamtego obszaru odbiega od jakości żywności dostępnej w Polsce. Powyższy fakt może mieć także znaczenie w wyjaśnieniu wykazanych w niniejszej dysertacji odmienności dotyczących stężenia antyoksydacyjnych witamin A i E w grupie badanych laktoowowegetarian oraz w próbie badanej przez Sommanawar i wsp. [138].

2. Wpływ 5-cio tygodniowej diety laktoowowegetariańskiej na stężenie witamin antyoksydacyjnych oraz wybrane parametry stanu odżywienia

W niniejszej pracy przedstawiono wyniki badań wpływu 5-cio tygodniowej diety laktoowowegetariańskiej na stężenie witamin antyoksydacyjnych we krwi oraz na wybrane parametry stanu odżywienia badanych ochotników. Grupę kontrolną stanowiły te same osoby, które podjęły się zmiany sposobu życia na laktoowowegetariański, podlegając badaniu krwi oraz pomiarom antropometrycznym przed rozpoczęciem eksperymentu. W analizowanych wynikach obu grup badawczych wskazano na istotne różnice w zakresie wyszczególnionych parametrów związanych ze stanem odżywienia osób badanych. Znacznej zmianie uległy wybrane elementy morfologii krwi badanej grupy. Po zakończeniu 5-cio
tygodniowej diety laktoowogegetariańskiej obniżeniu uległa zawartość hemoglobiny w krwinkach, liczba erytrocytów we krwi, wartość hematokrytu, a także MCV. Powyższe parametry związane są ściśle z gospodarką żelazem w organizmie. Obniżenie tych wartości prawdopodobnie wiąże się ze zmniejszeniem stężenia żelaza w surowicy krwi po zakończeniu 5-tygodniowej diety. Pomimo, że nie wykazano istotnych różnic w zakresie tego parametru w obu grupach badanych, średnia wartość stężenia żelaza we krwi osób badanych była niższa po przeprowadzeniu interwencji dietetycznej w porównaniu do stanu przed jej rozpoczęciem. W związku z powyższym można przypuszczać, że zmniejszenie dostępnej pali tego pierwiastka w surowicy, związane z ograniczeniem spożywania mięsa wywołało wykazane różnice. W badaniach Hunt i wsp. z 1999 r. [66] oceniano stopień przyswajalności żelaza niehemowego podczas 8-mio tygodniowej diety laktoowowegetariańskiej w grupie młodych kobiet. Wykazano, iż żelazo niehemowe, spożywane w trakcie eksperymentu osiągało znacznie mniejszy stopień absorpcji, niż żelazo hemowe. Równocześnie zaobserwowano niższe stężenie wydalanej wraz z kalem ferrytyny co wskazuje na mechanizmy adaptacyjne, wpływające na zwiększenie zasobów żelaza w organizmie. W grupie osób badanych po przeprowadzonej 5-cio tygodniowej interwencji dietetycznej poziom żelaza jak i inne parametry, które różniły się przed i po zakończeniu diety, mieściły się granicach wartości referencyjnych. Prawdopodobnym jest także fakt, iż opisane zmiany w morfologii krwi pozostałyby na porównywalnym poziomie w dalszym czasie trwania diety, z uwagi na możliwość adaptacji organizmu do odmiennego sposobu żywienia, np. poprzez wspomniane zmniejszenie wydalania ferrytyny. Uzyskane odmienności w morfologii krwi po przeprowadzeniu 5-cio tygodniowej diety laktoowowegetariańskiej mogą być odpowiedzią na wspomniany proces adaptacji organizmu do niższej ilości żelaza dostarczanej wraz z dietą wegetariańską, którego czas trwania prawdopodobnie jest dłuższy niż założone 5 tygodni. W celu określenia, czy zaobserwowane tendencje do zmniejszenia wartości RBC, HGB, HCT i MCV są trwałe i świadczą o ryzyku wystąpienia niedoborów, niezbędne są dalsze badania, wykazujące wpływ tego rodzaju diety stosowanej w okresie dłuższym niż 5 tygodni. W niniejszych analizach wskazano na wzrost wartości MCHC, będącej wskaźnikiem średniego stężenia hemoglobiny w krwince. W większości dostępnych danych przy uzyskaniu spadku pozostałych wyżej wymienionych parametrów wartość MCHC także maleje. Jednakże w literaturze podkreśla się stosunkowo częste występowanie błędów metodycznych w zakresie określenia MCHC ponieważ jego wartość jest wyliczana pośrednio z uzyskanych wartości HGB, MCV i RBC [140]. Równocześnie istnieją jednak przypadki, że tendencja do wzrostu MCHC koreluje z niedostateczna podaż żelaza i witaminy B₁2 w diecie.
W przeciwieństwie do danych uzyskanych w grupie długoterminowych laktoowowegetarian, 5-cio tygodniowa interwencja dietetyczna nie spowodowała podwyższenia stężenia w surowicy krwi żadnej spośród badanych witamin antyoksydacyjnych. Równocześnie zaobserwowano istotne obniżenie stężenia witaminy E we krwi ochotników podejmujących się zmiany sposobu żywienia na laktoowowegetariański w okresie 5-ciu tygodni. Rozważając przyczyny wskazanych różnic w zakresie wpływu tego rodzaju diety stosowanej krótkoterminowo na zawartość witamin antyoksydacyjnych we krwi należy z dużą dokładnością rozważyć zaznaczony aspekt procesów adaptacyjnych organizmu do zmiany sposobu żywienia. Pozyskane od ochotników (po zakończeniu eksperymentu) stosujących 5-cio tygodniową dietę laktoowowegetariańską kwestionariusze ankietowe dotyczące samopoczucia i objawów towarzyszących zmianie diety wskazują, iż w większości przypadków laktoowowegetariański sposób żywienia wywołał nawracające problemy gastryczne, w szczególności wzdęcia, wzmożoną perystaltykę jelit i zbyt częste wypróżnianie się. Problemy te mogłyby wskazywać na zaburzenia funkcji trawiennych a w konsekwencji nieprawidłowe przyswajanie przyjmowanych składników pokarmowych. Zasadniczym elementem różnicywym dietę laktoowowegetariańską od tradycyjnego sposobu żywienia jest znaczną ilość spożywanych nasion, roślin strączkowych i kapustnych w diecie wegetariańskiej. Produkty te są ważnym źródłem białka a także witaminy E, nienasyconych kwasów tłuszczowych, a także błonnika. Równocześnie najczęściej zawierają oligosacharydy takie jak stachinoza, werbaskoza czy rafinoza, nie podlegające trawieniu ani wchłanianiu, które rozkładane są w procesie fermentacji przez bakterie jelitowe. Nieprzystosowanie flory bakteryjejnej do diety obfitującej w wymienione substancje może nasilać procesy fermentacyjne i wydzielanie gazów do światła jelita. Zmiana sposobu żywienia na wegetariański skutkuje zmianą w zakresie składu mikroflory jelitowej obecnej w przewodzie pokarmowym. Badania M. Glick-Bauer i wsp. [49] wskazują na inny typ mikroorganizmów jelitowych zasiedlających przewód pokarmowy u osób stosujących dietę zawierającą mięso i ryby oraz u wegetarian. Jednocześnie należy zaznaczyć, iż najprawdopodobniej proces ten zachodzi stopniowo, wskutek nabywania zdolności organizmu do przyswajania składników zawartych w diecie wegetariańskiej. W związku z powyższym, radykalna modyfikacja sposobu żywienia w okresie 5-ciu tygodni mogła wpłynąć na zaburzenia w strukturze i funkcji dotychczasowej mikroflory jelitowej, co skutkowało wzmożeniem procesów fermentacyjnych, nasileniem produkcji gazów, nadmierną perystaltyką jelit a w konsekwencji niewłaściwym wchłanianiem substancji odżywczych zawartych w diecie.
W niniejszych badaniach stwierdzono obniżenie stężenia witaminy B₁₂ po zastosowaniu 5-cio tygodniowej diety laktoowowegetariańskiej. Obniżenie dziennego spożycia tego związku (omówione w pierwszej części dyskusji), charakterystyczne dla wegetarian, w powiązaniu z krótkim okresem trwania diety i brakiem możliwości adaptacji organizmu w zakresie zmiany struktury mikroflory jelitowej może być przyczyną obniżenia całkowitego stężenia witaminy B₁₂ we krwi. Równocześnie należy zaznaczyć, iż zarówno w przypadku witaminy E jak i B₁₂ zmierzone wartości uzyskane po interwencji dietetycznej mieszczą się w zakresie normy.

Poddając analizie uzyskane po eksperymencie wartości antropometryczne, uwagę zwraca istotny spadek masy ciała osób badanych. Wyniki te są zgodne z dostępными pracami dotyczącymi długoterminowego stosowania diety laktoowowegetariańskiej i wskazanymi tendencjami do redukcji masy ciała tych osób [29,74,156]. Za przyczynę wymienionych zmian w badanej próbie można uznać przede wszystkim istotne zwiększenie ilości błonnika pokarmowego do ok. 50 mg/dzień, w stosunku do wcześniej stosowanej diety. Równocześnie, zgodnie z wynikami Hue i wsp. [62] zakładającymi prawdopodobne zwiększenie insulinowraźliwości tkanek, korelujące ze zmniejszeniem zasobów żelaza w organizmie, można założyć, że istnieją podobne mechanizmy w przypadku analizowanej interwencji dietetycznej, która mogła skutkować obniżeniem stężenia ferrityny w krwi osób badanych. Równocześnie nie należy wykluczyć spadku wartości energetycznej diety w wyniku np. popełnienia błędów żywieniowych, związanych m.in. z niewłaściwym określeniem proporcji spożywanych składników lub z subiektywnym wrażeniem większej sytości po spożytym posiłku, a w konsekwencji zmniejszenia ilości dostarczanego pożywienia.

3. Skutki stosowania krótkoterminowej i długoterminowej diety laktoowowegetariańskiej - ocena porównawcza

W niniejszym opracowaniu przedstawiono porównanie wyników badań stężenia witamin antyoksydacyjnych A, C i E a także parametrów morfologii krwi, stężenia żelaza oraz witaminy B₁₂ pomiędzy grupą długoterminowych laktoowowegetarian i grupą osób badanych po zastosowaniu krótkoterminowej diety laktoowowegetariańskiej (krótkoterminowych laktoowowegetarian). Istotne statystycznie różnice potwierdzono w przypadku MCH i MCV, których wartości były niższe w grupie krótkoterminowych wegetarian. Wartość tych parametrów ściśle koreluje z zasobami żelaza w organizmie. Pomimo, iż w opisanym przypadku nie odnotowano istotnej różnicy w stężeniu tego mikroelementu, jego średnia wartość była niższa w grupie krótkoterminowych

63
laktoowowegetarian. Można przypuszczać, że fakt ten wynika z krótkiego okresu adaptacji organizmu do diety wegetariańskiej, dysfunkcji mikroflory bakteryjnej przewodu pokarmowego oraz zaburzeń w procesie trawienia i wchłaniania składników odżywczych w stosunkowo krótkim okresie trwania diety. Równocześnie istotnie wyższa wartość stężenia witaminy C we krwi długoterminowych laktoowowegetarian wskazuje na istotność okresu trwania diety wegetariańskiej w uzyskiwaniu jej prozdrowotnych efektów. Pozostałe analizowane parametry nie różniły się istotnie w obu grupach, choć uwagę zwraca tendencja w zakresie uzyskiwania niższych wartości parametrów antropometrycznych dotyczących masy oraz składu ciała i udziału tkanki tłuszczowej w jego budowie w przypadku laktoowowegetarian długoterminowych.

