Polimorfizm genów MTHFR, MTHFD1, MTR a stężenie homocysteiny i asymetrycznej dimetyloargininy oraz ich metabolitów u chorych z padaczką leczonych lekami przeciwpadaczkowymi

Praca doktorska wykonana
W pracowni Neurobiologii Katedry Neurologii
Uniwersytetu Medycznego
Im. K. Marcinkowskiego w Poznaniu

Promotor:
Dr hab. Jolanta Dorszewska

Poznań 2010
Spis Treści

1. Wprowadzenie ... 1

1.1. Rys historyczny ... 1

1.2. Definicja padaczki i rodzaje napadów padaczkowych ... 2

1.3. Epidemiologia padaczki .. 4

1.4. Etiologia padaczki ... 4

1.5. Epileptogeneza i neurochemiczne podstawy napadów padaczkowych .. 4

1.5.1. Rola kanałów jonowych w patomechanizmie padaczki ... 5

1.5.2. Znaczenie układu glutaminergicznego w mechanizmie napadów padaczkowych 6

1.5.3. Rola układu GABA-ergicznego w zjawiskach drgawkowych ... 9

1.5.4. Rola innych neuoprzekaźników w patogenezie padaczki .. 10

1.5.5. Znaczenie tlenku azotu w patomechanizmie padaczki ... 10

1.6. Diagnostyka padaczki .. 11

1.7. Leczenie padaczki ... 11

1.8. Homocysteina .. 13

1.8.1. Metabolizm homocysteiny ... 13

1.8.2. Hiperhomocysteinemia .. 15

1.8.3. Udział hiperhomocysteinemii w patogenezie chorób sercowo-naczyniowych 17

1.8.4. Wpływ hiperhomocysteinemii na patogenezę chorób neurologicznych, psychiatrycznych, wad rozwojowych i patologię ciąży ... 20

1.8.5. Hiperhomocysteinemia a rozwój padaczki ... 22

1.8.6. Hiperhomocysteinemia w terapii lekami przeciwpadaczkowymi u chorych 23

1.9. ADMA ... 24

1.9.1. Metabolizm ADMA ... 24

1.9.2. Czynniki wpływające na stężenie ADMA w osoczu krwi .. 26

1.9.3. Udział ADMA w patogenezie chorób naczyniowych ... 28

1.9.4. ADMA jako czynnik patogenezy innych chorób ... 29

1.9.5. Arginina .. 30

2. Cel pracy .. 31

3. Materiał i metody .. 32

3.1. Materiał .. 32
3.1. Grupy badane
3.1.1. Grupy badane
3.1.2. Grupa kontrolna
3.1.3. Kryteria włączenia do badań

3.2. Metody
3.2.1. Przygotowanie krwi do badań
3.2.2. Analiza stężenia homocysteiny i metioniny
3.2.3. Analiza stężenia ADMA i argininy
3.2.4. Genotypowanie

3.3. Statystyczna ocena wyników

4. Wyniki

5. Dyskusja

6. Wnioski

7. Streszczenie

8. Summary
Alfabetyczny wykaz skrótów zastosowanych w pracy

AEDs- ang. *Antiepileptic Drugs*
ADMA- asymetryczna dimetyloarginina
AMPA- receptory kwasu α-amino-3-hydroksy-5-metylo-4-izoksazolopropionowego
Arg- L-arginina
BFNC- ang. *Benign Familial Neonatal Convulsions*, łagodne rodzinne drgawki noworodków
BFNIS- ang. *Benign Familial Neonatal- Infantile Seizures*, łagodne rodzinne drgawki noworodków i dzieci
BMI- ang. *Body Mass Index*, wskaźnik masy ciała
CBS- syntaza cystationinowa
CBZ- karbamazepina
ChA- choroba Alzheimera
ChP- choroba Parkinsona
COMT- katecholotlenometylotransferaza
Cys- cysteina
DDAH- dimetyloaminohydrolaza dimetyloargininy
DPH- fenytoina
EEG- elektroencefalografia
ESM- etosuksymid
FA- foliany
FBM- felbamat
GABA- kwas γ-aminomasłowy
GABA-T- transaminaza GABA
GBP- gabapentyna
GEFS+ - ang. *Generalized Epilepsy with Febrile Sizures plus*, uogólniona padaczka z drgawkami gorączkowymi plus
iGluR- glutaminergiczne receptory jonotropowe
mGluR- glutaminergiczne receptory metabotropowe
HCTL- ang. *Homocysteine Thiolactone*, tiolakton homocysteiny
Hcy- homocysteina
hHcy- hiperhomocysteinemia
HPLC/EC- ang. *High Pressure Liquid Chromatography/Electrochemical Detection*, wysokosprawna chromatografia cieczowa z detekcją elektrochemiczną
ILAE- ang. *International League Against Epilepsy*, Międzynarodowa Liga Przeciwpadaczkowa
IMT- ang. *Intima Media Thickness*, kompleks śródbłonk- błona środkowa
LPP- leki przeciwpadaczkowe
LPP NG- leki przeciwpadaczkowe nowej generacji
LTG- lamotrygina
LEV- lewetacecam
MCP-1- ang. Monocyte Chemotactic Protein-1, białko przyciągające monocyty-1
Met- metionina
MMA- ang. Methylomalonic Acid, kwas metylomalonowy
NMDA- receptory kwasu N-metylo-D-asparaginowego
MTHFD1- ang. Methylenetetrahydrofolate Dehydrogenase/ Methenyltetrahydrofolate Cyclohydrolase/ Formyltetrahydrofolate Synthetase
MTHFR- reduktaza metylenotetrahydrofolianowa
MTHFR (C677T), MTR (A2756G), MTHFD1 (G1958A)- polimorfizmy genów MTHFR, MTR, MTHFD1
MTR- syntaza metioniny
NO- ang. Nitric Oxide, tlenek azotu
NOS- ang. Nitric Oxide Synthase, syntaza NO
eNOS- śródbłonkowa syntaza NO
iNOS- indukowana syntaza NO
nNOS- neuronalna syntaza NO
OCBZ- okskarbazepina
OUN- ośrodkowy układ nerwowy
PB- fenobarbital
PCR-RFLP- ang. Polymerase Chain Reaction– Restriction Fragment Length Polymorphism, polimerazowa reakcja łańcuchowa z zastosowaniem enzymów restrykcyjnych
PRMT I- N-metyltransferaza argininowa typu I
SAH- S- adenozylohomocysteina
SAM- S-adenozylmetionina
TGB- tiagabina
THF- tetrahydrofolian
TNF-α- ang. Tumor Necrosis Factor, czynnik martwicy nowotworów
TPM- topiramat
VCAM-1- ang. Vascular Cell Adhesion Molecule-1, naczyniowa molekuła adhezyjna-1
VPA- kwas walproinowy
VGB- wigabatryna
1. Wprowadzenie

1.1. Rys historyczny

Padaczka należy do jednych z najwcześniej udokumentowanych w piśmiennictwie schorzeń człowieka. Wzmianki dotyczące padaczki odnaleziono już w babilońskim kodeksie Hammurabiego z XVIII wieku p.n.e. Napady padaczkowe były także opisywane w staroegipskich papirusach Kahuna i Ebersa z 1550 roku p.n.e. Jednakże na przestrzeni dziejów poglądy na pochodzenie i leczenie tej przypadłości w różnych kulturach zależały od poziomu rozwoju wiedzy medycznej i panującej filozofii. Z powodu braku wytłumaczenia nagłych, często bardzo spektakularnych objawów, przez wiele wieków padaczka uchodziła za świętą chorobę (*morbus sacer*) będącą zemstą bogów. Hipokrates uważał padaczkę za chorobę mózgu, dotykającą flegmatyków, którą należy leczyć dietą i odpowiednim postępowaniem. Wzmianki o osobach chorych na padaczkę można odnaleźć także w Biblii (na przykład Mk 9, 14-29)\(^1\), \(^2\). W średniowieczu i w Odrodzeniu osoby z padaczką uważano za nawiedzone, opętane przez siły nieczyste i palono je na stosie (Rys. 1). Wraz z upływem wieków padaczka straciła swój magiczny i mistyczny charakter, a poglądy na temat jej pochodzenia i leczenia ulegały zmianom. W ostatnim stuleciu, dzięki

\(^1\) Owczarek K.: Aspekty historyczne padaczki. EPI 2004; 3: 13-16

Rysunek 1. Średniowieczna ilustracja przedstawiająca chorego na padaczkę. Les Très Riches Heures du Duc de Berry, folio 166 r "Egzorcyzm", XV w.
nowym metodom molekularnym oraz diagnostycznym, zakres wiedzy na temat etiopatogenezy i leczenia padaczki znacznie się poszerzył.

1.2. Definicja padaczki i rodzaje napadów padaczkowych

5 ILAE Commission on classification and terminology of The International League Against Epilepsy: Proposal for classification of epilepsies and epileptic syndrome. Epilepsia 1989; 30: 389-399
<table>
<thead>
<tr>
<th>Klasyfikacja napadów padaczkowych według Międzynarodowej Ligii Przeciwpadaczkowej</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Napady częściowe (rozpoczynające się ogniskowo)</td>
</tr>
<tr>
<td>I. A. Napady częściowe proste</td>
</tr>
<tr>
<td>1. Z objawami ruchowymi</td>
</tr>
<tr>
<td>2. Z zaburzeniami somatosensorycznymi</td>
</tr>
<tr>
<td>3. Z objawami autonomicznymi</td>
</tr>
<tr>
<td>4. Z zaburzeniami psychicznymi</td>
</tr>
<tr>
<td>I. B. Napady częściowe złożone</td>
</tr>
<tr>
<td>1. Początek częściowy prosty, po czym dołącza się zaburzenie świadomości:</td>
</tr>
<tr>
<td>a) z cechami napadów częściowych i dołączającymi się zaburzeniami świadomości</td>
</tr>
<tr>
<td>b) z automaty zmami</td>
</tr>
<tr>
<td>2. Z zaburzeniami świadomości od początku:</td>
</tr>
<tr>
<td>a) tylko z zaburzeniami świadomości</td>
</tr>
<tr>
<td>b) z automaty zmami</td>
</tr>
<tr>
<td>I. C. Napady częściowe rozwijające się w uogólnione</td>
</tr>
<tr>
<td>1. Napady częściowe proste przechodzące w uogólnione</td>
</tr>
<tr>
<td>2. Napady częściowe złożone przechodzące w uogólnione</td>
</tr>
<tr>
<td>3. Napady częściowe proste przechodzące w złożone, a następnie w uogólnione</td>
</tr>
<tr>
<td>II. Napady uogólnione (drgawkowe lub niedrgawkowe)</td>
</tr>
<tr>
<td>II. A. Napady nieświadomości</td>
</tr>
<tr>
<td>1. Napady nieświadomości</td>
</tr>
<tr>
<td>2. Nietypowe napady nieświadomości</td>
</tr>
<tr>
<td>II. B. Napady miokloniczne</td>
</tr>
<tr>
<td>II. C. Napady kloniczne</td>
</tr>
<tr>
<td>II. D. Napady toniczne</td>
</tr>
<tr>
<td>II. E. Napady toniczno-kloniczne</td>
</tr>
<tr>
<td>II. F. Napady atoniczne</td>
</tr>
<tr>
<td>III. Napady niesklasyfikowane</td>
</tr>
<tr>
<td>(należą tu wszystkie napady, które nie mogą być sklasyfikowane z powodu niewystarczających lub niekompletnych danych oraz te, które nie dają się ująć w opisanych kategoriach)</td>
</tr>
</tbody>
</table>

Tabela 1. Klasyfikacja napadów padaczkowych według Międzynarodowej Ligii Przeciwpadaczkowej
1.3. Epidemiologia padaczki

Padaczka jest jedną z najczęstszych chorób neurologicznych. Liczbę chorych na padaczkę na świecie szacuje się na ok. 50 milionów. Wskaźnik zachorowalności na padaczkę wynosi ok. 60/100 tys. i jest najwyższy u dzieci do 1 r.ż. oraz osób po 60 r.ż., natomiast wskaźnik rozpowszechnienia padaczki określa się na 1000/100 tys. osób. Padaczka występuje 1,1 – 1,5 razy częściej u mężczyzn niż u kobiet. Przyjmuje się, że w Polsce na padaczkę choruje ok. 400 tys. osób6.