Analizując uzyskane różnice w zakresie badanych parametrów u osób stosujących różnoterminowe warianty diety laktoowowegetariańskiej: tj. dietę wieloletnią lub 5-cio tygodniową a także wśród osób z grupy porównawczej, spożywającej mięso oraz ryby warto wziąć pod uwagę nie tylko aspekty związane z dostępnymi danymi literaturowymi z zakresu biochemii, biologii, dietetyki i medycyny ale także aspekty kulturowe i społeczne. Jak zaznaczono we wstępie pracy wieloletni wegetarianie są osobami o ukierunkowanych poglądach filozoficzno-etycznych wśród których na pierwszym planie znajduje się szeroko pojęta dbałość o dobrostan wszystkich istot żywych, ale także środowiska. W kontekście przeprowadzonych w niniejszej pracy badań dbałość ta mogła przełożyć się na kilka aspektów dietetycznych, m.in. bardziej świadomy wybór produktów spożywczych, warzyw i owoców, w tym produktów pochodzenia ekologicznego przez wieloletnich wegetarian. Można przypuszczać, iż jakość żywności pochodzącej z takich gospodarstw jest wyższa, co może przełożyć się także na zawartość poszczególnych składników odżywczych w tych produktach. Równocześnie doświadczenie w przygotowywaniu posiłków wegetariańskich, nabywane przez wiele lat, a także duża świadomość zdrowotna związana także z filozofią wegetarianizmu jest ułatwieniem zarówno w przygotowywaniu posiłków jak również ich świadomej konsumpcji.

Jak zaznaczono w rozdziale poświęconym metodyczce pracy ochotnicy decydujący się na zmianę sposobu żywienia na wegetariański w okresie 5-ciu tygodni zostali poinformowani o teoretycznych zasadach stosowania diety, o specyfice diety, otrzymali również jasno nakreślony jadłospis, uwzględniający również metody przygotowania posiłków. Równocześnie jednak w kwestionariuszu uzupełnianym po zakończeniu eksperymentu, deklarowali przestrzeganie rozpisaną diety średnio w 85%. Popełniane odstępstwa wynikały najczęściej z braku czasu przeznaczanego na właściwe przygotowanie dań jak również...
odczucia sytości, a w konsekwencji zmniejszenia ilości dostarczanego pożywienia. W wyniku wskazanych odstępstw, jak również braku wieloletniego doświadczenia i innego światopoglądu krótkoterminowa dieta wegetariańska mogła skutkować odrębnymi skutkami metabolicznymi a w konsekwencji opisanymi różnicami w zakresie badań biochemicznych.

Podsumowując różnice uzyskane pomiędzy grupami badawczymi można przypuszczać, iż dieta lakoowo-wegetariańska może mieć istotny wpływ na układ antyoksydacyjny i znamienne zwiększać zasoby witaminy C w surowicy krwi. Równocześnie należy zaznaczyć, iż dodatni wpływ tego sposobu żywienia na stężenie witamin antyoksydacyjnych, w tym witaminy C najprawdopodobniej dotyczy wyłącznie diety lakoowo-wegetariańskiej stosowanej długookresowo. W porównaniu z dostępnymi danymi literaturowymi nie wykazano pozytywnej korelacji pomiędzy długoterminowym stosowaniem diety lakoowo-wegetariańskiej a wzrostem stężenia pozostałych witamin antyoksydacyjnych tj. A i E. Być może odmienności te związane są z jakością żywności oraz zwyczajami żywieniowymi występującymi w naszej szerokości geograficznej. Nie wykazano również ujemnego wpływu długoterminowej diety lakoowo-wegetariańskiej na omawiane wykładyki stanu odżywienia. Z uwagi na prawidłowe wartości morfologii krwi, zaobserwowane obniżenie stężenia żelaza w porównaniu do próby kontrolnej nie stanowi podstaw do stwierdzenia ryzyka wystąpienia jego niedoborów. Równocześnie jednak niższe średnie stężenie witaminy B₁₂ we krwi długoterminowych lakoowo-wegetarian w odniesieniu do grupy kontrolnej może sugerować ograniczenie zasobów ogólnoustrojowych witaminy B₁₂ u tych osób. W związku ze stosunkowo częstym występowaniem polymorfizmu genu MTHFR warto zwrócić uwagę na molekularne konsekwencje obniżenia stężenia tej witaminy u osób z wymienionym wariantem genetycznym.

Krótkoterminowy wariant diety lakoowo-wegetariańskiej może wywoływać przejściowe zaburzenia w stanie odżywienia organizmu wywołane radykalną zmianą jakości diety, zwiększeniem ilości białka roślinnego, a w konsekwencji tymczasową dysfunkcję mikroflory jelitowej i zaburzeniami w procesach wchłaniania substancji odżywczych. W związku z prawdopodobnymi mechanizmami adaptacyjnymi dotyczącymi m.in. składu mikroflory jelitowej, a także możliwym zaburzeniem procesów wchłaniania, w przypadku krótkoterminowego stosowania diety nie obserwuje się dodatkowych zmian w stężeniu witamin A, C i E. Może natomiast dochodzić do obniżenia stężenia witamin antyoksydacyjnych we krwi, wskutek zaznaczonych zaburzeń. Wykładnikami biochemicznymi wskazującymi na powyższe przypuszczenia są: obniżenie wartości parametrów morfologii krwi związanych z metabolizmem żelaza oraz witaminy B₁₂, a także
obniżenie stężenia witaminy E. Równocześnie 5-cio tygodniowa dieta laktoowowegetariańska skutkuje utratą masy ciała.

Porównując wpływ diety krótkoterminowej i długoterminowej na zawartość witamin antyoksydacyjnych we krwi a także stan odżywienia należy zaznaczyć, iż wariant wieloletni może stanowić korzystną alternatywę wobec diety tradycyjnej dla stanu zdrowia. Krótkoterminowe stosowanie tego rodzaju diety wymaga dalszych badań w zakresie zmian, do których dochodzi w krótkim czasie od zmiany sposobu żywienia. Równocześnie można założyć, iż okres 5-ciu tygodni nie jest okresem wystarczającym do wystąpienia korzystnych zmian w stężeniu witamin antyoksydacyjnych, jak również zmian świadczących o poprawie stanu odżywienia i stanu zdrowia ochotników. Można spodziewać się także, iż przy dłuższym niż 5 tygodni okresie stosowania diety laktoowowegetariańskiej niekorzystne tendencje odzwierciedlające niedoborowy sposób żywienia mogłyby ulec zmianie wskutek adaptacji organizmu do innej jakości diety. Warto zaznaczyć jednak, iż krótkoterminowy wariant tego rodzaju diety znamiennie redukuje masę ciała, co może być istotną korzyścią w stosowaniu tej diety u osób ze skłonnością do wystąpienia otyłości lub z nadmierną masą ciała.
Wnioski

Przeprowadzone badania upoważniają do wyciągnięcia następujących wniosków:

1. W przypadku wszystkich parametrów, których wartości w obrębie poszczególnych grup różniły się istotnie statystycznie, uzyskane wyniki mieściły się w granicach norm referencyjnych.

2. Odrębności stosowania diety długoterminowej w porównaniu z tradycyjną dotyczą stężenia witaminy C oraz żelaza we krwi. Stężenie witaminy C u osób stosujących długoterminową dietę lakoowowvegetariańską było znamiennie wyższe niż u osób odżywiających się w sposób tradycyjny. Odwrotna sytuacja miała miejsce w przypadku stężenia żelaza.

3. Działanie krótkoterminowej diety lakoowowvegetariańskiej jest wielokierunkowe. Obejmuje istotne zmiany parametrów morfologii krwi, stężenia niektórych witamin we krwi, masy ciała i wiąże się z pojawieniem dolegliwości gastrycznych w trakcie trwania diety. 5-cio tygodniowa dieta lakoowowvegetariańska wywołała znamienną obniżenie masy ciała, wartości RBC, HGB, HCT, MCV oraz stężenia witaminy B_12 i witaminy E w stosunku do stanu przed zmianą sposobu żywienia. Zaobserwowano natomiast wzrost średniego stężenia hemoglobiny w krwince.

4. Działanie długoterminowej diety lakoowowvegetariańskiej w porównaniu z krótkoterminowym jej wariantem różni się w zakresie stężeń we krwi badanych witamin oraz parametrów morfologii krwi. Zawartość witaminy C oraz wartości MCV i MCH były istotnie wyższe u lakoowowvegetarian długoterminowych niż w grupie doświadczalnej po zastosowaniu krótkoterminowej diety lakoowowvegetariańskiej.

5. Na podstawie uzyskanych wyników można sformułować przypuszczenie, iż długoterminowy wariant diety lakoowowvegetariańskiej może być dobrą alternatywą dla diety tradycyjnej. Natomiast wykorzystanie krótkoterminowego wariantu tej diety, np. w terapii uzupełniającej niektórych zaburzeń chorobowych, sugeruje, iż okres 5-ciu tygodni stosowania diety lakoowowvegetariańskiej jest zbyt krótki na adaptację przewodu pokarmowego do tego sposobu żywienia.
Streszczenie


W pracy podjęto próbę porównania stężenia witamin antyoksydacyjnych A, C i E oraz stanu odżywienia u osób stosujących różnoterminowe diety laktoowowegetariańskie; długoterminową (trwającą ≥3 lata) oraz krótkoterminową stosowaną przez okres 5-ciu tygodni. Uzyskane wyniki wskazują na potencjalne korzyści zdrowotne wynikające z długoterminowego stosowania diety laktoowowegetariańskiej związane z istotnym wzrostem stężenia witaminy C we krwi w porównaniu z osobami stosującymi tradycyjny sposób żywienia. Wykazano również niższe lecz mieszczące się w granicach wartości referencyjnych, stężenie żelaza we krwi laktoowowegetarian. Pozostałe wykładniki stanu odżywienia nie różni się istotnie w obu grupach. 5-cio tygodniowa dieta laktoowowegetariańska skutkowała zmniejszeniem masy ciała, obniżeniem stężenia witaminy E oraz B₁₂, a także obniżeniem wartości parametrów morfologii krwi takich jak: RBC, HGB, HCT, MCV, MCH. Wszystkie określone w tej grupie badawczej parametry mieściły się w granicach wartości referencyjnych. Zmiana sposobu żywienia na laktoowowegetariański mogła stanowić przyczynę podkreślanych przez osoby badane zaburzeń gastrycznych. W przeciwieństwie do długoterminowego wariantu diety, okres 5-ciu tygodni prawdopodobnie nie przynosi korzystnych zmian w stężeniu analizowanych antyoksydantów drobnocząsteczkowych we krwi i jest zbyt krótkim okresem adaptacji przewodu pokarmowego i mikroflory jelitowej do zmienionych parametrów jakościowych diety.
Abstract

Vegetarian diet is more and more frequently used as an alternative to the traditional diet. One of its variations is lactooovegetarian diet, considered as the least restrictive form of vegetarianism. Numerous studies confirm the health benefits of lactooovovegetarian diet resulting from high content of antioxidants. At the same time, many studies indicate the health threats and the risk of nutritional deficiencies associated with the use of this type of diet. Moreover, few studies examine the impact of the duration of diet on induced metabolic effects. Simultaneously data for the short-term lactoovovegetarian diet are largely incomplete.

This paper attempts to compare the concentration of antioxidant vitamins A, C and E and nutritional status in individuals on long-term (lasting >3 years) and short-term (5 weeks) lactoovovegetarian diet. The results indicate the potential health benefits of long-term lactoovovegetarian diet associated with a significant increase in the concentration of vitamin C in the blood compared with the traditional way of eating. Lower (but within the limits of the reference values) concentration of iron in the blood of lactoovovegetarians was also indicated. Other markers of nutritional status did not differ significantly between the groups. Moreover, 5-week lactoovovegetarian diet resulted in weight loss, decrease in the concentration of vitamin E and B_{12} as well as the reduction of the blood count parameters such as RBC, HGB, HCT, MCV and MCH. All specified in this group research parameters were within the reference values. Changing traditional way of eating into lactoovevegetarian could be the cause of gastric disorders highlighted by individuals. Contrary to long-term lactoovovegetarian diet, 5 week variant probably does not provide favorable changes in concentration of analyzed small molecule antioxidants in the blood. Moreover this period is too short for adaptation of the gastrointestinal tract and gut microflora to the changed quality parameters of diet.
Piśmiennictwo


33. Czeczot H., Kwas foliowy w fizjologii i patologii, Postepy Hig Med Dosw. 2008; 62: 405-419.


58. Herrmann M., Food security and agricultural development in times of high commodity prices, 2009; 196: 5.
92. Lieberman M.A., Marks A., Peet A., Marks’ basic medical biochemistry, LWW, 2012.
108. Nazarewicz R., Babicz-Zielinska E., Przebieg stresu oksydyjnego w wybranych grupach sportowców w trakcie wysiłków o różnej intensywności, Bromatologia i Chemia Toksykologiczna 2004; 37 Supl.: 65-68.


131. Saja K., Minimalizacja cierpienia zwierząt a wegetarianizm, Analiza i Egzystencja 2013; 22.


134. Santilli F., Guagnano M.T., Vazzana N., Barba S.L., Davi G., Oxidative Stress Drivers And Modulators In Obesity And Cardiovascular Disease: From Biomarkers To Therapeutic Approach, Curr Med Chem. 2014.


150. Traczyk I, Jarosz M., Współczesne poglądy na żywienie wegetariańskie, Żywienie Człowieka i Metabolizm 2010; 37(1).


Spis tabel i rysunków

A. Tabele

Tabela 1. Charakterystyka enzymów antyoksydacyjnych ................................................................. 12
Tabela 2. Zawartość witamin antyoksydacyjnych A, C i E w wybranych produktach spożywczych .......................................................................................... 16
Tabela 3. Ocena wartości odżywczej diety laktoowowegetariańskiej ................................................. 28
Tabela 4. Parametry morfologii krwi, poziomu żelaza oraz witaminy B₁₂ w grupie długoterminowych laktoowowegetarian i grupie porównawczej .................................................. 36
Tabela 5. Stężenie witamin antyoksydacyjnych w krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej ....................................................... 38
Tabela 6. Parametry antropometryczne i wskaźniki składu ciała w grupie długoterminowych laktoowowegetarian i grupie porównawczej ........................................................ 39
Tabela 7. Parametry morfologii krwi, stężenie żelaza oraz witaminy B₁₂ w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) ............... 40
Tabela 8. Stężenie witamin antyoksydacyjnych w krwi w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) ........................................... 44
Tabela 9. Parametry antropometryczne i wskaźniki składu ciała w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) .................................. 45
Tabela 10. Parametry morfologii krwi, stężenie żelaza oraz witaminy B₁₂ w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian .................................. 46
Tabela 11. Stężenie witamin antyoksydacyjnych w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian ................................................................. 48
Tabela 12. Parametry antropometryczne i wskaźniki składu ciała w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian ............................................. 49
Tabela 13. Porównanie wyników badań w grupie długoterminowych laktoowowegetarian i grupie porównawczej ..................................................................................... 50
Tabela 14. Porównanie wyników badań w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) ................................................................. 51
Tabela 15 Porównanie wyników badań w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian ................................................................................. 52
Tabela 16. Jadłospis laktoowowegetariański ......................................................................................... 84

B. Rysunki

Rysunek 1. Schemat wykorzystywanych metod statystycznych .......................................................... 34
Rysunek 2. Stężenie żelaza we krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej [µg/dl] .................................................................................. 37
Rysunek 3. Stężenie witaminy C we krwi [mg/l] w grupie długoterminowych laktoowowegetarian i grupie porównawczej .......................................................... 37
Rysunek 4. Liczba erytrocytów (RBC) we krwi w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [M/µl] .................................................. 41
Rysunek 5. Zawartość hemoglobiny (HGB) we krwi w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [g/dl] ........................................ 41
Rysunek 6. Wartość hematokrytu (HCT) w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [%] ......................................................... 42
Rysunek 7. Średnia objętość krwinki (MCV) w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) ................................................. 42
Rysunek 8. Średnie stężenie hemoglobiny w krwincie (MCHC) w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [g/dl] ........ 43
Rysunek 9. Stężenie witaminy B_{12} w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [pg/ml] ........................................................................ 43
Rysunek 10. Stężenie witaminy E w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [mg/l] ........................................................................ 44
Rysunek 11. Masa ciała w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [kg] ........................................................................ 45
Rysunek 12. Średnia masa hemoglobiny (MCH) w krwinkach w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [pg] .................. 47
Rysunek 13. Średnia objętość krwinki (MCV) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [fl] .................. 48
Rysunek 14. Stężenie witaminy C we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [mg/l] .................................. 49
Rysunek 15. Uproszczony schemat przemian kwasu foliowego oraz homocysteiny .......... 58
Rysunek 16. Liczba erytrocytów (RBC) we krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej [M/μl] .............................................. 93
Rysunek 17. Hematokryt (HCT) krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej [%] .................................................. 93
Rysunek 18. Średnia masa hemoglobiny (MCH) w krwince w grupie długoterminowych laktoowowegetarian i grupie porównawczej [pg] .................. 94
Rysunek 19. Średnie stężenie hemoglobiny w krwince (MCHC) w grupie długoterminowych laktoowowegetarian i grupie porównawczej [g/dl] ........ 94
Rysunek 20. Stężenie witaminy B_{12} we krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej [pg/ml] .................. 95
Rysunek 21. Liczba leukocytów (WBC) we krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej [K/μl] .................. 95
Rysunek 22. Zawartość hemoglobiny (HGB) w krwinkach w grupie długoterminowych laktoowowegetarian i grupie porównawczej [g/dl] .................. 96
Rysunek 23. Średnia objętość krwinki (MCV) w grupie długoterminowych laktoowowegetarian i grupie porównawczej [fl] .................. 96
Rysunek 24. Liczba płytek krwi (PLT) w grupie długoterminowych laktoowowegetarian i grupie porównawczej [K/μl] .................. 97
Rysunek 25. Stężenie witaminy A we krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej [μg/l] .................. 97
Rysunek 26. Stężenie witaminy E we krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej [mg/l] .................. 98
Rysunek 27. Masa ciała w grupie długoterminowych laktoowowegetarian i grupie porównawczej [kg] .................................................. 98
Rysunek 29. Masa mięśniowa w grupie długoterminowych laktoowowegetarian i grupie porównawczej [kg] .................................................. 99
Rysunek 30. Wzrost osób badanych w grupie długoterminowych laktoowowegetarian i grupie porównawczej [cm] .................................................. 100
Rysunek 31. Tkanka tłuszczowa ogółem w grupie długoterminowych laktoowowegetarian i grupie porównawczej [%] .................. 100
Rysunek 32. Zawartość wody w ciele w grupie długoterminowych laktoowowegetarian i grupie porównawczej [%] .................................................. 101
Rysunek 33. Liczba leukocytów (WBC) we krwi w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [K/µl] .................................................. 102
Rysunek 34. Średnia masa hemoglobiny w krwince (MCH) w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [pg] ................ 102
Rysunek 35. Stężenie żelaza we krwi w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [µg/dl]......................................... 103
Rysunek 36. Liczba płytek krwi (PLT) w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [K/µl] .......................................... 103
Rysunek 37. Stężenie witaminy C w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [µg/l]........................................ 104
Rysunek 38. Stężenie witaminy A w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [µg/l]........................................ 104
Rysunek 39. Zawartość tkanki tłuszczowej wisceralnej w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [wskaźnik 1-59] .............. 105
Rysunek 40. Zawartość tkanki mięśniowej w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [kg].................................... 105
Rysunek 41. Zawartość tkanki tłuszczowej ogółem w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [%].............................. 106
Rysunek 42. Zawartość wody w ciele w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [%]........................................ 106
Rysunek 43. Liczba leukocytów (WBC) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [K/µl] ...................................... 107
Rysunek 44. Stężenie witaminy B 12 we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [pg/ml]........................................ 107
Rysunek 45. Liczba erytrocytów (RBC) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [M/µl]................................. 107
Rysunek 46. Zawartość hemoglobiny (HGB) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [g/dl].............................. 108
Rysunek 47. Wartość hematokrytu (HCT) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [%]................................. 109
Rysunek 48. Średnie stężenie hemoglobiny w krwince (MCHC) w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [g/dl] ............... 109
Rysunek 49. Liczba płytek (PLT) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [K/µl]........................................ 110
Rysunek 50. Stężenie żelaza we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [µg/dl]........................................ 110
Rysunek 51. Stężenie witaminy A we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [µg/l]........................................ 111
Rysunek 52. Stężenie witaminy E we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [µg/l]........................................ 111
Rysunek 53. Masa ciała w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [kg]................................................................. 112
Rysunek 54. Zawartość tkanki tłuszczowej wisceralnej w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [wskaźnik 1-59] .............. 112
Rysunek 55. Masa mięśniowa w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [kg]................................................................. 113
Rysunek 56. Wzrost osób badanych w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [cm]............................................. 113
Rysunek 57. Zawartość tkanki tłuszczowej ogółem w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [%].............................. 114

82
Rysunek 58. Zawartość wody w ciele w grupie długoterminowych i grupie krótkoterminowych laktoowowegarian [%].................................................................................................................. 114
**Aneks 1. Jadłospis 5-cio tygodniowej interwencji dietetycznej**

**Tabela 16. Jadłospis laktoowogvegetański**

### DZIEŃ 1

#### Śniadanie

**Pieczywo pełnoziarniste z twarożkiem, ogórkiem kwaszonym, papryką i nasionami słonecznika**

<table>
<thead>
<tr>
<th>Składniki</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75 g</td>
<td>Chleb graham lub inny pełnoziarnisty (ok. 3 kromki)</td>
</tr>
<tr>
<td></td>
<td>10 g</td>
<td>Masło śmietankowe lub oliwa do posmarowania pieczywa (1 łyżka)</td>
</tr>
<tr>
<td></td>
<td>50 g</td>
<td>Ser twarogowy półtłusty (1/4 opakowania)/humus - kilka dużych łyżek</td>
</tr>
<tr>
<td></td>
<td>100 g</td>
<td>Ogórek kwaszony (1 duża szt.)</td>
</tr>
<tr>
<td></td>
<td>50 g</td>
<td>Papryka czerwona (ok. 4 plastry)</td>
</tr>
<tr>
<td></td>
<td>20 g</td>
<td>Słonecznik, nasiona 2 łyżki</td>
</tr>
</tbody>
</table>

**Uwagi**

Zamiast sera twarogowego można wykorzystać „twarożek wiejski” w kubeczkuku lub HUMUS (przepis – por. dalej).

#### Drugie śniadanie

**Płatki owsiane z mlekiem lub jogurtem, z jabłkiem i bakaliami**

<table>
<thead>
<tr>
<th>Składniki</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 g</td>
</tr>
<tr>
<td></td>
<td>150 g</td>
</tr>
<tr>
<td></td>
<td>200 g</td>
</tr>
<tr>
<td></td>
<td>10 g</td>
</tr>
<tr>
<td></td>
<td>10 g</td>
</tr>
<tr>
<td></td>
<td>10 g</td>
</tr>
</tbody>
</table>

**Uwagi**

Jabłko może być świeże, pieczone lub suszone.

#### Trzecie śniadanie

**Jogurt z owocami**

<table>
<thead>
<tr>
<th>Składniki</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200 g</td>
</tr>
</tbody>
</table>

**Uwagi**

Jogurt naturalny można zmieszać z owocami np. rozmrożonymi truskawkami i łyżeczką lub dwoma miód lub brązowego cukru, malinami lub spożyć gotowy zakupiony w sklepie o dowolnym smaku.

#### Obiad

**Kasza jaglana z leczo warzywnym**

<table>
<thead>
<tr>
<th>Składniki</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80 g</td>
</tr>
<tr>
<td>Leczo:</td>
<td>100 g</td>
</tr>
<tr>
<td></td>
<td>150 g</td>
</tr>
<tr>
<td></td>
<td>200 g</td>
</tr>
<tr>
<td></td>
<td>50 g</td>
</tr>
<tr>
<td></td>
<td>25 g</td>
</tr>
<tr>
<td></td>
<td>10 g</td>
</tr>
</tbody>
</table>

**Sposób przygotowania**

Warzywa umyć, cukinię obrać, wszystkie składniki wymieścić i gotować aż warzywa papryka i cukinia będą miękkie. Jeśli jest to

Fasolka może być ugotowana samodzielnie (najlepiej wcześniej - bo czas gotowania jest dość długi) lub z puszki, może być dowolnego koloru.