1.4. Etiologia padaczki

Pomimo ciągłego udoskonalania i wprowadzania nowych metod diagnostycznych przyczyna padaczki pozostaje nieznana w 65-75 % przypadków. Etiologia pozostałych, około 1/3, zdiagnozowanych przypadków jest zróżnicowana w zależności od wieku pacjentów. Najczęstsze znane przyczyny padaczki to: choroby naczyniowe, choroby wrodzone, urazy głowy, nowotwory, choroby zwyrodnieniowe i metaboliczne, infekcje oraz predyspozycja genetyczna7.

1.5. Epileptogeneza i neurochemiczne podstawy napadów padaczkowych

Zjawiska towarzyszące powstawaniu, rozwijaniu się i rozprzestrzenianiu napadu padaczkowego nie zostały dotychczas jednoznacznie wyjaśnione. Uważa się, że napad padaczkowy powstaje w wyniku nieprawidłowych wyładowań neuronów strefy znajdującej się pomiędzy zmienioną na skutek różnych stanów patologicznych strukturą (uszkodzenie epileptogenne) a okolicą zdrową. Obszar ten, nazwany „strefą pośrednią” może indukować czynność bioelektryczną pod postacią napadowych wyładowań depolaryzacyjnych i stać się ogniskiem padaczkowym, które definiuje się jako „obszar neuronalny potrzebny i wystarczający, aby rozpocząć napad padaczkowy”6. Uważa się również, że patologiczne wyładowania neuronalne mogą powstawać na podłożu różnych mechanizmów neurochemicznych, w tym działania czynników zewnątrzkomórkowych takich jak: zmiany w biosyntezie i efekcie oddziaływania neuropotrzebnych, czynników wewnątrzkomórkowych, do których można zaliczyć zaburzenia gospodarki jonowej i stanu energetycznego komórki oraz czynników błonowych, wśród których wskazuje się na zaburzenia czynności receptorów, pomp i kanałów jonowych.

1.5.1. Rola kanałów jonowych w patomechanizmie padaczki

Napadowe wyładowania depolaryzacyjne są wynikiem gwałtownej zmiany potencjałów błonowych grup neuronów. Depolaryzacja błony komórkowej, zmieniająca jej potencjał z -85 mV na +30 mV, następuje na skutek nasilonej aktywności kanałów jonowych i napływu do wnętrza komórki jonów wapnia, aktywujących kanały kationowe. Następnie w wyniku otwarcia kanałów potasowych i chlorkowych oraz działania pompy sodowo-potasowej dochodzi do jej repolaryzacji, która jest tłumiona na skutek szybko następujących po sobie depolaryzacji.

Uważa się, że zmiany w budowie i funkcji kanałów jonowych, zarówno wapniowych, jak i potasowych oraz sodowych, mogą prowadzić do niestabilności potencjałów błonowych, masowych wyładowań grup neuronów, a w ich następstwie do napadu padaczkowego.

Zarówno wysokonapięciowe (L, N, P/Q, R), jak i niskonapięciowe kanały wapniowe T mogą odgrywać ważną rolę w patogenezie padaczki. Zasadniczo kanały wapniowe złożone są z podjednostki α₁, która tworzy ścianę kanału oraz podjednostek α₂, δ, β, γ wpływających na kinetykę i amplitudę prądów jonowych. W piśmiennictwie wykazano ekspresję pięciu podstawowych klas podjednostek α₁ (A-E). Jednocześnie uważa się, że mutacja w podjednostce α₁A kanałów T jest związana z patogenezą napadów nieświadomości, a związki oddziaływujące na kanały T (etosuksymid) od ponad 20 lat używane są w ich leczeniu.

W patomechanizmie napadów padaczkowych mogą również brać udział napięciowozależne kanały sodowe. Kanały sodowe są zwykle złożone z jednostki α zawierającej: 4 podjednostki i 6 domen transblonowych oraz z jednej lub kilku jednostek β zawierającej 1 domenę transblonową⁸. W ciągu ostatnich kilkunastu lat w piśmiennictwie ukazały się wyniki badań nad mutacjami w genach dla kanałów sodowych wskazujące na ich udział w zróżnicowanych napadach padaczkowych. Jak wynika z badań mutacje w genie kodującym podjednostkę α₁ (SCN1A) oraz podjednostkę α₂ (SCN2A), a także podjednostkę β₁ (SCN1B) są związane z uogólnioną padaczką z drgawkami gorączkowymi plus (GEFS+, ang. *Generalized Epilepsy with Febrile Sizures plus*), w której spektrum mieści się również ciężka padaczka miokloniczna niemowląt oraz zespół Drawet. Natomiast w łagodnych rodzinnych drgawkach noworodka i dzieci (BFNIS, ang. *Benign Familial Neonatal- Infantile Seizures*) opisano mutację w podjednostce α₂ (SCN2A)⁹.

Jak wynika z piśmiennictwa, w powstawaniu napadów padaczkowych mogą także uczestniczyć kanały potasowe. Kanały potasowe są złożone z czterech podjednostek, z których każda ma sześć sekwencji

przez błonowych. W stanie fizjologicznym kanały te są odpowiedzialne za repolaryzację błony wywołaną jonami wapnia i sodu, a także neurotransmiterami receptorów bramkowanych ligandami. W repolaryzacji uczestniczy jedynie część kanału potasowego określana jako kanał M. Aktywacja tego kanału znosi hiperpolaryzację błony. Opisano, różne mutacje genów kodujących białka KCNQ2 i KCNQ3 kanałów potasowych w łagodnych rodzinnych drgawkach noworodków (BFNC, ang. *Benign Familial Neonatal Convulsions*).

Uwaga się, że w patomechanizmie napadów padaczkowych może również odgrywać rolę nieprawidłowe funkcjonowanie ATP-azy sodowo-potasowej. W piśmiennictwie ukazały się wyniki badań na temat mutacji w genie kodującym jej podjednostkę α2 (ATP1A2), która może prowadzić do występowania rodzinnej migreny hemiplegicznej i łagodnych rodzinnych drgawek niemowląt10.

1.5.2. Znaczenie układu glutaminergicznego w mechanizmie napadów padaczkowych

Wśród licznych hipotez patomechanizmu padaczki uwzględnia się także mechanizm nadmiernego pobudzenia w układzie glutaminergicznym. Kwas glutaminowy jest jednym z najważniejszych neuroprzekaźników regulujących przekaźnictwo synaptyczne i powolne zmiany plastyczne. Uważa się, że oddziaływanie kwasu glutaminowego odbywa się poprzez dwie grupy receptorów: receptor jonotropowe (iGluR) będące kanałami jonowymi bramkowymi ligandami oraz receptor metabolotropowe (mGluR), których pobudzenie następuje poprzez aktywację białka G i fosfolipazy C, i wywołuje aktywację wewnątrzkomórkowych systemów przekaźnictwa sygnałów. Do receptorów glutaminergicznych jonotropowych zaliczamy (nazwane od ich wybiórczych agonistów): receptor kwasu N-metylo-D-asparaginowego (NMDA), receptor kwasu α-amino-3-hydroksy-5-metylo-4-izoksazolopropionowego (AMPA) oraz kwasu kainowego.

Receptor NMDA zbudowany jest z czterech podjednostek tworzących heterodimery. Opisano dwie rodziny podjednostek receptora NMDA: NMDAR1 występującą w 8 izoformach oraz NMDAR2, w skład której wchodzą cztery podjednostki (oznaczone A, B, C, D). Jak wykazano, aktywacja receptorów NMDA wymaga przyłączenia agonisty w dwóch miejscach, z których główne stanowi miejsce wiązania NMDA lub glutaminianu. Uważa się, że oprócz miejsca wiążącego NMDA, do którego mają powinowactwo także: kwas L-asparaginowy, kwas chinolinowy, L-homocysteiny i homocysteina (Hcy), receptor NMDA

Poza glutaminianem znajdującym się w tzw. puli przekaźnikowej neuronów, wykazano jego obecność również w tzw. puli metabolicznej znajdującej się w neuronach i w gleju. Jak wiadomo, glutaminian z puli metabolicznej może być uwalniany i ulegać kumulacji w przestrzeni pozakomórkowej, na skutek uszkodzenia neuronów lub upośledzenia jego wychwytu zwrotnego oraz może aktywować receptory poza synapsą lub w sąsiednich synapsach, które mogą być związane z epileptogenzą. W badaniach na zwierzętach domóżgowe iniekcje glutaminianu wywoływały drgawki.

W odróżnieniu od receptora NMDA, receptor glutaminergiczny AMPA biorący również udział w szybkim przekaźnictwie synaptycznym, wykazuje dużą przepuszczalność dla jonów sodu i potasu oraz niską dla jonów wapnia. Podwyższony poziom receptorów AMPA, świadczący o jego udziale w patomechanizmie

padaczki, opisano w badaniach nad hipokampem u pacjentów z padaczką skroniową15. Natomiast kanały kainowe są najmniej poznawanymi receptorami glutaminanowymi a brak selektywnych agonistów i antagonistów utrudnia odróżnienie ich funkcji od receptora AMPA.

W mechanizmie epileptogenezy mogą również uczestniczyć metabotropowe receptory glutaminergiczne, które zostały podzielone na trzy grupy. Do pierwszej zaliczono postsynaptyczne receptory mGluR1 i mGluR5, do drugiej presynaptyczne receptory mGluR2 i mGluR3, a do trzeciej presynaptyczne receptory mGluR4, mGluR6, mGluR7, mGluR8. Receptory pierwszej grupy są sprzężone z fosfolipazą C, pozostałe z cyklazą adenylową. Jednocześnie bezpośrednie pobudzenie receptorów grupy pierwszej może wywoływać aktywację nieselektywnych kanałów kationowych, kanałów wapniowych typu L, inaktywację kanałów potasowych oraz nasilenie wymiany sodowo-wapniowej. Ponadto receptor te mogą upośledzać hamujące działanie GABA (kwas γ-aminomasłowy) oraz nasilać uwalnianie glutaminianu oraz odpowiedź receptorów NMDA i AMPA. Uważa się także, że szczególną rolę w epileptogenezie mogą odgrywać receptory mGlu1, których pobudzenie wydłuża czas trwania potencjałów międzynapadowych i napadowych okolic hipokampa16. Natomiast stymulacja receptorów mGluR grupy drugiej zwiększa częstotliwość tylko wyładowań międzynapadowych. Efektem ich pobudzenia jest zatem zahamowanie uwalniania glutaminianu z puli neurotransmiterowej zakończeń presynaptycznych oraz uwalnianie neurotrofin w astrogleju. Uważa się, że w padaczce, a szczególnie w początkowej jej fazie, dochodzi do nasilonej syntezy receptorów tej grupy i następnie jej obniżenia w czasie trwania choroby, co może prowadzić do zaburzenia równowagi pomiędzy neurotransmiterami pobudzającymi nad hamującymi. Największym przedstawicielem neurotransmiterów o charakterze hamującym jest GABA.

16 Stoop R., Conquet F., Pralong E.: \textit{Determination of group I metabotropic glutamate receptor subtype involved in the frequency of epileptiform activity in vitro using mGluR1 and mGluRS mutant mice}. Neuropharmacology 2003; 44(2): 157-162
1.5.3. Rola układu GABA-ergicznego w zjawiskach drgawkowych

W wyjaśnianiu mechanizmów zjawisk drgawkowych, oprócz układu GABA-ergicznego i glutaminergicznego, bierze się także pod uwagę udział innych neuroprzekaźników.