Kolacja

Ryż pełnoziarnisty z sosem pomidorowo – ziołowym z pieczarkami

Składniki:

<table>
<thead>
<tr>
<th>Waga</th>
<th>Warzywo/Przysmak</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 g</td>
<td>Ryż brązowy</td>
</tr>
<tr>
<td>100 g</td>
<td>Cukinia (mała sztuka)</td>
</tr>
<tr>
<td>150 g</td>
<td>Papryka</td>
</tr>
<tr>
<td>50 g</td>
<td>Pieczarki smażone</td>
</tr>
<tr>
<td>25 g</td>
<td>Fasola biała, nasiona suche</td>
</tr>
<tr>
<td>100 g</td>
<td>Kukurydza</td>
</tr>
<tr>
<td>200 g</td>
<td>Pomidory – pulpa</td>
</tr>
<tr>
<td>10 g</td>
<td>Olej rzepakowy o obniżonej zawartości kwasu erukowego</td>
</tr>
</tbody>
</table>

Pietruszka świeża do posypania dania

Uwagi

Można wykorzystać obiadowy sos dodając kukurydzę. Można także spożyć drugą porcję obiadu, nie gotując ponownie ryżu.

DZIEŃ 2

Śniadanie

Owsianka z bakaliami

Składniki:

<table>
<thead>
<tr>
<th>Waga</th>
<th>Przysmak</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 g</td>
<td>Płatki owsiane na mleku/ lub z jogurtem</td>
</tr>
<tr>
<td>10 g</td>
<td>Słonecznik, nasiona (łyżka)</td>
</tr>
<tr>
<td>5 g</td>
<td>Miód pszczeli (łyżeczka)</td>
</tr>
</tbody>
</table>

Drugie śniadanie

Owoce / salatka owocowa

Składniki:

<table>
<thead>
<tr>
<th>Waga</th>
<th>Warzywo/Przysmak</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 g</td>
<td>Banan (1 szt.)</td>
</tr>
<tr>
<td>100 g</td>
<td>Jabłka pieczone lub w innej postaci (1 sztuka)</td>
</tr>
<tr>
<td>200 g</td>
<td>Pomarańcza (1 sztuka)</td>
</tr>
</tbody>
</table>

Trzecie śniadanie

Pieczywo pełnoziarniste z żółtym serem

Składniki:

<table>
<thead>
<tr>
<th>Waga</th>
<th>Przysmak</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 g</td>
<td>Ser żółty</td>
</tr>
<tr>
<td>50 g</td>
<td>Ogórek kwaszony</td>
</tr>
<tr>
<td>100 g</td>
<td>Papryka czerwona</td>
</tr>
<tr>
<td>5 g</td>
<td>Oliwa z oliwek</td>
</tr>
<tr>
<td>50 g</td>
<td>Chleb mieszany, słonecznikowy</td>
</tr>
<tr>
<td></td>
<td>Kielki zielone, mała garść</td>
</tr>
</tbody>
</table>

Obiad

Zupa jarzynowa (wielowarzywna)

Składniki:

<table>
<thead>
<tr>
<th>Waga</th>
<th>Przysmak</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 g</td>
<td>Zupa np. „jesienna” lub „jarzynowa”, (mrożona) z dodatkiem ziemniaka lub ugotowana z na wywarze z pokrojonych: marchwi, fasolki</td>
</tr>
</tbody>
</table>
zielonej, pietruszki, brukselki, ziemniaka

**Kasza gryczana (makaron pełnoziarnisty) z sosem pomidorowym z soczewicą i ziołami**

<table>
<thead>
<tr>
<th>Składniki:</th>
<th>50 g</th>
<th>Kasza gryczana (ok. pół torebki)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sos:</td>
<td>200 g</td>
<td>Pomidory - pulpa (szklanka)</td>
</tr>
<tr>
<td></td>
<td>150 g</td>
<td>Soczewica, nasiona suche lub z puszki (1/3 puszki)</td>
</tr>
<tr>
<td></td>
<td>100 g</td>
<td>Pieczarka (2 garści)</td>
</tr>
<tr>
<td></td>
<td>100 g</td>
<td>Marchew (1 szt.)</td>
</tr>
<tr>
<td></td>
<td>50 g</td>
<td>Cebula (połówka)</td>
</tr>
<tr>
<td></td>
<td>20 g</td>
<td>Ser, Edamski tłusty (2 łyżki tarkowanego sera, lub duży plaster)</td>
</tr>
<tr>
<td></td>
<td>25 g</td>
<td>Olej rzepakowy</td>
</tr>
<tr>
<td></td>
<td>100 g</td>
<td>Buraczki (surówka)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Świeża bazylia</td>
</tr>
</tbody>
</table>

**Kolacja**

**Pieczywo pełnoziarniste z pestkami dyni, serkiem kanapkowym ogórkiem kwasszym, papryką, cebulką**

| Składniki: | 40 g | Chleb graham                      |
|           | 50 g | Serek twarogowy, homogenizowany   |
|           | 20 g | Dynia, pestki                     |
|           | 100 g| Ogórki kwasszy, czerwone          |
|           | 20 g | Cebula                            |

**Uwagi**

Serek kanapkowy - dowolny, warto by był jak najbardziej naturalny (może być także twarożek wiejski, homogenizowany lub twaróg)

**DZIEŃ 3**

**Śniadanie**

**Owsianka z jabłkiem i pestkami słonecznika lub płacki owsiane**

| Składniki: | 200 g | Jabłko – tarkowane, pieczone, lub świeże (2 szt.) |
|           | 200 g | Płatki owsiane na mleku, jogurcie / lub placuszki owsiane |
|           | 15 g  | Słonecznik, nasiona (duża łyżka) |

**Sposób przygotowania**


**Drugie śniadanie**

**Sok przecierowy z surówką z orzechami włoskimi / laskowymi - dla osób nietolerujących orzechów włoskich**

| Składniki: | 300 g | Sok wielowarzywny lub wyciskany z owoców |
|           | 150 g | Surówka z marchwi i jabłek (3/4 szklanki) |
|           | 30 g  | Orzechy włoskie (2 łyżki) |

**Uwagi**

Wielowarzywny, Jabłkowo-buraczany, Jabłkowo-marchwiowy, Marchwiowy, Jabłkowy
### Trzecie śniadanie
**Salatka z brązowego ryżu z papryką**

**Składniki:**
- 50 g Ryż brązowy (pół torebki)
- 100 g Papryka czerwona (polówka)
- 100 g Papryka zielona (polówka)
- 50 g Ogórek kwaszony (1 sztuka)
- 20 g Cebula (polówka małej główki)
- 20 g Słonecznik, nasiona (2 łyżki)
- 5 g Olej rzepakowy

**Natka pietruszki**

**Uwagi**
Ugotowany ryż zmieszaj z pozostałymi pokrojonymi składnikami i podprażonym słonecznikiem

### Obiad
**Zapiekana papryka z kaszą gryczną fasolką czerwoną i pleśniowym serem. Brokuły**

**Składniki:**
- 300 g Papryka czerwona (2 wydrążone sztuki)
- 100 g Kasza gryczana/ryż (1 torebka)
- 150 g Fasolka konserwowa czerwona (ok. pół puszki)
- 10 g Oliwki zielone
- 45 g Ser typu rokpol lub żółty (ok. 3 łyżek)
- 100 g Brokuł zielony gotowany

**Uwagi**
Dla osób nietolerujących gryki: Papryka zapiekana z ryżem pełnoziarnistym, żółtym serem, oregano, oliwkami, kukurydzą i fasolką.

### Kolacja
**Pieczywo pełnoziarniste z jajkiem i ogórkiem**

**Składniki:**
- 50 g Bułka grahamka (1 szt.)
- 10 g Masło ekstra lub oliwa z oliwek (łyżeczka)
- 100 g Ogórek kwaszony (1 szt., duży)
- 100 g Jaja gotowane (2 szt.)
- 20 g Dynia, pestki (2 łyżki)
- Kielki zielone

### Dzień 4
**Śniadanie**
**Owsianka z bakaliami**

**Składniki:**
- 200 g Płatki owsiane na mleku (duża szklanka)
- 20 g Orzechy włoskie (2 łyżki)
- 10 g Słonecznik, nasiona (łyżka)
- 10 g Rodzynki, suszzone (łyżka)

**Uwagi**
Orzechy włoskie można zastąpić laskowymi. Rodzynki - pokrojoną figą lub 2 daktylami

**Drugi śniadanie**
**Sałatka owocowa z mleczną bułką**

**Składniki:**
- 400 g Pomarańcza (2 małe sztuki)
200 g Grejpfrut (polówka)
10 g Sezam, nasiona (łyżka)
20 g Dynia, pestki (2 łyżki)
20 g Daktyle lub figi, suszone (2-3 sztuki)
5 g Miód pszczeli (łyżeczka)
50 g Bułka mleczna (1 sztuka)

**Trzecie śniadanie**

Pieczywo pełnoziarniste z żółtym serem lub humusem

Składniki:
- 60 g Chleb mieszany, słonecznikowy (2 kromki)
- 50 g Papryka czerwona (kilka plastrów)
- 25 g Ser żółty lub humus ok. 2 łyżki
- 10 g Dynia, pestki (ok. 1 łyżka)

**Obiad**

Ziemniaki z fasolką szparagową i jajkiem sadzonym

Składniki:
- 250 g Ziemniaki puree lub zwykłe (3 sztuki)
- 100 g Fasolka szparagowa, mrożona
- 150 g Jaja sadzone (2 jajka)
- 5 g Olej z pestek winogron

**Kolacja**

Krem selerowy lub krem marchwiowo pomarańczowy

Składniki:
- 400 g Włoszczyzna – na wywar
- 150 g Seler korzeniowy
- 200 g Seler naciowy
- 150 g Ziemniaki, średnio (2 szt.)
- 100 g Jogurt naturalny, 2% tłuszczy
- 40 g Mleko spożywce, 2% tłuszczy

Składniki na krem marchwiowy:
- 250 g Marchew (2 duże marchewki)
- 100 g Sok pomarańczowy (pół szklanki)
- 50 g Cebula (pół malej główki)
- 20 g Śmietana, 18% tłuszczy (2 łyżki)
- 5 g Olej rzepakowy (łyżeczka)

**Sposób przygotowania**

Przygotowanie:
Krem z marchwi i pomarańczy:
Marchew oraz cebulkę poddusić, dodać świeżego sok pomarańczowy. Dodać olej. Zmiiksować. Dodać śmietankę

Krem z selerów:

**DZIEŃ 5**

**Śniadanie**

Muesli z bakaliami
### Drugie śniadanie

**Mieszanka bakali z amarantusem i jogurtem**

<table>
<thead>
<tr>
<th>Składniki</th>
<th>Waga (g)</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muesli z rodzynkami i orzechami (4 duże łyżki)</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Mleko spożywcowe, 2% tłuszczu lub jogurt</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Dynia, pestki (2 łyżki)</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

### Trzecie śniadanie

**Świeża surówka**

<table>
<thead>
<tr>
<th>Składniki</th>
<th>Waga (g)</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figi, suszone ok. (ok. 5 szt.)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Orzechy włoskie (3 sztuki)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Słonecznik, nasiona łyżka</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Dynia, pestki (2 duże łyżki)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Jogurt naturalny, 2% tłuszczu (duży kubek)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Miód pszczeli (2 łyżeczki)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Płatki owsiane lub amarantus ekspandowany</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

### Obiad

**Zupa ogórkowa lub pomidorowa**

<table>
<thead>
<tr>
<th>Składniki</th>
<th>Waga (g)</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zupa ogórkowa (szklanka)</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

**Sposób przygotowania**

**Ogórkowa:** pokroić w kostkę kilka ziemniaków, kilka dużych marchwi, 1 pietruszkę, zagotować. Gdy warzywa będą miękkie dodać kiszone tarkowane ogórki, - kilka sztuk i olej rzepakowy ok. 1 łyżka na porcję. Doprawić solą i pieprzem. Można wykorzystać zupę mrożoną.

**Pomidorowa:** Pulpę pomidorową rozcieńczyć nieznacznie wodą, zagotować. Doprawić solą, pieprzem i dodać oleju rzepakowego (ok. 1 łyżka na porcję). Podawać z 1-2 łyżkami makaronu pełnoziarnistego

**Pełnoziarniste spaghetti z zielonym groszkiem**

<table>
<thead>
<tr>
<th>Składniki</th>
<th>Waga (g)</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groszek zielony</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Pomidory- pulpa</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Makaron pełnoziarnisty (po ugotowaniu 1-2 szklanki)</td>
<td>75</td>
<td>przyprawy do sosu - zioła prowansalskie, bazylia, oregano, pieprz , sól</td>
</tr>
</tbody>
</table>

### Kolacja

**Sałatka z gotowanych buraczków z nasionami słonecznika, pieprzem, bazylią, oliwkami i serem feta. Pieczywo pełnoziarniste.**

<table>
<thead>
<tr>
<th>Składniki</th>
<th>Waga (g)</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buraki gotowane (ok. szklanka utartych)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Słonecznik, nasiona (duża łyżka)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Oliwki zielone marynowane, konserwowe(łyżka)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ser typu &quot;Feta&quot; (1/4 op)/ cieciorka – kilka łyżek</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Chleb żytni razowy z soją i słonecznikiem (2 kromki)</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Oliwa z oliwek</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

**Sposób przygotowania**

Buraki pokroić, doprawić, posypać pestkami, rozkruszoną feta, solą i pieprzem.
## DZIEŃ 6

### Śniadanie

**Jajka gotowane lub jajecznica z pieczywem pełnoziarnistym, pomidorem lub papryką i ogórkem kwaszonym**

<table>
<thead>
<tr>
<th>Składniki:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90 g Jaja gotowane (2 szt.)</td>
<td></td>
</tr>
<tr>
<td>70 g Chleb żytni (2 kromki)</td>
<td></td>
</tr>
<tr>
<td>100 g Pomidor / ogórek / papryka /</td>
<td></td>
</tr>
<tr>
<td>5 g Majonez kielki zielone</td>
<td></td>
</tr>
</tbody>
</table>

### Drugie śniadanie

**Makaron pełnoziarnisty ze szpinakiem i cieciorką**

<table>
<thead>
<tr>
<th>Składniki:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100 g Makaron, gotowany (ok. 2 szklanki po ugotowaniu)</td>
<td></td>
</tr>
<tr>
<td>150 g Szpinak</td>
<td></td>
</tr>
<tr>
<td>10 g Śmietana, 18% tłuszczu (łyżka)</td>
<td></td>
</tr>
<tr>
<td>5 g Czosnek</td>
<td></td>
</tr>
<tr>
<td>20 g Cebula (kilka plastrów)</td>
<td></td>
</tr>
<tr>
<td>15 g Oliwa z oliwek (ok. 2 łyżki)</td>
<td></td>
</tr>
<tr>
<td>100 g cieciorka (1/3 puszki)</td>
<td></td>
</tr>
</tbody>
</table>

**Sposób przygotowania**


### Obiad

**Zupa ogórkowa lub pomidorowa lub krem**

**Talerz gotowanych warzyw z prażonymi nasionami soi**

<table>
<thead>
<tr>
<th>Składniki:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>250 g Zupa ogórkowa/pomidorowa</td>
<td></td>
</tr>
</tbody>
</table>

**Składniki:**

| 100 g Marchew (1 sztuka) |  |
| 100 g Brokuły (ok. 5 różyczek) |  |
| 250 g Ziemiaki (3-4 sztuki) |  |
| 70 g Fasola biała lub czerwona (ok. 1/3 puszki) |  |
| 100 g Soja, kielki - podprażone ze szczypta soli (lub kielki tzw. na patelnice, wielkoziarniste) |  |
| 5 g Masło ekstra lub oliwa / olej (do skroplenia dania) |  |

**Uwagi**

Zamiast brokułów na drugie danie, można przyrządzić krem brokułowy - jako zupę.

### Podwieczorek

**Ryż brązowy na słodko (lub na słono)**

<table>
<thead>
<tr>
<th>Składniki:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200 g Maliny, mrożone</td>
<td></td>
</tr>
<tr>
<td>100 g Ryż brązowy</td>
<td></td>
</tr>
<tr>
<td>10 g Olej rzepakowy tłoczony na zimno</td>
<td></td>
</tr>
</tbody>
</table>

**Sposób przygotowania**

Na słodko: Ryż ugotować, podawać z rozmróżonymi podgrzanymi malinami i w razie potrzeby dosłodzony niewielką ilością miodu. Na słono: Śniadanie III dzień 3.

### Kolacja

**Twarożek lub humus z grahampką lub pełnoziarnistym pieczywem i sałatką**
ogórkową

Składniki:

100 g Serek twarogowy ziarnisty /humus
10 g Masło śmietankowe lub łyżka oliwy/oleju
50 g Bułka grahamka 1szt.
80 g Papryka czerwona ok. pół 1 sztuki
100 g Ogórek kwaszony(2 sztuki)
250 g Sok pomidorowy lub warzywny: buraczano-jabłkowy, marchwiowo-selerowy

Sposób przygotowania
Paprykę posiekać, ogórek pokroić, zmieszać. Podawać z kilkoma krążkami cebulki, pieprzem i oliwą.

DZIEŃ 7

Śniadanie

Sałatka owocowa z muesli, nasionami, orzechami i jogurtem

Składniki:

150 g Banan (1 duża szt.)
100 g Jabłko (1 szt.)
50 g Śliwki suszone lub rozrożone podawane na ciepło 5-8 szt.
15 g Rodzynki, suszone (1 duża łyżka)
15 g Orzechy włoskie lub laskowe (1 łyżka)
200 g Jogurt naturalny, 2% tłuszczu
10 g Słonecznik, nasiona (1 łyżka)
50 g Muesli z owocami suszonymi (ok. 5 dużych łyžek)

Drugie śniadanie

Płatki owsiane z sezamem i jogurtem owocowym

Składniki:

80 g Płatki owsiane (5-8 łyżej)
10 g Sezam, nasiona
150 g Jogurt morelowy, 1,5% tłuszczu

Sposób przygotowania
Jogurt owocowy może być przygotowany na bazie owoców rozrożonych i jogurtem naturalnego.

Obiad

Jajka sadzone lub kotlety z ziemniakami i mizerią

Składniki:

200 g Ziemniaki, średnio (ok. 3 sztuki)
200 g Mizeria z naturalnym jogurtem
100 g Kotlety z jaj, smażone lub 2 jajka sadzone
100 g Brokuły gotowane

Podwieczorek

Koktajl z owocami

Składniki:

250 g Kefir, 2% tłuszczu
100 g Truskawki, mrożone

Kolacja

Kanapki

Składniki:

50 g Chleb pełnoziarnisty (ok. 2 kromki-3 kromki)
100 g Ogórek kiszony
<table>
<thead>
<tr>
<th>40 g</th>
<th>Ser żółty lub humus (ok. 2 plastry lub 2 łyżki)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 g</td>
<td>Soja, prażone kiełki</td>
</tr>
<tr>
<td>15 g</td>
<td>Dynia, pestki</td>
</tr>
</tbody>
</table>
Aneks 2. Graficzne porównanie wyników badań w grupie długoterminowych laktoowowegetarian i grupie porównawczej – uzupelnienie

Rysunek 16. Liczba erytrocytów (RBC) we krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej [M/μl]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 17. Hematokryt (HCT) krwi w grupie długoterminowych laktoowowegetarian i grupie porównawczej [%]

Źródło: Opracowanie na podstawie badań własnych
Rysunek 18. Średnia masa hemoglobiny (MCH) w krwince w grupie długoterminowych laktoowowegarian i grupie porównawczej [pg]

źródło: Opracowanie na podstawie badań własnych

Rysunek 19. Średnie stężenie hemoglobiny w krwince (MCHC) w grupie długoterminowych laktoowowegarian i grupie porównawczej [g/dl]

źródło: Opracowanie na podstawie badań własnych
Rysunek 20. Stężenie witaminy B₁₂ we krwi w grupie długoterminowych laktoowowektarian i grupie porównawczej [pg/ml]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 21. Liczba leukocytów (WBC) we krwi w grupie długoterminowych laktoowowektarian i grupie porównawczej [K/μl]

Źródło: Opracowanie na podstawie badań własnych
Rysunek 22. Zawartość hemoglobiny (HGB) w krwinkach w grupie długoterminowych laktoowowegietarian i grupie porównawczej [g/dl]

źródło: opracowanie na podstawie badań własnych

Rysunek 23. Średnia objętość krwinki (MCV) w grupie długoterminowych laktoowowegietarian i grupie porównawczej [fl]

źródło: opracowanie na podstawie badań własnych
Rysunek 24. Liczba płytek krwi (PLT) w grupie długoterminowych laktoowowegarian i grupie porównawczej [K/μl]
źródło: opracowanie na podstawie badań własnych

Rysunek 25. Stężenie witaminy A we krwi w grupie długoterminowych laktoowowegarian i grupie porównawczej [μg/l]
źródło: opracowanie na podstawie badań własnych
Rysunek 26. Stężenie witaminy E we krwi w grupie długoterminowych laktoowolaktoowegarian i grupie porównawczej [mg/l]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 27. Masa ciała w grupie długoterminowych laktoowolaktoowegarian i grupie porównawczej [kg]

Źródło: Opracowanie na podstawie badań własnych
Rysunek 28. Tkanka tłuszczowa wisceralna w grupie długoterminowych laktoowowegarian i grupie porównawczej [wskaźnik 1-59]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 29. Masa mięśniowa w grupie długoterminowych laktoowowegarian i grupie porównawczej [kg]

Źródło: Opracowanie na podstawie badań własnych
Rysunek 30. Wzrost osób badanych w grupie długoterminowych laktoowowegetarian i grupie porównawczej [cm]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 31. Tkanka tłuszczowa ogółem w grupie długoterminowych laktoowowegetarian i grupie porównawczej [%]

Źródło: Opracowanie na podstawie badań własnych
### Średnia ± Błąd std

<table>
<thead>
<tr>
<th>Zawartość wody (%)</th>
<th>badana</th>
<th>kontrolna</th>
</tr>
</thead>
<tbody>
<tr>
<td>54,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Rysunek 32. Zawartość wody w ciele w grupie długoterminowych laktoowowegetarian i grupie porównawczej [%]**

źródło: Opracowanie na podstawie badań własnych
Aneks 3. Graficzne porównanie wyników badań w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) – uzupełnienie

Rysunek 33. Liczba leukocytów (WBC) we krwi w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [K/µl]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 34. Średnia masa hemoglobiny w krwince (MCH) w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [pg]

Źródło: Opracowanie na podstawie badań własnych
Rysunek 35. Stężenie żelaza w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [µg/dl]
źródło: Opracowanie na podstawie badań własnych

Rysunek 36. Liczba płytek krwi (PLT) w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [K/µl]
źródło: Opracowanie na podstawie badań własnych
### Rysunek 37. Stężenie witaminy C w grupie krótkoterminowych laktoowowegretarian (przed i po interwencji dietetycznej) [mg/l]

źródło: opracowanie na podstawie badań własnych

<table>
<thead>
<tr>
<th>Wit. C (mg/L)</th>
<th>Średnia</th>
<th>Średnia±Błąd std</th>
<th>Średnia±1,96*Błąd std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomiar I</td>
<td>440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomiar II</td>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>520</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>540</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>580</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Rysunek 38. Stężenie witaminy A w grupie krótkoterminowych laktoowowegretarian (przed i po interwencji dietetycznej) [µg/l]

źródło: Opracowanie na podstawie badań własnych

<table>
<thead>
<tr>
<th>Wit. A (µg/L)</th>
<th>Średnia</th>
<th>Średnia±Błąd std</th>
<th>Średnia±1,96*Błąd std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomiar I</td>
<td>440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomiar II</td>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>520</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>540</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>580</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rysunek 39. Zawartość tkanki tłuszczowej wisceralnej w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [wskaźnik 1-59]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 40. Zawartość tkanki mięśniowej w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [kg]