19 Freichel C., Potschka H., Ebert U., Brandt C., Loscher W.: Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus. Neuroscience 2006; 141(4): 2177-2194
1.5.4. Rola innych neuroprzekaźników w patogenezie padaczki

Acetylocholina jest ważnym przekaźnikiem ośrodkowego układu nerwowego (OUN) działającym głównie przez metabotropowe receptory muskarynowe i w mniejszym stopniu, przez receptor nikotynowy. Wykazano, że pobudzenie metabotropowych receptorów muskarynowych w modelach doświadczalnych zmniejsza przekaźnictwo zależne od napięcia jonów potasowych oraz zwiększa napływ jonów wapniowych i sodowych do komórki, co wywołuje depolaryzację błony komórkowej i wystąpienie drgawek. Natomiast neuronalne receptory nikotynowe są receptorami jonotropowymi i cechują się budową heterometryczną. Dotychczas sklonowano ponad 10 genów dla podjednostek α2-α12 i β2-β4 receptorów nikotynowych. Uważa się, że receptory te uczestniczą w presynaptycznej regulacji wydzielania innych przekaźników, w tym aminokwasów pobudzających. Według wyników badań za nocne napady padaczkowe mogą odpowiadać mutacje receptora nikotynowego α1 i β220, a nocna padaczka z płata czółowego dziedziczona autosomalnie dominująco może być związana z mutacjami podjednostki α4 lub β221.

Natomiast katecholaminy i serotonina wywierają głównie hamujący wpływ na neurony kory mózgowej. Jak wykazano, zwiększenie przekaźnictwa monoaminergicznego działa przeciwdrgawkowo zaś obniżenie poziomu monoamin może nasilać lub wywołać stany drgawkowe.

1.5.5. Znaczenie tlenku azotu w patomechanizmie padaczki

Wykazano, że NO bierze udział w procesach neurotransmisji i prawdopodobnie może odgrywać rolę w patogenezie padaczki. Tlenek azotu jest syntezowany z L-argininy (Arg) przy udziale NOS. Badania immunohistochemiczne wykazały obecność NOS w neuronach prążkowia, hipokampa, podwzgórza, przodomózgowia, śródmózgowia oraz mózdku. Ponadto wykazano, że NO uczestniczy w transdukcji sygnału w receptorach glutaminergicznych poprzez presynaptyczne działanie pobudzające uwalniania glutaminianu z zakończeń synaptycznych. W niektórych pracach doświadczalnych obserwowano efekt drgawkowy po podaniu inhibitorów NOS i Arg22. Przypuszcza się, że NOS i Arg mogą pośrednio wywoływać drgawki poprzez uczestnictwo w mechanizmach indukowanych pobudzeniem receptorów

NMDA. Jak wykazano, pobudzenie receptorów NMDA w skrawkach hipokampa nasila uwalnianie NO w sposób zależny od jonów wapnia a łatwo dyfundujący przez błony komórkowe NO, z jednej strony wzmaga presynaptyczne uwalnianie glutaminianu, ale z drugiej strony związek ten może hamować aktywność receptora NMDA, poprzez wpływ na miejsce redoks w tym receptorze. Zatem w modelach zwierzęcych, postulowane jest zarówno pro-, jak i przeciwdrgawkowe jego działanie.

1.6. Diagnostyka padaczki

Mimo znacznego postępu wiedzy i rozwoju technik diagnostycznych uzyskanie pełnego obrazu stanu chorobowego pacjenta z padaczką nadal jest procesem trudnym i wieloetapowym. W diagnostyce każdego przypadku padaczki niezbędny jest wywiad, badanie przedmiotowe oraz badania laboratoryjne. Prawidłowo przeprowadzony wywiad stanowi podstawę nie tylko dla rozpoznania padaczki, ale powinien także dostarczać informacji na temat możliwych przyczyn i rodzaju napadów bądź zespołu padaczkowego. Badanie przedmiotowe i badania laboratoryjne takie jak: badania biochemiczne, badania neuropsychiatryczne i badania obrazowe są pomocne w diagnostyce różnicowej oraz w określeniu etiologii padaczki.

Podstawowym badaniem dodatkowym w diagnostyce padaczki jest EEG. Dzięki uzupełnieniu klasycznego badania EEG nowoczesnymi technikami wideometrycznymi, metodą długotrwałego monitorowania i technikami mapowania, obecnie EEG jest najważniejszym narzędziem umożliwiającym potwierdzenie rozpoznania, określenia typu napadów, możliwości leczenia i rokowania.

Prawidłowe rozpoznanie rodzaju napadów lub zespołu padaczkowego jest niezwykle ważne dla określania rokowania, ale przede wszystkim dla wyboru optymalnego leczenia.

1.7. Leczenie padaczki

Leczenie padaczki w każdym przypadku ma na celu osiągnięcie u chorego jak najszerzejniejszej kontroli napadów. Zmniejszenie częstości, ciężkości lub całkowite wyeliminowanie napadów padaczkowych można uzyskać dzięki unikaniu czynników wyzwalających, poprzez farmakoterapię lub leczenie chirurgiczne.

Do podstawowych, stosowanych dziś leków przeciwpadaczkowych (LPP) zaliczamy: karbamazepinę (CBZ), kwas walproinowy (VPA), etosuksymid (ESM), fenytoinę (DPH), fenobarbital (PB), prymidon i leki z grupy benzodwuazepiny. W ciągu ostatnich kilku lat rozpoczęto stosowanie leków z grupy tzw. leków przeciwpadaczkowych nowej generacji (LPP NG), wśród których w Polsce zarejestrowano do leczenia:

wigabatrynę (VGB), lamotryginę (LTG), felbamatu (FBM), topiramat (TPM), tiagabinę (TGB),
okskarbazepinę (OCBZ), gabapentynę (GBP) i lewetyracetam (LEV)24.

Leki przeciwpadaczkowe stanowią heterogenną grupę leków pod względem parametrów
farmakokinetycznych i możliwości regulacji danych funkcji organizmu, zasadniczo opartych na kilku
mechanizmach: wzmocnianiu hamującego przekaźnictwa GABAergicznego, hamowaniu pobudzającego
działania aminokwasów lub modulowaniu pobudliwości błon komórkowych.

Nasilenie efektu GABA-ergicznego z udziałem LPP, można uzyskać poprzez pobudzenie jonotropowych
receptorów GABA-A, zwiększenie ilości GABA w szczelinie synaptycznej lub pobudzającą modulację
kompleksu receptorowego GABA-A25. W jednym z tych mechanizmów działa VGB, która blokując
nieodwracalnie enzym transaminację GABA (GABA-T) zwiększa pulę dostępnego GABA w szczelinie
synaptycznej. Podobny efekt działania wykazuje TGB, która hamuje neuronalny i glejowy wychwyt
zwrotny GABA. Natomiast benzodwuazepiny i barbiturany działają w różnych miejscach OUN zwiększając
aktywowany GABA hamujący prąd chlorkowy.

Mechanizm hamujący pobudzające działanie aminokwasów wykazuje zarówno FBM, który podwyższa
próg drgawkowy prawdopodobnie poprzez blokowanie czynności receptora NMDA, jak i TPM
prawdopodobnie przez obniżanie aktywności receptoru glutaminianowego bramkowanego kwasem
kainowym26. Jednakże mechanizm działania przeciwdrgawkowego TPM nie jest jednokierunkowy, może
on także działać hamującą na izoenzym anhydrozy węglanowej oraz na napięciowozałężne kanały
sodowe, a także wzmacniać efekt GABA-ergiczny.

Natomiast stabilizowanie pobudliwości błon komórkowych może następować poprzez oddziaływanie LPP
na kanały jonowe sprzężone z receptorami lub kanały jonowe napięciowozałężne. Działanie modelujące
czynność kanałów sodowych wykazują: DPH, CBZ, OCBZ, LTG oraz VPA. W mechanizmie działania tych
leków następuje akumulacja kanałów sodowych, która w stanie inaktywacji ogranicza wyładowania o
dużej częstotliwości czynnościowych zależnych od sodu i rozprzestrzanielanie się napadowości.

Uważa się, że działanie hamujące prąd prawdopodobnie związane z kanałami wapniowymi wykazuje ESM, który
inaktywuje szybko otwierające się i o niskim progu pobudliwości kanały typu T. Zaś kanały wapniowe o
wysokim prędko pobudliwości typu: L, N, P mogą hamować min. DPH, PB, LTG.

Standardy diagnostyki i leczenia chorych z padaczką w Polsce zostały opracowane i opublikowane w 2000
roku przez Komisję Polskiego Towarzystwa Epileptologii27, a w 2006 roku Komisja Międzynarodowej Ligi
Przeciwpadaczkowej opublikowała wytyczne dotyczące stosowania LPP28.

\begin{thebibliography}{99}
\bibitem{24} Jędrzejczak J., Zwoliński P.: \textit{Nowe leki przeciwpadaczkowe}. Fundacja Epileptologii Warszawa 2000
\bibitem{27} Komisja Polskiego Towarzystwa Epileptologii. \textit{Standardy Diagnostyki i Leczenia Chorych z Padaczką w Polsce}. Epileptologia 2002
\end{thebibliography}
Obecnie nadal nie istnieją idealne LPP. W świetle najnowszych badań leczenie chorych z padaczką LPP może prowadzić do zmiany poziomu wielu parametrów biochemicznych, w tym związków tiolowych takich jak, homocysteina (Hcy).

1.8. Homocysteina

1.8.1. Metabolizm homocysteiny

Homocysteina, aminokwas siarkowy, została odkryta w latach trzydziestych ubiegłego stulecia. Powstaje ona w procesie demetylacji metioniny (Met), aminokwasu dostarczanego w diecie. Met w tym procesie, w obecności ATP oraz adenozylotransferazy metioninowej, jest przekształcana w S-adenozylometioninę (SAM), a produktem ubocznym tej reakcji jest S-adenozylhomocysteina (SAH), która zostaje następnie hydrolizowana do Hcy. Uważa się, że SAM jest głównym donorem grup metylowych dla różnych przemian metabolicznych. Hcy może być rozkładana w dwóch szlakach przemian metabolicznych: w procesie transsulfuracji i remetylacji (Rys. 2).

Rysunek 2. Cykl przemian homocysteiny

W przypadku niedoboru Met i niskiego stężenia SAM następuje remetylacja Hcy do Met z udziałem syntazy metioniny (MTR). Kofaktorem tej reakcji jest witamina B12, a substratem 5-metylenotetrahydrofolian (MTH), który powstaje w reakcji katalizowanej przez reduktazę metylenotetrahydrofolianową (MTHFR). Substratem dla tej reakcji jest tetrahydrofolian (THF), którego poziom zależy od dostarczanego egzogennej kwasu foliowego (FA). Wiadomo, że w regulowanie poziomu krążącej Hcy jest również zaangażowany trójfunkcyjny enzym MTHFD1 (ang. Methylenetetrahydrofolate Dehydrogenase/ Methenyltetrahydrofolate Cyclohydrolase/ Formyltetrahydrofolate Synthetase). Wykazano, że homozygoty MTHFD1 prowadzą do wzrostu stężenia Hcy w chorobach serca i w niedorozwoju cewy nerwowej, zależnego od poziomu FA, a heterozygoty MTHFD1 GA (G1958) są związane z regulacją poziomu cysteiny (Cys):Hcy w chorobach zwyrodnieniowych. Brak jest jednak doniesień w piśmiennictwie o udziale MTHFD1 w generowaniu Hcy u chorych z padaczką leczonych LPP.

Jak wykazano, remetylacja Hcy do Met może także przebiegać na drodze reakcji z udziałem metylotransferazy betaina:Hcy, w której betaina jest dawcą grupy metylowej, a produktami są N,N-dimetyloglicyna i Met. W przypadku dodatniego bilansu Met metabolizm Hcy kierowany jest na drogę nieodwracalnej reakcji transsulfuracji przebiegającej przy udziale syntazy cystationinowej (CBS). Kofaktorem tej reakcji jest witamina B6, a powstała w niej cystationina jest przekształcana w reakcji
katalizowanej przez cystationazę do Cys, która jest wykorzystywana do syntezę glutatjonu lub metabolizowana do siarczków i tauryny, i dalej wydalana z moczem29. Aktywność obu szlaków przemian Hcy w różnych tkankach organizmu nie jest jednakowa. Reakcje remetylacji i transsulfuracji przebiegają z podobną wydajnością w nerkach, wątrobie, trzustce i w jelcie krótkim. Jednak w przypadku niedoboru CBS przemiana cystationiny do Cys nie zachodzi w śledzionie, płucach, nadnerczach i jądrach, a w mózgu i tkance tłuszczowej przy obniżonym poziomie cystationazy30. Metabolizm Hcy w ustroju jest regulowany różnymi czynnikami min. dietą i stanem hormonalnym. W zależności od aktywności enzymów, w szczególności od ich Km (stała Michaelisa-Mentena), Hcy może być kierowana na szlak remetylacji lub transsulfuracji. Enzymy kierujące Hcy do remetylacji mają niską wartość Km dla substratów zawierających siarkę. Cecha ta sprzyja remetylacj czynnikom enzymom enzymów remetylacji przy niskich stężeniach Met i hamuje ją przy wzroście stężenia SAM i SAH (produktów reakcji). Enzymy kierujące Hcy do transsulfuracji charakteryzuje wysoka wartość Km dla substratów zawierających siarkę oraz aktywacja wysokim stężeniem SAM i SAH. Wysokie stężenie SAM aktywujące CBS hamuje powstawanie tetrahydrofolianu, natomiast wysokie stężenie SAH hamuje aktywność MTHFR i upośledza syntezę MTH. Zaburzenia w przemianach Hcy mogą prowadzić do jej podwyższonego poziomu w surowicy-hiperhomocysteinemii (hHcy).