Źródło: Opracowanie na podstawie badań własnych
Rysunek 41. Zawartość tkanki tłuszczowej ogółem w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [%]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 42. Zawartość wody w ciele w grupie krótkoterminowych laktoowowegetarian (przed i po interwencji dietetycznej) [%]

Źródło: Opracowanie na podstawie badań własnych
Aneks 4. Graficzne porównanie wyników badań w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian – uzupełnienie

Rysunek 43. Liczba leukocytów (WBC) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [K/µl]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 44. Stężenie witaminy B12 we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegetarian [pg/ml]

Źródło: Opracowanie na podstawie badań własnych
Rysunek 45. Liczba erytrocytów (RBC) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowegarian [M/µl]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 46. Zawartość hemoglobiny (HGB) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowegarian [g/dl]

Źródło: Opracowanie na podstawie badań własnych
Rysunek 47. Wartość hematokrytu (HCT) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowogwetarian [%]

Źródło: Opracowanie na podstawie badań własnych

Rysunek 48. Średnie stężenie hemoglobiny w krwine (MCHC) w grupie długoterminowych i grupie krótkoterminowych laktoowogwetarian [g/dl]

Źródło: Opracowanie na podstawie badań własnych
Rysunek 49. Liczba płytek (PLT) we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegarian [K/μl]

źródło: Opracowanie na podstawie badań własnych

<table>
<thead>
<tr>
<th>Grupa</th>
<th>200</th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
<th>260</th>
<th>270</th>
<th>280</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT (K/μl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 50. Stężenie żelaza we krwi w grupie długoterminowych i grupie krótkoterminowych laktoowowegarian [μg/dl]

źródło: Opracowanie na podstawie badań własnych

<table>
<thead>
<tr>
<th>Grupa</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Żelazo (μg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Box plot for PLT and Zelazo](image.png)
Rysunek 51. Stężenie witaminy A we krwi w grupie długoterminowych i grupie krótkoterminowych laktowo-woogietarian [μg/l]

źródło: Opracowanie na podstawie badań własnych

Rysunek 52. Stężenie witaminy E we krwi w grupie długoterminowych i grupie krótkoterminowych laktowo-woogietarian [mg/l]

źródło: Opracowanie na podstawie badań własnych
Rysunek 53. Masa ciała w grupie długoterminowych i grupie krótkoterminowych laktoowowegarian [kg]
Źródło: Opracowanie na podstawie badań własnych

Rysunek 54. Zawartość tkanki tłuszczowej wisceralnej w grupie długoterminowych i grupie krótkoterminowych laktoowowegarian [wskaźnik 1-59]
Źródło: Opracowanie na podstawie badań własnych
**Rysunek 55. Masa mięśniowa w grupie długoterminowych i grupie krótkoterminowych laktoowowegarian [kg]**

Źródło: Opracowanie na podstawie badań własnych

**Rysunek 56. Wzrost osób badanych w grupie długoterminowych i grupie krótkoterminowych laktoowowegarian [cm]**

Źródło: Opracowanie na podstawie badań własnych
Rysunek 57. Zawartość tkanki tłuszczowej ogółem w grupie długoterminowych i grupie krótkoterminowych laktowo-woogietarian [%]

źródło: Opracowanie na podstawie badań własnych

Rysunek 58. Zawartość wody w ciele w grupie długoterminowych i grupie krótkoterminowych laktowo-woogietarian [%]

źródło: Opracowanie na podstawie badań własnych
Informacja dla pacjenta

Tytuł projektu: „Wpływ diet wegetariańskich na stan odżywienia i poziom wybranych antyoksydantów drobnoząsteczkowych jako wykładników stanu antyoksydacyjnego człowieka”

CZĘŚĆ I projektu - dieta długoterminowa

Bierze Pan/Pani udział w jednoetapowym badaniu klinicznym. Badanie polegać będzie na jednorazowym pobraniu krwi przez wykwalifikowany personel medyczny, w ilości ok. 20 ml.

W realizacji projektu biorą udział osoby stosujące dietę laktoowogewegetariańską lub wegańską co najmniej od 3 lat (grupa badana), jak również osoby odżywiające się w sposób tradycyjny (grupa kontrolna).

Uprzejmie informujemy, iż przy pobieraniu krwi istnieje niebezpieczeństwo powikłań (krwiak, zakażenie), ale statystycznie nie jest ono większe niż przy rutynowym pobieraniu krwi.

Badanie jest dobrowolne.

Świadomie wyrażam zgodę na udział w obserwacji i akceptuję warunki badania

Podpis pacjenta lub opiekuna prawnego
ZGODA PACJENTA:

Przeczytałem(am) informacje zawarte w formularzu zgody na udział w badaniu klinicznym. Uzyskałem(am) odpowiedzi na wszystkie zadane przeze mnie pytania dotyczące udziału w niniejszym badaniu klinicznym. Wiem, że mój udział w tym badaniu jest dobrowolny.

Upoważniam do ujawnienia mojej dokumentacji medycznej Komisji Biotycznej.

Wiem, że otrzymam egzemplarz podpisanej i opatrzonej datą zgody na udział w badaniu klinicznym.

Podpisując tę zgodę nie zrzekam się uprawnień przysługujących mi jako pacjentowi uczestniczącemu w badaniu klinicznym

Wyrażam zgodę na udział w badaniu klinicznym w trakcie realizacji projektu: „Wpływ diet wegetariańskich na stan odżywienia i poziom wybranych antyoksydantów drobnocząsteczkowych jako wykładników stanu antyoksysdyacyjnego człowieka”


Imię i nazwisko pacjenta (literami drukowanymi)

Podpis pacjenta (lub opiekuna prawnego)  Data

Podpis osoby wyjaśniającej zasady świadomej zgody  Data
BADANIE ANKIETOWE

1. Imię i nazwisko ……………………………………………………………………………………………………………………………………………………
   Adres e-mail lub tel. kontaktowy………………………………………………………………………………………………………………………………

2. Data urodzenia………………………………………………………………………………………………………………………………………………

3. Czy mieszka Pan/Pani na terenie województwa wielkopolskiego? (właściwe podkreślić)
   TAK          NIE

4. Jak długo stosuje Pan/Pani dietę laktoowowegetariańską?……………………………………………………………………………………………………………………………………

5. Z jakich źródeł zdobył(a) Pan/Pani wiadomości dotyczące zasad stosowania prawidłowej diety laktoowowegetariańskiej? (właściwe podkreślić)
   a) książki/publikacje naukowe       b) internet/prasa        c) lekarz/dietetyk
   d) koleżanki/koledzy               e) inne - jakie?…………………”

6. Jakie produkty pochodzenia zwierzęcego wyklucza całkowicie Pan/Pani z diety? (wykluczane z diety produkty podkreślić)
   a) mięso i jego przetwory         b) żelatynę i produkty ją zawierające
   c) mleko i jego przetwory         d) jaja
   e) ryby                          f) podpuszczkę

7. Czy zdarza się Panu/Pani nie przestrzegać zasad stosowania prawidłowej diety laktoowowegetariańskiej? Jeśli tak, jak często?
   a) nie zdarza mi się               b) sporadycznie, raz na kilka miesięcy
   c) raz na kilka tygodni           d) kilka razy w tygodni
   e) inna odpowiedź……………………………………………………………………………………………………

8. Czy uprawia Pan/Pani sport? Jeśli tak, jaki rodzaj?
   NIE          TAK…………………………………………………………………………………………………………………………………………

9. Jak często uprawia Pan/Pani sport/ ćwiczenia fizyczne?
   a) raz w miesiącu               b) raz w tygodni               c) kilka razy w tygodni

10. Jak długo trwają powyżej wskazane ćwiczenia fizyczne? (jednorazowo)
    a) 0,5 h                        b) ok. 1 h                        c) 1-2 h                        d) powyżej 2 h
11. Czy cierpi Pan na poniżej wymienione bądź inne choroby przewlekłe? (właściwe podkreślić)
   a) cukrzyca  
   b) choroby serca i układu krążenia  
   c) alergie  
   d) astma  
   e) inne, jakie?……………………………………………………………………

12. Czy stosuje Pani antykoncepcje hormonalną, jeśli tak, jak długo? .....................

13. W jakiej fazie cyklu miesięczkowego była Pani w dniu badania?
   a) w okresie od 1 dnia do ok. 2 tygodni po ostatniej miesiączce
   b) 2 tygodnie i mniej przed kolejną miesiączką
   c) w czasie trwania miesiączki  
   d) inna odpowiedź…………………………

14. Czy stosuje Pani/Pan suplementy diety? Jeśli tak - jakie, jak często?

15. Od kiedy stosuje Pan powyższą suplementację diety?........................................

16. (W sytuacji, gdy obecnie nie stosuje Pan/Pani suplementacji diety) Czy kiedykolwiek stosował(a) Pan/Pani suplementację diety? Ile czasu upłynęło od zakończenia suplementacji do dnia dzisiejszego badania?

17. Ile owoców Pan/Pani spożywa/dzień? (jakie najczęściej?)
   a) 1-2 dziennie  
   b) 3-5 dziennie  
   c) rzadziej niż 1 dziennie  
   d) inne

18. Ile warzyw spożywa Pan/Pani/dzień i w jakiej postaci?
   a) 1-2 porcji dziennie  
   b) 3-5 porcji dziennie  
   c) rzadziej niż 1 porcja dziennie
   d) inne

19. Czy cierpi Pan/Pani na poniżej wskazane nałogi? Od jak dawna?
   a) palenie tytoniu…………………  
   b) picie alkoholu …………………
   c) narkotyki……………………  
   d) inne

20. Czy w ostatnich 3 miesiącach przechodził/a Pan/Pani poważne operacje chirurgiczne lub został Pan Pani dawcą krwi? …………………………………………………

21. Czy jest Pan/Pani honorowym dawcą krwi, jak często oddaje Pan/Pani krew? ………
Informacja dla pacjenta

Tytuł projektu: „Wpływ diet wegetariańskich na stan odżywienia i poziom wybranych antyoksydantów drobnocząsteczkowych jako wykładników stanu antyoksydacyjnego człowieka”

CZĘŚĆ I projektu - dieta długoterminowa (grupa porównawcza)

Bierze Pan/Pani udział w jednoetapowym badaniu klinicznym. Badanie polegać będzie na jednorazowym pobraniu krwi przez wykwalifikowany personel medyczny, w ilości ok. 20 ml.

W realizacji projektu biorą udział osoby stosujące dietę laktooweightariańską lub wegańską co najmniej od 3 lat (grupa badana), jak również osoby odżywiające się w sposób tradycyjny (grupa kontrolna).

Uprzejmie informujemy, iż przy pobieraniu krwi istnieje niebezpieczeństwo powikłań (krwiak, zakażenie), ale statystycznie nie jest ono większe niż przy rutynowym pobieraniu krwi.

Badanie jest dobrowolne.

Świadomie wyrażam zgodę na udział w obserwacji i akceptuję warunki badania

Podpis pacjenta lub opiekuna prawnego
ZGODA PACJENTA:

Przeczytałem(am) informacje zawarte w formularzu zgody na udział w badaniu klinicznym. Uzyskałem(am) odpowiedzi na wszystkie zadane przeze mnie pytania dotyczące udziału w niniejszym badaniu klinicznym. Wiem, że mój udział w tym badaniu jest dobrowolny.

Upoważniam do ujawnienia mojej dokumentacji medycznej Komisji Biotecznej.

Wiem, że otrzymam egzemplarz podpisanej i opatrzonej datą zgody na udział w badaniu klinicznym.

Podpisując tę zgodę nie zrekam się uprawnień przysługujących mi jako pacjentowi uczestniczącemu w badaniu klinicznym.