1.8.2. Hiperhomocysteinemia

Hiperhomocysteinemia oznacza zwiększone stężenia Hcy w osoczu krwi spowodowane czynnikami genetycznymi i niegenetycznymi, zaburzającymi prawidłowy cykl przemian Hcy do Met. Za prawidłową wartość stężenia Hcy w osoczu krwi przyjmuje się 5-15 µM. Stężenia Hcy od 16-30 µM określamy jako łagodną, a 31-100 µM jako średnio zaawansowaną, natomiast powyżej 100 µM jako ciężką hHcy31. Do najważniejszych czynników genetycznych mogących prowadzić do hHcy zalicza się mutacje w genie kodującym: CBS, MTHFR oraz MTR.

29 Bald E.: Homocysteina, niegdyś egzotyczny metabolit. W: Biotiole w warunkach fizjologicznych, patologicznych i w terapii. Wydawnictwo Uniwersytetu Jagiellońskiego Kraków 2003; 73-108
Zidentyfikowano ponad 30 mutacji genu CBS\(^{32}\). Wykazano, że niedobór CBS dziedziczony autosomalnie recessywnie z locus na chromosomie 21q22.3 jest związany z najcięższą postacią hHcy- wrodzoną homocystynurią. Natomiast postać homozygotyczna genu CBS wiąże się z upośledzeniem umysłowym, skłonnością do zakrzepów i zatorów oraz osteoporozą o ciężkim przebiegu.

Najczęstszą genetycznie uwarunkowaną przyczyną hHcy są polimorfizmy genu MTHFR. Opisano defekty związane z mutacją punktową genu C677T w postaci termolabilnej MTHFR oraz mutacje punktowe A1298C i G1783A MTHFR\(^{33}\). Uważa się, że łącznie heterozygoty genu MTHFR występują u 40 % populacji a ich nosiciele mają szczególne predyspozycje do hHcy w przypadku niedoboru FA\(^{34}\).

Natomiast niedobór MTHFR dziedziczony autosomalnie recessywnie, z locus na chromosomie 1p36.6, w postaci homozygotycznej także może prowadzić do homocystynurii o ciężkim przebiegu z objawami mikrocefalii, upośledzenia umysłowego, zaburzeń ruchowych i zaniku mózgu\(^{33}\).

Do niegenetycznych czynników wpływających na wzrost poziomu Hcy zalicza się: styl życia, a w szczególności palenie tytoniu\(^{35}\), spożywanie nadmiernych ilości alkoholu\(^{36}\) i kawy\(^{37}\), dietę (ubogą w FA oraz witaminy B6 i B12), wiek (na skutek zaburzeń wchłaniania witaminy B12, osłabienia funkcji wydzielniczych nerek, zaburzeń hormonalnych w wieku postmenopauzalnym\(^{38}\)), przewlekłe schorzenia (niewydolność nerek, cukrzyca, niedoczynność tarczycy, choroby jelit, łuszczycy i choroby

nowotworowe, choroby endokrynologiczne takie jak choroba Cushinga39 oraz leki takie jak: teofilina (antagonista witaminy B6), metotreksat (antagonista FA40), fibraty41, leki przeciwcukrzycowe i antykoncepcyjne oraz D-penicyloamina42, a także LPP.

Ukazało się wiele prac wskazujących na hHcy u chorych z padaczką leczonych LPP. Według piśmiennictwa hHcy dotyczy 10-40% chorych z padaczką poddawanych kuracji LPP43, 44.

1.8.3. Udział hiperhomocysteinemii w patogenezie chorób sercowo-naczyniowych

W ostatnich latach coraz częściej wskazuje się hHcy jako znaczący, niezależny czynnik ryzyka miażdżycy naczyń wieńcowych, mózgowych, obwodowych oraz zakrzepicy żylnej.

Uważa się, że udział Hcy w patogenezie chorób naczyniowych wiąże się najprawdopodobniej z obecnością grupy tiolowej, która może modyfikować strukturę białek w reakcji S-homocysteinylacji i przez to upośledzać ich właściwości. W tej reakcji Hcy tworzy wiązania disiarczkowe z grupami tiolowymi białek osocza krwi i przez to może prowadzić do zaburzenia ich funkcji45. Hcy może być także nieswoiste aktywowana przez syntazę metionylo- RNA, a następnie przekształcana w cykliczny tioeter- tioakton homocysteiny (HCTL, ang. \textit{Homocysteine Thiolactone}). Związek ten posiada zdolność reagowania z grupami tiolowymi reszt lizyny białek osocza w reakcji N-homocysteinylacji. Takiej modyfikacji ulegają min. hemoglobina, albuminy, \textgamma-globuliny, transferryna, fibrynogen, antytrypsyna, LDL, HDL46.

41 Dierkes J., Westphal S., Luley C.: \textit{Serum homocysteine increases after therapy with fenofibrate or bezafibrate}. Lancet 1999; 354: 219-220

43 Apeland T., Mansoor M.A., Pentieva K., McNulty H., Seljeflo I., Stadnjord R.E.: \textit{The effect of B-vitamins on hyperhomocysteinemia in patents on antiepileptic drug}. Epilepsy Res. 2002; 51: 237-247

44 Huemer M., Ausserer B., Graninger G., Hubmann M., Huemer C., Schlachter K., Tscharre A., Ulmer H., SimmaB.: \textit{Hyperhomocysteinemia in children treated with antiepileptic drugs is normalized by folic acid supplementation}. Epilepsia 2005; 46: 1677-1683

45 Jakubowski H.: \textit{Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels}. FASEB J. 1999; 13: 2277-2283

Jednocześnie dodatkowa grupa tiolowa pochodząca od Hcy zmienia reaktywność biologiczną tych białek oraz ich właściwości fizykochemiczne co może prowadzić do zwiększenia podatności na uszkodzenia, proteolizę a także do tworzenia agregatów\(^{47}\). Przykładowo modyfikacja składowej LDL- apolipoproteiny apo-B100 przez HCTL z jednej strony nasila agregację LDL oraz ich przyswajanie przez monocyty a także przekształcanie w komórki piankowate, a z drugiej strony indukuje stres oksydacyjny w komórkach śródbłonka naczyń. Uważa się, że Hcy ma także bezpośredni cytotoxiczny wpływ na komórki śródbłonka naczyńego poprzez hamowanie metylacji białka p21ras przez co może upośledzać syntezę DNA komórki, hamować jej wzrost i procesy naprawcze\(^{48}\). Podobny efekt może wywoływać także obniżenie poziomu metylacji laminy B i fosfatazy białkowej 2A\(^{49}\). Uważa się także, że nadmier Hcy pobudza proliferację mięśni gładkich naczyń przez zwiększanie ekspresji genów cyklin A i D, i w konsekwencji zwiększenie produkcji i gromadzenie kolagenu w ścianie naczyńia\(^{50}\).

Wykazano także, że hHcy może działać promiażdżycowo poprzez hamowanie produkcji adenozyny w tkankach, która w naturalnych warunkach hamuje ekspresję noradrenaliny, angiotensyny i tkankowego czynnika wzrostu\(^{51}\).

Znane jest także aterogenne działanie hHcy polegające na zaburzeniu funkcji czynników krzepnięcia i płytek krwi. Homocysteina zwiększa ekspresję dla chemoatraktanta dla monocytów na komórkach śródbłonka, powoduje wzrost stężenia tromboksanów TXAB2 i TXAA2, a także wzrost adhezji, agregacji i skrócenie czasu przeżycia płytek krwi. Hcy aktywuje także XII i V czynnik krzepnięcia, hamuje aktywację proteiny C, inaktywuje tkankowy aktywator plazminogenu i trombomodulinę.

Wykazano także, iż hHcy powoduje zahamowanie syntezę NO, a w konsekwencji upośledzenie wazodylatacji i relaksacji naczyńowej.

W ostatnich latach ukazały się także prace wskazujące na dodatnią korelację między stężeniem Hcy a stężeniem TNF-α (ang. Tumor Necrosis Factor, czynnik martwicy nowotworów), MCP-1 (ang. Monocyte Chemotactic Protein-1, białko przyciągające monocyty-1) i VCAM-1 (ang. Vascular Cell Adhesion

\(^{50}\) Rasmussen L.M., Hansen P.R., Ledet T.: *Homocysteine and the production of collagens, proliferation and apoptosis in human arterial smooth muscle cells.* APMIS 2004; 112: 598-604

Molecule-1, naczyniowa molekuła adhezyjna-1\(^5\), czynników indukujących i nasilających proces zapalny\(^5\), mający istotny wpływ na patogenezę chorób naczyniowych.

Najprawdopodobniej nie są jeszcze znane wszystkie mechanizmy szkodliwego działania Hcy na naczynia ośrodkowe i obwodowe. W ciągu ostatnich kilkunastu lat ukazało się wiele prac, dotyczących różnych dziedzin medycyny i wskazujących na dodatnie korelacje miedzy poziomem osoczowej Hcy a zagrożeniem wystąpienia choroby wieńcowej\(^5\), zawalu serca\(^5\), udaru mózgu\(^5\) i naczyniopochodnej podkorowej encefalopatii oraz miażdżycy tętnic obwodowych i zakrzepicą żył głębokich\(^5\).

W piśmiennictwie wykazano, że zmiany naczyniowe mogą pojawić się już w łagodnej hHcy, która występuje u 7-10% całej populacji ludzkiej i najczęściej nie daje objawów klinicznych do 40 r.ż. oraz jest zasadniczo związana z mutacją C677T genu \(MTHFR\). Są jednak doniesienia wskazujące, że przy dostatecznej podaży FA genotyp ten nie powoduje podwyższonego stężenia Hcy i nie jest czynnikiem ryzyka chorób naczyniowych\(^5\). Ważnym czynnikiem regulującym częstość występowania hHcy i związanych z nią powikłań naczyniowych w różnych rejonach świata, jest także tryb życia a w szczególności spożywana dieta i zawartość w niej kofaktorów procesów remetylacji i transsulfuracji Hcy-FA, witaminy: B6, B12\(^5\),\(^6\).

\(^{60}\) Malinow M.R., Ducimetiere P., Luc G., Evans A.E., Arveiler D., Cambien F., Upson B.M.: Plasma homocyst(e)ine levels and graded risk for myocardial infarction: findings in two populations at contrasting risk for coronary heart disease. Atherosclerosis 1996; 126: 27-34
Uważa się, że podwyższone stężenie Hcy jest również czynnikiem ryzyka chorób neurodegeneracyjnych, psychiatrycznych i innych schorzeń.

1.8.4. Wpływ hiperhomocysteinemii na patogenezę chorób neurologicznych, psychiatrycznych, wad rozwojowych i patologię ciąży

Wykazano, że Hcy może przechodzić przez barierę krew-mózg, a jej poziom w mózgu odpowiada poziomowi osoczowej Hcy. Podwyższone stężenie Hcy może prowadzić do zmian naczyniowych OUN i ośnisk na podłożu naczyniowym, ale może także być czynnikiem ryzyka chorób neurodegeneracyjnych. Z doniesień piśmiennictwa wynika, że Hcy jest uważana za czynnik ryzyka choroby Alzheimera (ChA) oraz choroby Parkinsona (ChP). Neurotoksyczny mechanizm działania Hcy w tych schorzeniach nie jest jasny. Jak wiadomo, Hcy jest agonistą receptorów NMDA i słabym aktywatorem kanału NMDA. Przyłączenie Hcy i jej metabolitu – kwasu homocysteinowego do miejsca wiązającego glicynę w receptorze NMDA, powoduje napływ jonów wapnia do komórki i aktywację enzymów uszkadzających błony komórkowe, cytoszkieletu i DNA, co jednocześnie może prowadzić do nasilenia stresu oksydacyjnego i procesu apoptozy. Hcy wykazuje także powinowactwo do receptorów mGluR z grupy I. W modelach doświadczalnych wykazano, że receptory glutaminergiczne pośredniczą w wywołanej przez Hcy mobilizacji wapnia w hipokampie (badania prowadzone u królika) oraz w neurotoksyczności Hcy na modelu pierwotnej hodowli neuronów ziarnistych w mózdku.