Wyrażam zgodę na udział w badaniu klinicznym w trakcie realizacji projektu: „Wpływ diet wegetariańskich na stan odżywienia i poziom wybranych antyoksydantów drobnocząsteczkowych jako wykładników stanu antyoksydacyjnego człowieka”

Imię i nazwisko pacjenta (literami drukowanymi)

Podpis pacjenta (lub opiekuna prawnego) Data

Podpis osoby wyjaśniającej zasady świadomej zgody Data
BADANIE ANKIETOWE

1. Imię i nazwisko ..............................................................................................................
   Adres e-mail lub tel. kontaktowy ......................................................................................

2. Data urodzenia ............................................................................................................

3. Czy mieszka Pan/Pani na terenie województwa wielkopolskiego? (właściwe podkreślić) Jeśli nie, proszę wpisać nazwę województwa.
   TAK  NIE

4. Jak często (średnio) spożywa Pan/Pani mięso (nie licząc wędlin, pasztetów itd.)?
   a) 1-2 w tygodniu  b) 3-5 razy w tygodniu  c) codziennie  d)inne

5. Jak często (średnio) spożywa Pan/Pani rybę?
   a) 1-2 w tygodniu  b) 3-5 razy w tygodniu  c) codziennie  d)inne

6. Jaki rodzaj mięsa (poza gatunkami wędlin) jada Pan/Pani najczęściej?
   a) drób  b) wieprzowina  c) wołowina  d)inne (proszę podać jakie)

7. Jaki rodzaj ryb spożywa Pan/Pani najczęściej?
   a) mintaj  b) łosoś  c) dorsz  d)inne (proszę podać jakie)

8. W jaki sposób najczęściej przygotowuje Pan/Pani mięso?
   a) smażenie  b) gotowanie  c) duszenie/pieczenie w folii
   d)inne (proszę podać jakie)

9. Jak często (średnio) spożywa Pan/Pani wędliny, proszę podać rodzaj wędlin?
   a) 1 raz dziennie  b) kilka razy dziennie  c) raz w tygodniu
   d) kilka razy w tygodniu  e)inne

10. Czy Pan/Pani zdaniem dieta która Pan/Pani stosuje jest odpowiednia dla stanu Pan/Pani zdrowia i korzystnie wpływa na jego stan?
11. Z jakich źródeł zdobywa Pan/Pani wiadomości dotyczące zasad stosowania prawidłowej/zbilansowanej diety (właściwie podkreślić)?

b) książki/publikacje naukowe      b) internet/prasa     c) lekarz/dietetyk
d) koleżanki/koledzy                e) moja dieta nie jest właściwie zbilansowana

12. Jakie produkty wyklucza całkowicie Pan/Pani z diety?

........................................................................................................................................................................

13. Czy uprawia Pan/Pani sport? Jeśli tak, jaki rodzaj?

NIE                                           TAK..........................................................................................................................

14. Jak często uprawia Pan/Pani sport/ćwiczenia fizyczne?

a) raz w miesiącu                          b) raz w tygodni                        c) kilka razy w tygodni

d) inne ...........................................................................................................................................................................

15. Jak długo trwają powyżej wskazane ćwiczenia fizyczne? (jednorazowo)

a) 0,5 h                                 b) ok. 1 h                           c) 1-2 h                           d) powyżej 2 h

tak ćwiczenia fizyczne w ... 

16. Czy cierpi Pan na poniżej wymienione bądź inne choroby przewlekłe? (właściwe podkreślić)

a) cukrzyca                              b) choroby serca i układu krążenia    c) alergie

d) astma                                  e) inne, jakie?.................................................................

17. Czy stosuje Pani antykoncepcje hormonalną, jeśli tak, jak długo? .................

18. W jakiej fazie cyklu miesiączkowego była Pani w dniu badania?

a) w okresie od 1 dnia do ok. 2 tygodni po ostatniej miesiączce

b) 2 tygodnie i mniej przed kolejną miesiączką

c) w czasie trwania miesiączki            d) inna odpowiedź.............................

19. Czy stosuje Pani/Pan suplementy diety? Jeśli tak - jakie, jak często?

........................................................................................................................................................................

20. Od kiedy stosuje Pan powyższą suplementację diety?.............................................
21. (W sytuacji, gdy obecnie nie stosuje Pan/Pani suplementacji diety) Czy kiedykolwiek stosował(a) Pan/Pani suplementację diety? Ile czasu upłynęło od zakończenia suplementacji do dnia dzisiejszego badania?

---------------------------------------------------------------------------------------------------------------

22. Ile owoców Pan/Pani spożywa/dzień? (jakie najczęściej?)
a) 1-2 dziennie    b) 3-5 dziennie    c) rzadziej niż 1 dziennie    d) inne

---------------------------------------------------------------------------------------------------------------

23. Ile warzyw spożywa Pan/Pani/dzień i w jakiej postaci?
a) 1-2 porcji dziennie    b) 3-5 porcji dziennie    c) rzadziej niż 1 porcja dziennie

d) inne    .................................................................................................................................

24. Czy cierpi Pan/Pani na poniżej wskazane nałogi? Od jak dawna?

a) palenie tytoniu....................... b) picie alkoholu ......................

c) narkotyki..............................d) inne.............................................

25. Czy jest Pani w ciąży lub w trakcie trwania laktacji?.................................................................

26. Czy w ostatnich 3 miesiącach przechodził/a Pan/Pani poważne operacje chirurgiczne lub został Pan Pani dawcą krwi? .................................................................

27. Czy jest Pan/Pani honorowym dawcą krwi, jak często oddaje Pan/Pani krew? ........

......................................................................................................................................................
Informacja dla pacjenta

Tytuł projektu: „Wpływ diet wegetariańskich na stan odżywienia i poziom wybranych antyoksydantów drobnocząsteczkowych jako wykładowców stanu antyoksydacyjnego człowieka”

CZĘŚĆ II projektu - dieta 5-cio tygodniowa, laktoowowegetariańska

Bierze Pan/Pani udział w dwuetapowym badaniu klinicznym. Badanie polegać będzie na dwukrotnym pobraniu krwi przez wykwalifikowany personel medyczny, w ilości ok. 20 ml, przed rozpoczęciem 5-cio tygodniowej diety laktoowowegetariańskiej i po jej zakończeniu.

W realizacji projektu biorą udział osoby stosujące dietę laktoowowegetariańską w systemie długofalowym lub dietę laktoowowegetariańską trwającą 5 tygodni jak również osoby odżywiające się w sposób tradycyjny (grupa kontrolna).

Uprzejmie informujemy, iż przy pobieraniu krwi istnieje niebezpieczeństwo powikłań (krwiak, zakażenie), ale statystycznie nie jest ono większe niż przy rutynowym pobieraniu krwi.

Badanie jest dobrowolne.

Świadomie wyrażam zgodę na udział w obserwacji i akceptuję warunki badania

Podpis pacjenta lub opiekuna prawnego
ZGODA PACJENTA:

Przeczytałem(am) informacje zawarte w formularzu zgody na udział w badaniu klinicznym. Uzyskałem(am) odpowiedzi na wszystkie zadane przeze mnie pytania dotyczące udziału w niniejszym badaniu klinicznym. Wiem, że mój udział w tym badaniu jest dobrowolny.

Upoważniam do ujawnienia mojej dokumentacji medycznej Komisji Biotycznej.

Wiem, że otrzymam egzemplarz podpisanej i opatrzonej datą zgody na udział w badaniu klinicznym.

Podpisując tę zgodę nie zrzekam się uprawnień przysługujących mi jako pacjentowi uczestniczącemu w badaniu klinicznym

Wyrażam zgodę na udział w badaniu klinicznym w trakcie realizacji projektu: „Wpływ diet wegetariańskich na stan odżywienia i poziom wybranych antyoksydantów drobnocząsteczkowych jako wykładników stanu antyoksydacyjnego człowieka”

.................................................................................................................................
Imię i nazwisko pacjenta (literami drukowanymi)

.................................................................................................................................
Podpis pacjenta (lub opiekuna prawnego) Data

.................................................................................................................................
Podpis osoby wyjaśniającej zasady świadomej zgody Data
BADANIE ANKIETOWE (wypełniane przed dietą laktoowowogetraianska, 5-cio tygodniową)

1. Imię i nazwisko ……………………………………………………………………………………
   Adres e-mail lub tel. kontaktowy……………………………………………………………………

2. Data urodzenia…………………………………………………………………………………………

3. Czy mieszka Pan/Pani na terenie województwa wielkopolskiego? (właściwe podkreślić)
   Jeśli nie, proszę wpisać nazwę województwa.
   TAK          NIE

4. Jak często (średnio) spożywa Pan/Pani mięso (nie licząc wędlin, pasztetów itd.)?
   a) 1-2 w tygodniu  b) 3-5 razy w tygodniu  c) codziennie  d) inne
   …………………………………………………………………………………………………………………

5. Jak często (średnio) spożywa Pani/Pan ryby?
   a) 1-2 w tygodniu  b) 3-5 razy w tygodniu  c) codziennie  d) inne
   …………………………………………………………………………………………………………………

6. Jaki rodzaj mięsa (poza gatunkami wędlin) jada Pani Pan najczęściej?
   a) drób  b) wieprzowina  c) wołowina  d) inne (proszę podać jakie)
   …………………………………………………………………………………………………………………

7. Jaki rodzaj ryb spożywa Pani/Pan najczęściej?
   a) mintaj  b) łosoś  c) dorsz  d) inne (proszę podać jakie)
   …………………………………………………………………………………………………………………

8. W jaki sposób najczęściej przygotowuje Pani/Pan mięso?
   a) smażenie  b) gotowanie  c) duszenie/pieczenie w folii
   d) inne (proszę podać jakie)……………………………………………………………………

9. Jak często (średnio) spożywa Pani/Pan wędliny, proszę podać rodzaj wędlin?
   a) 1 raz dziennie  b) kilka razy dziennie  c) raz w tygodniu
   d) kilka razy w tygodniu  e) inne……………………………………………………………………

10. Czy Pani/Pana zdaniem dieta która Pani/Pan stosuje jest odpowiednia dla stanu
    Pani/Pana zdrowia i korzystnie wpływa na jego stan?
    …………………………………………………………………………………………………………………
11. Z jakich źródeł zdobywa Pan/Pani wiadomości dotyczące zasad stosowania prawidłowej/zbilansowanej diety (właściwie podkreślić)?

c) książki/publikacje naukowe   b) internet/prasa   c) lekarz/dietetyk
d) koleżanki/koledzy   e) moja dieta nie jest właściwie zbilansowana

12. Jakie produkty wyklucza całkowicie Pan/Pani z diety?

13. Czy uprawia Pan/Pani sport? Jeśli tak, jaki rodzaj?

NIE TAK

14. Jak często uprawia Pan/Pani sport/ćwiczenia fizyczne?

a) raz w miesiącu   b) raz w tygodniu   c) kilka razy w tygodniu
d) inne

15. Jak długo trwają powyższe ćwiczenia fizyczne? (jednorazowo)

a) 0,5 h   b) ok. 1 h   c) 1-2 h   d) powyżej 2 h

16. Czy cierpi Pan na poniższych wymienionych bądź innych chorobach przewlekłych? (właściwe podkreślić)

a) cukrzyca   b) choroby serca i układu krążenia   c) alergie
d) astma   d) inne, jakie?

17. Czy stosuje Pani antykoncepcję hormonalną, jeśli tak, jak długo?

18. W jakiej fazie cyklu miesiączkowego była Pani w dniu badania?

a) w okresie od 1 dnia do ok. 2 tygodni po ostatniej miesiączce
b) w czasie trwania miesiączki
c) 2 tygodnie i mniej przed kolejną miesiączką
d) inna odpowiedź

19. Czy stosuje Pani/Pan suplementy diety? Jeśli tak - jakie, jak często?

20. Od kiedy stosuje Pan powyższą suplementację diety?

21. (W sytuacji, gdy obecnie nie stosuje Pan/Pani suplementacji diety) Czy kiedykolwiek stosował(a) Pan/Pani suplementację diety? Ile czasu upłynęło od zakończenia suplementacji do dnia dzisiejszego badania?
22. Ile owoców Pan/Pani spożywa/dzień? (jakie najczęściej?)
a) 1-2 dziennie  b) 3-5 dziennie  c) rzadziej niż 1 dziennie  d) inne

23. Ile warzyw spożywa Pan/Pani/dzień i w jakiej postaci?
a) 1-2 porcji dziennie  b) 3-5 porcji dziennie  c) rzadziej niż 1 porcja dziennie
d) inne

24. Czy cierpi Pan/Pani na poniżej wskazane nałogi? Od jak dawna?
a) palenie tytoniu ..................................................  b) picie alkoholu ..................................................
c) narkotyki ..............................................................  d) inne .................................................................

25. Czy jest Pani w ciąży lub w trakcie trwania laktacji? ..............................................................

26. Czy w ostatnich 3 miesiącach przechodził/a Pan/Pani poważne operacje chirurgiczne lub został Pan Pani dawcą krwi? ..............................................................

27. Czy jest Pan/Pani honorowym dawcą krwi, jak często oddaje Pan/Pani krew? ........
........................................................................................................................................
BADANIE ANKIE TOWE (po 5-cio tygodniowej interwencji dietetycznej - dieta laktoowowegetariańska)

1. Imię i nazwisko:

2. Ocena samopoczucia podczas 5- tygodniowej diety laktoowowegetariańskiej
   a. zło
   b. średnie
   c. dobre
   d. bardzo dobre

3. W ilu procentach przestrzegał Pan/ Pani rozpisanej diety (wg subiektywnej oceny)?

4. zaobserwowane odczucia podczas stosowanej diety(w stosunku do stanu „przed dietą”):
   a. wzdęcia
   b. bóle brzucha
   c. wzmożona perystaltyka jelit
   d. poprawa wyglądu skóry, włosów, paznokci
   e. zwiększenie wydolności fizycznej
   f. częstsze bóle głowy
   g. mniejsza męczliwość
   h. większa męczliwość
   i. mniejsza nerwowość
   j. większa nerwowość
   inne…………………………………………………………………………………………..

5. Czy w trakcie ostatnich 5 tygodni Pana/Pani aktywność fizyczna była:
   a. większa
   b. mniejsza
   c. porównywalna do stanu „przed dietą”

6. W jakiej fazie cyklu miesięczkowego znajduje się Pani w dniu dzisiejszym
   a. miesiączka
   b. okres do 2 tygodni po miesiączce
   c. okres 2 tygodni przed kolejną miesiączką

7. Wady/Zalety diety laktoowowegetariańskiej;
   WADY

   ZALETY
Wywiad medyczny przeprowadzany przez lekarza / badanie lekarskie

Ogólny stan zdrowia:

Pomiar ciśnienia krwi:

Badanie osłuchowe:

Inne informacje o stanie zdrowia:
Aneks 6. Zgoda Komisji Bioetycznej

UNIWERSYTET MEDYCZNY IM. KAROLA MARCINKOWSKIEGO W POZNANIU

KOMISJA BIOETYCZNA PRZY UNIWERSYTECIE MEDYCZNYM
IM. KAROLA MARCINKOWSKIEGO W POZNANIU

Collegium Maius
ul. Fredry 10
61-701 Poznań

tel. (+48 61) 854 62 51, 854 60 60
fax. (+48 61) 854 61 07
www.bioetyka.ump.edu.pl

Uchwała nr 958/10


rozpatrzyła wniosek, który przedstawił Pan:
dr hab. med. Henryk Witmanowski prof. UM

w sprawie prowadzenia badań w
Katedrze i Zakładzie Fizjologii UM w Poznaniu

Główny badacz:
mgr Łucja Czyżewska-Majchrzak

Członkowie zespołu
badawczego:
dr hab. med. Henryk Witmanowski prof. UM
prof. dr hab. n. med. Jarosław Walkowiak

dr n. rol. Sławomira Drzymała-Czyż
dr Piotr Reszelski

Temat
badań: "Wpływ diety laktoowogewegetariańskiej i wegańskiej na stan odżywienia oraz wykłady w organizmie człowieka".

Komisja wyraża zgodę na prowadzenie badań

Prof. zw. dr hab. med. Zygmunt Przybylski

Przewodniczący Komisji

mgr Joanna Cwodziska
tel. 61 854 60 60

131
Podpisy członków Komisji Bioetycznej - Dotyczy Uchwały nr .................. z dnia 02.12.2010r.

prof. dr hab. JANUSZ WIŚNIEWSKI

prof. dr hab. ROMAN SZULC

prof. dr hab. JANUSZ SZYMAŚ

prof. dr hab. WOJCIECH SŁUŻEWSKI

prof. dr hab. HENRYK WYSOCKI

dr hab. MACIEJ KRAWCZYŃSKI prof. UM

dr hab. n. med. ROBERT SPACZYŃSKI

dr med. PIOTR TOMCZAK

prof. dr hab. PAWEŁ CHECINIŃSKI

prof. dr hab. JANUSZ PALUSZAK

ks. prof. dr hab. JERZY TROSKA

dr hab. JERZY W. OCHMAŃSKI prof. UAM

dr farm. OLIPIA KLIMASZEWSKA

BARBARA LIPIAK

mgr Joanna Gwojdzińska
tel. 61 854 60 60
e-mail: jgwojdzińska@ump.edu.pl

06.2011
<table>
<thead>
<tr>
<th>Lp.</th>
<th>Imię i Nazwisko</th>
<th>Specjalność</th>
<th>Miejsce Pracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>prof. dr hab. Zygmunt Przybylski</td>
<td>medycyna sądowa</td>
<td>Katedra Medycyny Sądowej UM ul. Święcickiego 6, Poznań</td>
</tr>
<tr>
<td>3.</td>
<td>prof. dr hab. Roman Szulc</td>
<td>anestezjologia i reanimacja, otorhinolaryngologia</td>
<td>Klinika Anestezjologii i Intensywnej Terapii UM, ul. Długa 1/2, Poznań</td>
</tr>
<tr>
<td>5.</td>
<td>prof. dr hab. Wojciech Stelmaszczuk</td>
<td>pediatria, neurologia dziecięca, choroby zakaźne</td>
<td>Klinika Chorób Zakaźnych i Neurologii Dziecięcej UM ul. Szpitalna 27/33, Poznań</td>
</tr>
<tr>
<td>7.</td>
<td>dr hab. Maciej Krawczyński prof. UM</td>
<td>genetyka kliniczna, okulistyka</td>
<td>Katedra i Zakład Genetyki Medycznej UM ul. Grunwaldzka 55, Poznań</td>
</tr>
<tr>
<td>8.</td>
<td>dr hab. n. med. Robert Spaczyński</td>
<td>ginekologia i położnictwo</td>
<td>Klinika Nierówności i Endokrynologii Rozrodu UM, ul. Polna 33, 60-533 Poznań</td>
</tr>
<tr>
<td>9.</td>
<td>dr med. Piotr Tomczak</td>
<td>onkologia kliniczna, radioterapia</td>
<td>Klinika Onkologii UM, ul. Łąkowa 1/2, Poznań</td>
</tr>
<tr>
<td>10.</td>
<td>prof. dr hab. Paweł Chęciński</td>
<td>chirurgia ogólna, naczyniowa i angiologia</td>
<td>Klinika Chirurgii Ogólnej i Naczyniowej oraz Angiologii UM, ZOZ MSWiA ul. Dojazd 34, Poznań</td>
</tr>
<tr>
<td>11.</td>
<td>prof. dr hab. Janusz Paluszak</td>
<td>fizjologia kliniczna</td>
<td>Katedra i Zakład Fizjologii UM, ul. Święcickiego 6</td>
</tr>
<tr>
<td>13.</td>
<td>dr hab. Jerzy W. Ochmański prof. UAM</td>
<td>prawnik</td>
<td>Wydział Prawa UAM, ul. Św. Marcin 90, Poznań</td>
</tr>
<tr>
<td>14.</td>
<td>dr farm. Olga Klimasewska</td>
<td>farmaceuta</td>
<td>Apteka „Kalifarm”</td>
</tr>
<tr>
<td>15.</td>
<td>Barbara Lipiak</td>
<td>pielęgniarka</td>
<td>ZOZ Grunwald</td>
</tr>
</tbody>
</table>
Komisia, na posiedzeniu w dniu: 10 maja 2012 r.

rozpatryła wniosek, który przedstawił Pan:

**dr hab. med. Henryk Witmanowski prof. UM**

w sprawie prowadzenia badań w Katedrze i Zakładzie Fizjologii UM w Poznaniu

**Główny badacz:** mgr Lucja Czyżewska-Majchrzak

**Członkowie zespołu badawczego:**
- dr hab. med. Henryk Witmanowski prof. UM
- prof. dr hab. n. med. Jarosław Walkowiak
- dr n. med. Sławomira Drzymała-Czyż
- dr Piotr Reszelski

**Temat badań:**
"Wpływ diety lakoowowegiatarińskiej i wegańskiej na stan odżywienia oraz wykładniki stanu antyoksydacyjnego w organizmie człowieka".

**Dot. Uchwały Komisji Bioetycznej nr 958/10 z dnia 02.12.2010r.**

Komisia wyraziła zgodę na poszerzenie zakresu prowadzonych badań o wykonanie dodatkowych badań antropometrycznych. Jednocześnie Komisia wyraziła zgodę na poszerzenie grup badawczych o dodatkowe 30 osób w próbce 1 i próbie 2.

**Przewodniczący Komisji**

[Signature]

**prof. dr hab. med. Paweł Chęciński**
Podpisy członków Komisji Bioetycznej - Dotyczy Uchwały nr ........................ z dnia 10.05.2012r.

prof. dr hab. JANUSZ WIŚNIEWSKI
prof. dr hab. ZYGMUNT ADAMSKI
dr KRYSZYNA BABIAK
dr hab. MACIEJ KRAWCZYŃSKI prof. UM
mgr JOLANTA ŁOJKO-KOŁODZIEJCZAK
mgr KRYSZYNA MALINGER
dr hab. n. med. ANDRZEJ MARSZAŁEK
dr hab. MACIEJ OWECKI
prof. dr hab. WOJCIECH SŁUŻEWSKI
dr hab. ROBERT SPACZYŃSKI prof. UM
dr med. PIOTR TOMCZAK
prof. dr hab. JOANNA TWAROWSKA-HAUSER
ks. prof. dr hab. JERZY TROSKA
prof. dr hab. HENRYK WYSOCKI
<table>
<thead>
<tr>
<th>Lp.</th>
<th>Imię i Nazwisko</th>
<th>Specjalność</th>
<th>Miejsce Pracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Przewodniczący Komisji prof. dr hab. Paweł Chęciński</td>
<td>chirurgia ogólna, naczyniowa i angiologia</td>
<td>Klinika Chirurgii Ogólnej i Naczyniowej oraz Angiologii UM, ZOZ MSWiA ul. Dojazd 34, Poznań</td>
</tr>
<tr>
<td>4.</td>
<td>dr Krystyna Babiak</td>
<td>prawnik</td>
<td>Okręgowa Izba Radców Prawnych w Poznaniu, ul. Chwałisewo 69, Poznań</td>
</tr>
<tr>
<td>5.</td>
<td>dr hab. Maciej Krawczyński prof. UM</td>
<td>genetyka kliniczna, okulistyka</td>
<td>Katedra i Zakład Genetyki Medycznej UM ul. Grunwaldzka 55, Poznań</td>
</tr>
<tr>
<td>7.</td>
<td>mgr Krystyna Malingier</td>
<td>farmaceuta</td>
<td>Apteka Ginekologiczno-Położniczego Szpitala Klinicznego UM, ul. Polna 33, Poznań</td>
</tr>
<tr>
<td>10.</td>
<td>prof. dr hab. Wojciech Służewski</td>
<td>pediatria, neurologia dziecięca, choroby zakaźne</td>
<td>Klinika Chorób Zakaźnych i Neurologii Dziecięcej UM ul. Szpitalna 27/33, Poznań</td>
</tr>
<tr>
<td>12.</td>
<td>dr med. Piotr Tomczak</td>
<td>onkologia kliniczna, radioterapia</td>
<td>Klinika Onkologii UM, ul. Szamarzewskiego 82/84, Poznań</td>
</tr>
</tbody>
</table>