W piśmiennictwie ukazały się także doniesienia o niezależnym od aktywności glutaminergicznej działaniu Hcy w patogenezie ChA, związanym z neurotoksycznością miedzi i β-amyloidu.

Uważa się, że pobudzenie receptora NMDA przez kwas homocysteinowy i jego działanie ekscytotoxiczne może także odgrywać ważną rolę w rozwoju ChP. Rozważa się ponadto hipotezę

uszkodzenia neuronów dopaminergicznych spowodowanego nadmiernym utlenianiem jonów żelaza oraz wolnymi rodnikami powstającymi podczas utleniania Hcy. Opisano także wzrost stężenia Hcy podczas farmakoterapii chorych z ChP L-dopą. Jak wykazano, L-dopa w organizmie ulega O–metylacji katalizowanej przez kateholotlenoetanolotransferazę (COMT), gdzie donorem grupy metylowej jest SAM a produktem 3-O-metylodopa, przekształcaną do SAH, która może być dalej hydrolizowana do Hcy. Uważa się, że w ChP Hcy jest również czynnikiem wywołującym stres oksydacyjny i dysfunkcje mitochondrialne oraz apoptozę neuronów dopaminergicznych67. Badania na ludzkich neuronach dopaminergicznych wykazały także wzrost neurotoksyczności przy wysokim poziomie Hcy wywołanym niedoborem FA68. Ukazały się również prace prowadzone na modelach zwierzących opisujące wpływ Hcy na transmisję dopaminergiczną69. Uważa się także, że Hcy jest allosterycznym antagonistą receptora D2 i być może przyczyną słabszego efektu farmakoterapii agonistami receptora D2 chorych z ChP z podwyższonym stężeniem Hcy w surowicy. Opisano także większe nasilenie dyskinez u pacjentów leczonych z powodu ChP, u których wykazano hHcy70.

Ponadto z piśmiennictwa wynika, że chore, u których wykazano trykrotnie wyższe stężenie Hcy w surowicy byli dwukrotnie częściej narażeni na zachorowanie na ChA, a z pracy Seshadri i wsp. wynika, że podwyższenie poziomu Hcy o 5 µM zwiększa ryzyko ChA o 40%65.

W ostatnich latach opisano także korelacje między podwyższonym stężeniem Hcy a chorobami psychiatrycznymi: schizofrenią71 i depresją72. Wykazano także wyższą w schizofrenii, w porównaniu z populacją ogólną, częstość występowania polimorfizmu C677T w genie kodującym MTHFR73,74.

Ponadto, jak wynika z piśmiennictwa zwiększone stężenie osoczowej Hcy jest czynnikiem ryzyka występowania wad wrodzonych cewy nerwowej, rozszczepu podniebienia, wad stóp u noworodków oraz zaburzeń prawidłowego przebiegu ciąży.75. Uważa się także, że hHcy może być przyczyną nawykowych poronień76. Ukazały się także prace opisujące dodatnie korelacje między narastającym poziomem Hcy a występowaniem wad łożyska oraz stanu przedrzucawkowego77 kobiet w ciąży a także prace o wpływie hHcy na patogenezę chorób nowotworowych78.

1.8.5. Hiperhomocysteinemia a rozwój padaczki

Udział hHcy w indukowaniu napadów padaczkowych wykazano zarówno w doświadczalnych modelach zwierzęcych, jak i u ludzi. Z piśmiennictwa wynika, że wysokie dawki Hcy mogą indukować napady padaczkowe u zwierząt doświadczalnych79. Natomiast z badań prowadzonych u ludzi wynika, że u 20 % chorych na padaczkę z heterozygotą CBS, przy wzroście krążącej Hcy od 50 do 200 µM obserwuje się wzrost częstości napadów padaczkowych80. Uważa się także, że hHcy wykazuje negatywny wpływ na kontrolę napadów u chorych na padaczkę. Przypuszcza się, że Hcy i jej metabolit- kwas homocysteinowy mogą uczestniczyć w indukowaniu napadów padaczkowych przez agonistyczne oddziaływanie na

receptor NMDA w miejscu wiążącym glutaminian. Prawdopodobnie kwas homocysteinowy ma także działanie aktywujące metabotropowe receptory glutaminergiczne grupy II i III. Istnieją hipotezy o indukującym napady padaczkowe hamującym wpływie Hcy na działanie Na⁺/K⁺ ATPazy w komórkach hipokampu oraz hamującym wpływie HCTL na działanie Na⁺/K⁺ ATPazy w komórkach hipokampu i kory mózgowej. Rozważa się także rolę hHcy w powstawaniu stresu oksydacyjnego i uszkodzeń DNA genów kodujących białka biorące udział w epileptogenezie.

1.8.6. Hiperhomocysteinemia w terapii lekami przeciwpadaczkowymi u chorych z padaczką

Uważa się, że istnieje kilka mechanizmów przyczyniających się do generowania hHcy u chorych z padaczką leczonych LPP. Wykazano, że LPP mogą mieć pośredni wpływ na poziom osoczowej Hcy poprzez upośledzanie wchłaniania jelitowego kofaktorów jej remetylacji (FA i witamina B12) oraz indukcję enzymów wątrobowych biorących udział w przemianach i jednocześnie warunkujących poziom FA. Ponadto wykazano, że metabolizm LPP, a w szczególności proces ich hydroksylacji, bezpośrednio zwiększa zużycie FA i obniża ich poziom w osoczu. Uważa się także, LPP mogą wykazywać pośredni wpływ na metabolizm Hcy oraz na funkcję nerek.

Wykazano także, że poziom generowanej Hcy zależy od rodzaju stosowanej farmakoterapii. Uważa się, że CBZ, DPH, PB podwyższają stężenie Hcy poprzez obniżenie poziomu FA na drodze zwiększenia aktywności cytochromu P450. Ponadto wykazano, że DPH zarówno u myszy, jak i u szczurów może generować Hcy poprzez hamowanie aktywności MTHFR.

Natomiast terapia CBZ może również prowadzić do zaburzenia procesu remetyzacji Hcy poprzez obniżanie poziomu kofaktorów biorących udział w biosyntezy FA oraz witaminy B12. Ponadto CBZ może wpływać na stężenie Hcy poprzez obniżenie stężenia Met i zaburzenie stosunku stężeń Met:Hcy.

81 Folbergrova J., Haugvicova R., Mares P.: Behavioral and metabolic changes in immature rats during seizures induced by homocysteic acid: the protective effect of NMDA and non-NMDA receptor antagonists. Exp. Neurol. 2000; 161: 336-345
Zaś terapia VPA, który w odróżnieniu od CBZ nie indukuje mikrosomalnych enzymów wątrobowych, może obniżać poziom FA przez hamowanie enzymu pośredniczącego w jego biosyntezie oraz w syntezie jego pochodnych i prowadzić do wzrostu stężenia Hcy bez zmiany stężenia Met. W badaniach przeprowadzonych u myszy wykazano, że VPA zaburza proces transsulfuracji.

W piśmiennictwie ukazały się także prace wskazujące na brak wpływu LPP NG na poziom Hcy oraz poziom kofaktorów procesu remetylacji Hcy do Met. Wykazano, że np. terapia LTG zasadniczo nie wpływa na poziom witaminy B12 i FA.

Wykazane liczne korelacje podwyższonego stężenia Hcy z wieloma komplikacjami klinicznymi przyczyniły się do coraz większego zainteresowania skutkami hHcy. Uważa się także, że udział hHcy w stanach patologicznych ustroju może odbywać się z udziałem asymetrycznej dimetyloargininy (ADMA).

1.9. ADMA

1.9.1. Metabolizm ADMA

Asymetryczna dimetyloarginina, endogenna metyloarginina, jest aminokwasem naturalnie występującym w organizmie człowieka. Jest ona syntetyzowana przez różne komórki, między innymi przez komórki śródbłonka naczyniowego. Powstaje w reakcjach metylacji białek zawierających reszty argininowe (syntetyzowane w cyklu mocznikowym) z udziałem N-metyltransferazy argininowej typu I (PRMT I), w której donorem grup metylowych jest SAM. Natomiast w wyniku proteolizy ADMA jest uwalniana z komórki i może być metabolizowana do L-cytruliny i dimetyloaminy przy udziale enzymu dimetyloaminohydrolazy dimetyloargininy (DDAH) lub w postaci niezmienionej wydalona przez nerki. L-cytrulina w toku dalszych przemian może być przekształczana do Arg.

Największa aktywność DDAH występuje w wątrobie⁹¹ chociaż wykazano ją także w granulocytach, erytrocytach i w monocyctach⁹².
Zarówno synteza, jak i degradacja ADMA są procesami aktywnie regulowanymi (Rys. 3).

Rysunek 3. Schemat syntezy i rozkładu ADMA

Wykazano zwiększenie ekspresji PRMT oraz wzrost poziomu syntezy ADMA w komórkach endotelialnych w obecności natywnych i zmodyfikowanych oksydacyjnie frakcji LDL. Synteza ADMA wzrasta także w obecności Met i Hcy, a maleje przy zwiększonym poziomie SAH, dialdehydu adenozyyny i cykloleucyny. W badaniach doświadczalnych wykazano, że Hcy przez oddziaływanie na grupy sulfhydrylowe bezpośrednio hamuje aktywność DDAH i tym samym może regulować stężenie ADMA w komórkach śródbłonka⁹³.
Wykazano także, że zwiększone stężenie frakcji oksydatynego LDL⁹⁴ powoduje spadek aktywności

DDAH. Uważa się, że obniżeniu aktywności DDAH zapobiegają przeciwwutleniacze\(^95\). W piśmiennictwie ukazały się także doniesienia o upośledzającym wpływie hipererglikemii na funkcje DDAH\(^96\).

1.9.2. Czynniki wpływające na stężenie ADMA w osoczu krwi

W piśmiennictwie wykazano wpływ wielu czynników egzo- i endogennych na stężenie ADMA zarówno u zwierząt doświadczalnych, jak i u ludzi. Jednym z najistotniejszych egzogennych czynników regulującym stężenie ADMA w osoczu wydaje się być spożywana dieta. Uważa się, że pokarmy bogatotłuszczowe\(^97\), dieta bogatosolna\(^98\), hipercholesterolemiczna oraz dieta indukująca hHc\(^99\) mogą powodować wzrost stężenia ADMA w osoczu. Uważa się także, że stężenie osoczowej ADMA wzrasta z wiekiem\(^100\). Innym ważnym czynnikiem wpływającym na stężenie ADMA wydaje się być farmakoterapia. Wykazano spadek stężenia ADMA podczas terapii lekami przeciwcukrzycowymi (metforminą\(^101\), rosiglitazonem\(^102\)), neuroleptykami\(^103\), inhibitorami konwertazy\(^104\), rosuwastatyną\(^105\) oraz estrogenami\(^106\).

Jednak najistotniejszą przyczyną wzrostu stężenia osoczowej ADMA wydają się być schorzenia a nie stosowana w nich farmakoterapia. W ciągu ostatnich lat ukazało się wiele prac wskazujących na ryzyko podwyższonego stężenia ADMA w chorobach przewlekłych w tym w: niewydolności nerek107, niewydolności wątroby, cukrzycy, chorobach układu nerwowego (schizofrenia104, stwardnienie rozsiane, choroby neurodegeneracyjne) i nadczynności gruczołu tarczowego108.

Uważa się, że stężenie osoczowej ADMA koreluje z ryzykiem występowania chorób naczyniowych.

104 Delles C., Schneider M.P., John S., Gekle M., Schmieder R.E.: \textit{Angiotensin converting enzyme inhibition and angiotensin II AT1-receptor blockade reduce the levels of asymmetrical N(G), N(G)-dimethylarginine in human essential hypertension.} Am. J. Hypertens. 2002; 15: 590-593

1.9.3. Udział ADMA w patogenezie chorób naczyniowych

Asymetryczna dimetyloarginina jest endogennym inhibitem NOS\(^{109}\). Uważa się, że hamuje trzy izoformy NOS tj. śródbłonkową (eNOS), neuronalną (nNOS) oraz indukowaną (iNOS). Wiadomo, że nNOS i eNOS są wytwarzane przez: płytki krwi, miocyny, komórki śródbłonka i neurony, w odróżnieniu od iNOS, która jest enzymem aktywowanym w większości komórek ustroju pod wpływem działania endotoksyn bakteryjnych, cytokin i interferonu. Ponadto wymienione trzy izoformy NOS są odpowiedzialne w sposób mniej lub bardziej kontrolowany za produkcję NO. Tlenek azotu posiada działanie: przeciwzapalne, wazodylatacyjne i antyaterogenne i wywiera silny wpływ na prawidłowe funkcjonowanie układu sercowo-naczyniowego. W warunkach fizjologicznych NO hamuje syntezę endoteliny-1, czynnika o działaniu naczynioobkurczającym i jednocześnie indukującym hiperplazję wewnętrznej błony naczyniowej. Natomiast obniżenie syntezy NO powoduje załamanie równowagi pomiędzy czynnikami obkurczającymi (noradrenaliny, serotoniny i angiotensyny II) i rozszerzającymi ścianę naczyniową na korzyść tych drugich\(^{110}\). Niedobór NO zwiększa wytwarzanie MCP-1 (ang. Monocyte Chemotactic Proteine-1) co sprzyja adhezji limfocytów i monocytów do ściany naczyniowej. Uważa się, że obniżenie syntezy NO sprzyja agregacji płytek krwi oraz proliferacji i hamowaniu apoptozy miocytów. Przypuszcza się, że deficyt NO może także hamować angiogenię\(^{111}\). NO bierze także udział w transmisji synaptycznej w ośrodkowym i obwodowym układzie nerwowym, odgrywa istotną rolę w procesie uczenia się i zapamiętywania. Uważa się, że NO odgrywa także ważną rolę w prawidłowym funkcjonowaniu układu immunologicznego oraz w regulacji procesów oddychania komórkowego na poziomie łańcucha mitochondrialnego.

Według wielu najnowszych publikacji ADMA jest zaliczana do jednych z najważniejszych markerów ryzyka chorób naczyniowych. W piśmiennictwie ukazało się wiele wskazujących na podwyższony poziom ADMA jako czynnika ryzyka choroby niedokrwiennej serca\(^{112}\) oraz chorób naczyń obwodowych. Uważa się, że główne działanie ADMA w patogenezie chorób naczyniowych polega na upośledzaniu funkcji śródbłonka.

na skutek hamowania syntezy NO, substancji uważanej obecnie za najsilniejszy czynnik o działaniu przeciwmiażdżycowym.

W piśmiennictwie ukazało się również wiele prac wskazujących na podwyższone stężenie ADMA jako czynnik ryzyka nadciśnienia tętniczego\(^\text{113}\). Poza bezpośrednim, oddziaływaniem ADMA na stężenie NO i w konsekwencji na regulację napięcia ściany naczyniowej, postuluje się także indukujący nadciśnienie tętnicze wpływ podwyższonego poziomu ADMA na wzrost resorpcji zwrotnej jonów sodu w kanalikach nerkowych\(^\text{114}\).

Według publikowanych wyników badań podwyższone stężenie ADMA może być także czynnikiem inicjującym oraz wpływającym na progresję procesu powstawania blaszki miażdżycowej oraz przerostu ściany naczyniowej. Uważa się, że poziom osoczowej ADMA koreluje z grubością kompleksu śródblonek-błona środkowa (IMT, ang. *Intima Media Thickness*) tętniczy\(^\text{115}\). Uważa się także, że stężenie osoczowej ADMA koreluje ze stopniem zaawansowania miażdżycy tętniczej oraz przerostu ściany naczyniowej. Uważa się, że poziom osoczowej ADMA koreluje z grubością kompleksu śródblonek-błona środkowa (IMT, ang. *Intima Media Thickness*) tętniczy\(^\text{115}\).

1.9.4. ADMA jako czynnik patogenezy innych schorzeń

W piśmiennictwie ukazały się prace wskazujące na dodatnią korelację między stężeniem osoczowej ADMA a insulinoopornością i cukrzycą. Mechanizm tych zależności nie jest dokładnie poznany. Uważa się jednak, że hiperglikemia wykazuje działanie hamujące na DDAH i może przyczyniać się do wzrostu stężenia osoczowej ADMA, ale postuluje się także negatywny wpływ ADMA na tolerancję glukozy\(^\text{116}\).

W piśmiennictwie ukazały się także prace wskazujące na udział ADMA w występowaniu stanu przedrzucawkowego u kobiet w ciąży\(^\text{117}\) oraz, że monitorowanie stężenia ADMA powinno być przeprowadzone w każdym przypadku ryzyka wystąpienia tej patologii ciąży.

Uważa się także, że wysoki poziom ADMA może mieć znaczenie w powstawaniu zjawisk drgawkowych. Wiadomo, że ADMA indukuje zmiany w metabolizmie Arg, która jest prekursorem ważnych neuroprzekaźników o charakterze pobudzającym (glutaminianu) i hamującym (GABA). ADMA może więc odgrywać rolę w zachowaniu prawidłowego poziomu pobudliwości neuronalnej poprzez wpływ na równowagę pomiędzy pobudzeniem i hamowaniem synaptycznym.

Brak jest jednak doniesień o wpływie LPP u chorych leczonych z powodu padaczki na poziom ADMA, szczególnie w warunkach hHcy.

1.9.5. Arginina

L-arginina (kwas 2-amino-5-guanidynowalerianowy) jest aminokwasem syntetyzowanym w cyklu mocznikowym, ale w różnych schorzeniach zalecana jest jej suplementacja. Jak wykazano podawanie egzogennej Arg stymuluje cykl mocznikowy oraz usuwanie toksycznego amoniaku, dlatego uważa się, że może mieć ona działanie detoksykacyjne, hepatoprotekcyjne oraz ochronne na OUN, a w tkankach, w których nie zachodzi cykl mocznikowy, Arg może być substratem dla NOS podczas syntezy NO. Według doniesień piśmiennictwa suplementacja Arg przywraca zaburzoną równowagę stężenia Arg:ADMA oraz w pewnym stopniu ogranicza hamujący wpływ ADMA na syntezę NO\(^\text{118}\). Ukazały się także prace w których wykazano, że suplementacja Arg wywiera korzystny efekt na naczynia w schorzeniach o etiologii miażdżycowej, takich jak choroba niedokrwienna serca\(^\text{119}\) czy choroba tętnic obwodowych\(^\text{120}\).

2. Cel pracy

Celem pracy było oznaczenie częstości występowania polimorfizmów genów: *MTHFR* (C677T), *MTR* (A2756G), *MTHFD1* (G1958A), a także analiza stężenia aminokwasów siarkowych Hcy i Met oraz ADMA i Arg u chorych z padaczką leczonych: VPA, CBZ, LPP NG i w politerapii oraz u chorych z rozpoznaną padaczką przed włączeniem LPP, a także w grupie kontrolnej. W przeprowadzonych badaniach uwzględniono również analizę oznaczonych parametrów biochemicznych w zależności od posiadanego genotypu badanych genów włączonych w przemianę Hcy do Met.
3. Materiał i metody

3.1. Materiał

3.1.1. Grupy badane

Grupę chorych z rozpoznaną padaczką kryptogenną stanowiły 63 osoby, 28 kobiet i 35 mężczyzn w wieku od 18-65 lat (średnia wieku 35,3±13,8 lat). Do grupy badanej zostali włączeni chorzy z padaczką hospitalizowani w Klinice Neurologii UM w Poznaniu oraz chorzy leczeni w Przyklinicznej Poradni Neurologicznej w latach 2004-2009. Wśród chorych z padaczką 55 osób, 24 kobiety i 31 mężczyzna, w wieku od 18 do 65 lat (średnia wieku 35,8±13,4 lat), było leczonych różnymi LPP oraz 8 chorych, 4 kobiety i 4 mężczyzna, w wieku od 18 do 65 lat (średnia wieku 31,7±17,2 lat) oczekiwało na włączenie leczenia LPP. W grupie chorych z padaczką leczonych LPP 56% stanowili chorzy z napadami uogólnionymi i 44% chorzy z napadami częściowymi. Natomiast w grupie chorych przed włączeniem leczenia LPP chorzy z napadami uogólnionymi stanowili 60%, a 40% stanowili chorzy z napadami częściowymi. Jednocześnie w grupie chorych z padaczką leczonych LPP, 67% chorych było leczonych w monoterapii [VPA 59%; CBZ 27%; LPP NG (w większości LTG) 14%], a 33% chorych w politerapii. Wśród chorych leczonych LPP w politerapii 61% chorych otrzymywało VPA i LPP NG, 22% chorych VPA i CBZ, a 17% chorych CBZ i LPP NG. Jednocześnie w grupie chorych leczonych LPP 31% chorych przyjmowało leki krócej niż 5 lat, a 69% powyżej 5 lat. W grupie chorych z padaczką leczonych LPP średni poziom VPA i CBZ utrzymywał się w granicach wartości referencyjnych i wynosił średnio 57,01 µg/ml i 6,97 µg/ml odpowiednio.

3.1.2. Grupa kontrolna

Grupę kontrolną stanowiło 61 ochotników, 41 kobiet i 20 mężczyzn w wieku od 22 do 67 lat (średnia wieku 44,3±14,2).

3.1.3. Kryteria włączenia do badań

Rodzaj padaczki weryfikowano w oparciu o kryteria i terminologię rekomendowaną przez Commision on Classification and Terminology of The International League Against „Proposal for Revised Classification of Epilepsies and Epileptic Syndromes”5. U osób z grupy kontrolnej nie stwierdzono schorzeń neurologicznych i cech otępienia. Jednocześnie u osób kontrolnych i chorych z padaczką nie stwierdzono zaburzeń funkcjonowania: wątroby, nerek i tarczycy, chorzy nie przyjmowali witamin z grupy B oraz FA. W przypadku chorych z padaczką
przyjmujących LPP popranie krwi do badań genetycznych i biochemicznych wykonywano przed przyjęciem kolejnej dawki leku.
Badanie odbyło się za zgodą Lokalnej Komisji Bioetycznej (KB nr 709/07).

3.2. Metody

3.2.1. Przygotowanie krwi do badań

Krew pobraną od osób z grupy kontrolnej i od chorych z padaczką wirowano przez 10 min. przy 3000 g, następnie zbierano supernatant i zamrażano do dalszych badań w temp. -80°C.
Krew pełną pobraną od osób badanych do analizy genetycznej zamrażano w temp. -80°C.

3.2.2. Analiza stężenia homocysteiny i metioniny

Przygotowanie próbek. Analizowane związki tiolowe i odpowiednie standardy (Hcy, Fluka, Niemcy; Met, Sigma, USA) rozcieńczano wodą w stosunku 2:1 i redukowano za pomocą 1% TCEP (Tris-(2-cerboxyethyl)-phosphin-hydrochlorid, Applichem, Niemcy) w stosunku 1:9. Następnie próbki odbialczano 1 M HClO₄ w stosunku 2:1 i podawano do układu wysoksprawnej chromatografii cieczowej z detekcją elektrochemiczną (HPLC/EC, ang. High Pressure Liquid Chromatography/Electrochemical Detection)¹²¹. Standardy przygotowano w rozcieńczeniach 5, 10, 15, 20 i 30 µM dla Hcy oraz 10, 20, 30, 40, 60 µM dla Met.

Oznaczanie stężenia analizowanych biotioli. Próbki podawano do układu HPLC (P580A, Dionex, Niemcy) połączonego z detektorem elektrochemicznym (CoulArray 5600, ESA, USA). Analizę przeprowadzono na kolumnie Thermo Hypersil BDS C18 (250 x 4,6 x 5µ, Niemcy) w warunkach izokratycznych używając jako fazę ruchomą 0,15 M bufor fosforanowy o pH 2,9 z dodatkiem 12,5-17% acetonitrylu.
Do sterowania układem, zbierania i obróbki danych użyto oprogramowania Chromeleon (Dionex, Niemcy).

3.2.3. Analiza stężenia ADMA i argininy

Przygotowanie próbek i przeprowadzanie derywatyzacji. Analizowane związki i odpowiednie standardy (ADMA, Arg, Sigma, USA) rozcieńczano wodą w stosunku 1,5:1,0 a następnie odbialczano 8 M HClO₄ w stosunku 1:5. Bezpośrednio przed analizą HPLC próbki poddawano derywatyzacji w roztworze zawierającym 10 mg OPA (Sigma, USA) w 100 µl metanolu z dodatkiem 900 µl 0,4 M buforu boranowego

o pH 8,5 i 5 µl 2-merkaptoetanolu w stosunku 1:1122. Standardy przygotowano w rozcieńczeniach 0,5; 1,0; 1,5; 2,0 i 3,0 µM dla ADMA oraz 10, 20, 30, 40 i 60 µM dla Arg. Oznaczanie stężenia ADMA i Arg. Próbki podawano do układu HPLC (PS80A, Dionex, Niemcy) połączonego z detektorem fluoroscencyjnym (RF2000, Dionex, Niemcy). Analizę przeprowadzono na kolumnie Thermo Hypersil BDS C18 (250 x 4,6 x 5µ, Niemcy) w warunkach izokratycznych używając jako fazę ruchomą 0,1 M bufor fosforanowy o pH 6,75 z dodatkiem 25% metanolu. Stężenie ADMA i Arg mierzono fluorymetrycznie stosując wzbudzenie i emisję przy długości fali 340 i 455 nm odpowiednio. Do sterowania układem, zbierania i obróbki danych użyto oprogramowania Chromeleon (Dionex, Niemcy).

3.2.4. Genotypowanie

Badanie polimorfizmów genów MTHFR (C677T), MTR (A2756G)123 i MTHFD1 (G1958A) przeprowadzono metodą reakcji łańcuchowej polimerazy z zastosowaniem enzymów restrykcyjnych (PCR-RFLP, ang. Polymerase Chain Reaction–Restriction Fragment Length Polymorphism). Reakcję PCR przeprowadzono z użyciem 10 ng genomowego DNA. Końcowa objętość mieszany reakcyjnej wynosiła 25 µl i zawierała 20 mM TrisHCl, 50 mM KCl, 1,5 mM MgCl₂, 0,11 mM każdego z DTP, 0,3 µM każdego ze starterów (Tab. 2) oraz 1µ polimerazy Taq DNA. Produkty reakcji PCR poddawano trawieniu przy użyciu odpowiednich enzymów restrykcyjnych, które rozpoznają i przecinają zmutowany lub też dziki wariant genu. Proces trawienia przeprowadzono w temperaturze 37°C przez 3 godziny. Dla uwidocznienia produktów reakcji w świetle UV otrzymane fragmenty rozdzielano na 2% żelu agarozowym w buforze 0,5xTBE z dodatkiem bromku etydyny. Otrzymane wyniki potwierdzano poprzez bezpośrednie sekwenccjonowanie produktów PCR.

123 Mostowska A., Hołysz K.K., Jagodziński P.P.: \textit{Maternal MTR genotype contributes to the risk of non-syndromic cleft lip and palate in the Polish population}. Clin. Gen. 2006; 69: 512–517
Tabela 2. Startery i enzymy restrykcyjne używane do genotypowania wybranych polimorfizmów genów: MTHFR, MTR, MTHFD1 u chorych z padaczką i w grupie kontrolnej

<table>
<thead>
<tr>
<th>Gen</th>
<th>Polimorfizm</th>
<th>Enzym restrykcyjny</th>
<th>Starter Typ</th>
<th>Sekwencje, 5′–3′</th>
<th>Temperatura przyłączenia starteru (°C)</th>
<th>Wielkość produktu (pz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTHFR</td>
<td>C677T</td>
<td>Hinfl</td>
<td>Sense</td>
<td>AGG CTG TGC TGT GCT GTT G</td>
<td>66</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Antisense</td>
<td>CGC TGT GCA AGT TCT GGA C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTR</td>
<td>A2756G</td>
<td>HaeIII</td>
<td>Sense</td>
<td>GTT GGT GAA GGG AGA AGA AAT G</td>
<td>56</td>
<td>583</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Antisense</td>
<td>CTA AAG AAT GGG GGT CTG TG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTHFD1</td>
<td>G1958A</td>
<td>MspI</td>
<td>Sense</td>
<td>TTC TTC TCA TTC TTC CTC ACA CC</td>
<td>60</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Antisense</td>
<td>TCT GCT CCA AAT CCT GCT TC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3. Statystyczna ocena wyników

Do oceny statystycznej wyników użyto oprogramowania GraphPad (Instat, USA) oraz Statistica for Windows (Statsoft, USA).
4. Wyniki

Badaniu poddano częstość występowania polimorfizmów genów: MTHFR (C677T), MTR (A2756G) i MTHFD1 (G1958A), a także analizę stężenia dwóch związków tiolowych: Hcy i Met oraz ADMA i Arg w osoczu krwi obwodowej u chorych z padaczką leczonych LPP w monoterapii (VPA, CBZ, LPP NG) i w politerapii (VPA+LPP NG, CBZ+LPP NG, VPA+CBZ), przed włączeniem LPP oraz w grupie kontrolnej.

Tabela 3. Stężenie Hcy, Met, ADMA, Arg u chorych z padaczką przed włączeniem leczenia LPP(-) i po włączeniu różnych LPP(+) oraz w grupie kontrolnej

<table>
<thead>
<tr>
<th>Analizowany związek</th>
<th>Grupa kontrolna</th>
<th>Chorzy z padaczką</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LPP(-)</td>
<td>LPP(+)</td>
<td></td>
</tr>
<tr>
<td>Hcy [µM]</td>
<td>11,9 ± 4,0</td>
<td>12,9 ± 3,2</td>
<td>0,0383</td>
</tr>
<tr>
<td></td>
<td>14,5 ± 6,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met [µM]</td>
<td>22,6 ± 6,0</td>
<td>15,7 ± 9,2</td>
<td>0,0180</td>
</tr>
<tr>
<td></td>
<td>19,7 ± 7,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met:Hcy</td>
<td>2,1 ± 0,9</td>
<td>1,4 ± 0,6</td>
<td>0,0011</td>
</tr>
<tr>
<td></td>
<td>1,5 ± 0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADMA [µM]</td>
<td>1,6 ± 1,0</td>
<td>1,7 ± 1,0</td>
<td>0,0053</td>
</tr>
<tr>
<td></td>
<td>2,4 ± 1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg [µM]</td>
<td>73,7 ± 25,7</td>
<td>56,8 ± 29,6</td>
<td>0,3317</td>
</tr>
<tr>
<td></td>
<td>68,2 ± 29,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg:ADMA</td>
<td>85,7 ± 120,7</td>
<td>45,4 ± 37,8</td>
<td>0,0428</td>
</tr>
<tr>
<td></td>
<td>42,4 ± 38,7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Średnia ± SD
Użyto parametrycznego testu One-way ANOVA dla zmiennych niepowiązanych
Statystycznie istotne różnice przy *p<0,05, **p<0,01 w porównaniu z kontrolą

Różnice statystycznie istotne w teście Spearmana:

Grupa kontrolna:
- współczynnik R Spearmana +0,6286, p=0,0001 pomiędzy Met i Met:Hcy
- współczynnik R Spearmana +0,3214, p=0,0201 pomiędzy Arg i ADMA

Chorzy z padaczką przed włączeniem leczenia LPP(-):
- współczynnik R Spearmana -0,9000, p=0,0374 pomiędzy Hcy i Arg:ADMA
- współczynnik R Spearmana +0,8108, p=0,0269 pomiędzy Met i Met:Hcy

Chorzy z padaczką po włączeniem leczenia LPP(+):
- współczynnik R Spearmana -0,3479, p=0,0099 pomiędzy Hcy i Met:Hcy
- współczynnik R Spearmana +0,6215, p=0,0001 pomiędzy Met i Met:Hcy
- współczynnik R Spearmana -0,8553, p=0,0001 pomiędzy ADMA i Arg:ADMA
- współczynnik R Spearmana +0,4530, p=0,0007 pomiędzy Arg i Arg:ADMA
W wyniku przeprowadzonych badań wykazano (Tab. 3), że u chorych z padaczką leczonych różnymi LPP obserwowano statystycznie istotny wzrost stężenia Hcy (test One-way ANOVA, p<0,05 w porównaniu z kontrolą). Jednocześnie wykazano, że wzrost ten powyżej dolnej granicy łagodnej hHcy (powyżej 16 µM) dotyczył 27%, a powyżej górnej granicy wartości referencyjnych (powyżej 15 µM) 36% chorych z padaczką leczonych LPP.

Ponadto wykazano, że stężenie Met statystycznie istotnie obniżało się jedynie u chorych z padaczką przed włączeniem LPP (test One-way ANOVA, p<0,05 w porównaniu z kontrolą). Natomiast zarówno u chorych z padaczką leczonych LPP, jak i u oczekujących na włączenie LPP obserwowano spadek poziomu stosunku Met:Hcy, ale istotny statystycznie jedynie u chorych leczonych LPP (test One-way ANOVA, p<0,01 w porównaniu z kontrolą). Ponadto stwierdzono, że u chorych z padaczką leczonych LPP wzrostowi stężenia Hcy towarzyszył wzrost stężenia ADMA (test One-way ANOVA, p<0,01 w porównaniu z kontrolą), jednocześnie wyrażony statystycznie istotnym spadkiem poziomu stosunku Arg:ADMA (test One-way ANOVA, p<0,05 w porównaniu z kontrolą). Natomiast u wszystkich badanych chorych z padaczką stężenie Arg ulegało statystycznie nieistotnemu obniżeniu.

Ponadto w grupie kontrolnej w teście Spearmana wykazano dodatnią korelację zarówno pomiędzy stężeniem Met a poziomem stosunku Met:Hcy (R Spearmana +0,6286, p=0,0001), jak i stężeniem Arg i ADMA (R Spearmana +0,3214, p=0,0201). Jednocześnie wykazano, że dodatnia korelacja pomiędzy stężeniem Met a poziomem stosunku Met:Hcy utrzymywała się u chorych z padaczką zarówno przed włączeniem LPP (R Spearmana +0,8108, p=0,0269), jak i po leczeniu LPP (R Spearmana +0,6215, p=0,0001). Wykazano również, że włączenie LPP u chorych z padaczką prowadziło do pojawienia się dodatkowej dodatniej korelacji pomiędzy stężeniem Arg a poziomem stosunku Arg:ADMA (R Spearmana +0,4530, p=0,0007). Ponadto wykazano, że zarówno u chorych z padaczką przed włączeniem leczenia (Hcy i Arg:ADMA; R Spearmana -0,9000, p=0,0374), jak i po włączeniu LPP (Hcy i Met:Hcy; R Spearmana -0,3479, p=0,0099 oraz ADMA i Arg:ADMA; R Spearmana -0,8553, p=0,0001) obserwowano ujemne korelacje pomiędzy wybranymi analizowanymi biotiolami a ADMA i jej metabolitem (Arg) lub metabolitem Hcy.
Tabela 4. Stężenie Hcy, Met, ADMA, Arg u chorych z padaczką leczonych różnymi LPP w zależności od rodzaju napadów padaczkowych

<table>
<thead>
<tr>
<th>Analizowany związek</th>
<th>Chorzy z padaczką</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Napady częściowe proste</td>
<td>Napady częściowe złożone</td>
</tr>
<tr>
<td>Hcy [µM]</td>
<td>14,6 ± 3,5</td>
<td>15,5 ± 4,9</td>
</tr>
<tr>
<td>Met [µM]</td>
<td>18,0 ± 4,6</td>
<td>18,7 ± 5,8</td>
</tr>
<tr>
<td>Met:Hcy</td>
<td>1,3 ± 0,3</td>
<td>1,3 ± 0,6</td>
</tr>
<tr>
<td>ADMA [µM]</td>
<td>3,1 ± 2,0</td>
<td>2,4 ± 1,5</td>
</tr>
<tr>
<td>Arg [µM]</td>
<td>44,5 ± 24,1</td>
<td>60,1 ± 19,8</td>
</tr>
<tr>
<td>Arg:ADMA</td>
<td>17,8 ± 7,8</td>
<td>42,2 ± 45,9</td>
</tr>
</tbody>
</table>

Średnia ± SD
Użyto parametrycznego testu One-way ANOVA dla zmiennych niepowiązanych
Brak statystycznie istotnych różnic

Rysunek 4. Stężenie Hcy, Met, ADMA, Arg u chorych z padaczką leczonych różnymi LPP z napadami częściowymi i uogólnionymi, przed włączeniem LPP (-) i w grupie kontrolnej

Średnia ± SD, użyto testu One-way ANOVA, Met:Hcy, **p<0,01 pomiędzy chorymi leczonymi różnymi LPP z napadami częściowymi złożonymi i kontrolą
Ponadto wykazano (Tab. 4, Rys. 4), że u chorych z padaczką leczonych LPP zarówno z napadami częściowymi (prostymi lub złożonymi), jak i uogólnionymi stężenie Hcy utrzymywało się na porównywalnym, statystycznie nieistotnym, podwyższonym poziomie w porównaniu z osobami kontrolnymi (Tab. 3). Poza tym u tych chorych ulegało obniżeniu stężenie metabolitów Hcy i ADMA, Met i Arg odpowiednio, jednocześnie wyrażone spadkiem poziomu stosunków Met:Hcy (test One-way ANOVA, u chorych z napadami częściowymi złożonymi, p<0,01 w porównaniu z kontrolą) i Arg:ADMA w porównaniu z osobami zdrowymi.

Tabela 5. Stężenie Hcy, Met, ADMA, Arg u chorych z padaczką leczonych VPA, CBZ, LPP NG i w politerapii

<table>
<thead>
<tr>
<th>Analizowany związek</th>
<th>Chorzy z padaczką</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VPA</td>
<td>CBZ</td>
</tr>
<tr>
<td>Hcy [µM]</td>
<td>13,0 ± 5,0</td>
<td>14,2 ± 4,8</td>
</tr>
<tr>
<td>Met [µM]</td>
<td>22,9 ± 9,0</td>
<td>16,1 ± 5,4</td>
</tr>
<tr>
<td>Met:Hcy</td>
<td>2,0 ± 0,9</td>
<td>1,2 ± 0,5*</td>
</tr>
<tr>
<td>ADMA [µM]</td>
<td>2,4 ± 1,3</td>
<td>2,3 ± 1,3</td>
</tr>
<tr>
<td>Arg [µM]</td>
<td>67,1 ± 38,4</td>
<td>69,6 ± 20,0</td>
</tr>
<tr>
<td>Arg:ADMA</td>
<td>41,7 ± 39,4</td>
<td>36,9 ± 20,2</td>
</tr>
</tbody>
</table>

Średnia ± SD
Użyto parametrycznego testu One-way ANOVA dla zmiennych niepowiązanych
Statystycznie istotne różnice przy *p<0,05 pomiędzy chorymi leczonymi VPA i CBZ oraz przy **p<0,01 pomiędzy chorymi leczonymi VPA i w politerapii
Rysunek 5. Stężenie Hcy, Met, ADMA, Arg u chorych z padaczką leczonych VPA, CBZ, LPP NG i w
politerapii, przed włączeniem LPP(-) i w grupie kontrolnej

Średnia ± SD, użyto testu One-way ANOVA, dla Met:Hcy, *p<0,05 i ***p<0,001 pomiędzy chorymi leczonymi CBZ oraz w politerapii i kontrolą odpowiednio; dla Hcy, **p<0,01 pomiędzy chorymi leczonymi w politerapii i kontrolą

Jednocześnie uwzględniając rodzaj stosowanej farmakoterapii u chorych z padaczką wykazano (Tab. 5, Rys. 5), że stężenie Hcy ulegało statystycznie istotnemu podwyższeniu jedynie u chorych z padaczką leczonych w politerapii (test One-way ANOVA, p<0,01 w porównaniu z kontrolą) oraz praktycznie nie ulegało zmianie jedynie u chorych leczonych LPP NG. Natomiast stężenie Met najwyraźniej obniżało się u chorych leczonych CBZ i praktycznie nie zmieniało się podczas terapii VPA. Jednocześnie, jedynie u chorych leczonych VPA poziom stosunku Met:Hcy nie ulegał obniżeniu w porównaniu z kontrolą (test One-way ANOVA, dla chorych leczonych CBZ, p<0,05 w porównaniu z kontrolą i chorymi leczonymi VPA; dla chorych leczonych w politerapii, p<0,01 w porównaniu z chorymi leczonymi VPA, p<0,001 w porównaniu z kontrolą). Natomiast u wszystkich chorych niezależnie od rodzaju stosowanej terapii LPP następował statystycznie nieistotny wzrost stężenia ADMA, oraz spadek stężenia Arg (oprócz chorych leczonych LPP NG) i poziomu stosunku Arg:ADMA, który najwyraźniej był obniżony u chorych leczonych LPP NG.
Tabela 6. Stężenie Hcy, Met, ADMA, Arg u chorych z padaczką leczonych w politerapii

<table>
<thead>
<tr>
<th>Analizowany związek</th>
<th>Chorzy z padaczką</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VPA + LPP NG</td>
<td>CBZ + LPP NG</td>
</tr>
<tr>
<td>Hcy [µM]</td>
<td>18,3 ± 10,8</td>
<td>14,9 ± 6,3</td>
</tr>
<tr>
<td>Met [µM]</td>
<td>19,9 ± 7,0</td>
<td>9,9 ± 0,2</td>
</tr>
<tr>
<td>Met:Hcy</td>
<td>1,2 ± 0,3</td>
<td>0,8 ± 0,2</td>
</tr>
<tr>
<td>ADMA [µM]</td>
<td>2,4 ± 1,5</td>
<td>1,7 ± 1,1</td>
</tr>
<tr>
<td>Arg [µM]</td>
<td>59,5 ± 20,8</td>
<td>61,9 ± 5,5</td>
</tr>
<tr>
<td>Arg:ADMA</td>
<td>45,0 ± 55,1</td>
<td>43,2 ± 17,7</td>
</tr>
</tbody>
</table>

Średnia ± SD
Użyto parametrycznego testu One-way ANOVA dla zmiennych niepowiązanych
Brak statystycznie istotnych różnic

Rysunek 6. Stężenie Hcy, Met, ADMA, Arg u chorych z padaczką leczonych w politerapii, przed włączeniem LPP(-) i w grupie kontrolnej

Średnia ± SD, użyto testu One-way ANOVA, dla Met:Hcy, *p<0,05 pomiędzy chorymi leczonymi CBZ+LPP NG i kontrolą; **p<0,01; dla Hcy i Met:Hcy, pomiędzy chorymi leczonymi VPA+LPP NG i kontrolą oraz dla Met, pomiędzy chorymi leczonymi CBZ+LPP NG i kontrolą.
Analizując poziom badanych parametrów biochemicznych u chorych z padaczką leczonych w politerapii zarówno w przypadku łączenia leków starej i nowej generacji, jak i jedynie leków starej generacji (Tab. 6, Rys. 6) stwierdzono, że stężenie Hcy ulegało statystycznie istotnemu podwyższeniu jedynie u chorych leczonych VPA+LPP NG (test One-way ANOVA, p<0,01 w porównaniu z kontrolą), a stężenie Met statystycznie istotnemu obniżeniu jedynie u chorych leczonych CBZ+LPP NG (test One-way ANOVA, p<0,01 w porównaniu z kontrolą).

Ponadto wykazano, że poziom stosunku Met:Hcy ulegał statystycznie istotnemu obniżeniu u wszystkich chorych leczonych w politerapii (VPA lub CBZ) z lekami NG (test One-way ANOVA, dla CBZ+LPP NG, p<0,05 w porównaniu z kontrolą; dla VPA+LPP NG, p<0,01 w porównaniu z kontrolą). Jednocześnie u chorych leczonych CBZ+LPP NG najniższemu wzrostowi stężenia Hcy towarzyszył najniższy wzrost stężenia ADMA.

Ponadto leczenie chorych z padaczką w politerapii lekami starej generacji (VPA+CBZ) wykazywało tendencję do nieobniżania stężenia Arg i utrzymywania stosunku Arg:ADMA na poziomie zbliżonym do kontrolnego.

Tabela 7. Stężenie Hcy, Met, ADMA, Arg u chorych z padaczką leczonych różnymi LPP w zależności od czasu podawania leków

<table>
<thead>
<tr>
<th>Analizowany związek</th>
<th>Chorzy z padaczką leczeni LPP</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poniżej 5 lat</td>
<td>Powyżej 5 lat</td>
</tr>
<tr>
<td>Hcy [µM]</td>
<td>10,7 ± 3,9</td>
<td>16,2 ± 7,0***</td>
</tr>
<tr>
<td>Met [µM]</td>
<td>20,5 ± 8,5</td>
<td>19,4 ± 7,6</td>
</tr>
<tr>
<td>Met:Hcy</td>
<td>2,0 ± 1,0</td>
<td>1,3 ± 0,6***</td>
</tr>
<tr>
<td>ADMA [µM]</td>
<td>2,3 ± 1,3</td>
<td>2,4 ± 1,4</td>
</tr>
<tr>
<td>Arg [µM]</td>
<td>73,5 ± 26,2</td>
<td>65,6 ± 31,5</td>
</tr>
<tr>
<td>Arg:ADMA</td>
<td>43,7 ± 28,2</td>
<td>41,7 ± 43,2</td>
</tr>
</tbody>
</table>

Średnia ± SD
Użyto nieparametrycznego testu Manna-Whitney’a dla zmiennych niepowiązanych
Statystycznie istotne różnice przy ***p<0,001 w porównaniu z chorymi leczonymi LPP poniżej 5 lat
Średnia ± SD, użyto testu One-way ANOVA, dla Hcy, (**p<0,01 pomiędzy chorymi leczonymi <5 i >5 lat i ***p<0,001 pomiędzy chorymi leczonymi >5 lat i kontrolą; dla Met:Hcy, (***)p<0,01 pomiędzy chorymi leczonymi <5 i >5 lat i ***p<0,001 pomiędzy chorymi leczonymi >5 lat i kontrolą; dla ADMA, *p<0,05 pomiędzy chorymi leczonymi >5 lat i kontrolą

Ponadto uwzględniając czas trwania leczenia LPP stwierdzono, że długotrwała kuracja chorych z padaczką różnymi LPP (powyżej 5 lat) (Tab. 7, Rys. 7) prowadziła do statystycznie istotnego wzrostu stężenia Hcy (test Manna-Whitney’a, p<0,001 w porównaniu z chorymi leczonymi LPP poniżej 5 lat i test One-way ANOVA, p<0,001 w porównaniu z kontrolą) i nie prowadziła do zmiany stężenia ADMA w porównaniu z chorymi leczonymi w kuracji poniżej 5 lat (test One-way ANOVA, p<0,05 pomiędzy chorymi leczonymi >5 lat i kontrolą). Równocześnie wykazano, że przyjmowanie LPP w okresie dłuższym niż 5 lat nieznacznie obniżało stężenie Met i Arg oraz statystycznie istotnie poziom stosunku Met:Hcy (test Manna-Whitney’a, p<0,001 w porównaniu z chorymi leczonymi LPP <5 lat; test One-way ANOVA, p<0,01 pomiędzy chorymi leczonymi <5 i >5 lat i p<0,001 pomiędzy chorymi leczonymi >5 lat i kontrolą). Natomiast poziom stosunku Arg:ADMA u tych chorych uległ statystycznie nieistotnemu obniżeniu nawet w okresie pierwszych 5 lat przyjmowania leków.
Tabela 8. Stężenie ADMA, Arg u chorych z padaczką leczonych różnymi LPP z Hcy poniżej i powyżej 16 µM

<table>
<thead>
<tr>
<th>Analizowany Związek</th>
<th>Chorzy z padaczką leczeni LPP</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hcy poniżej 16 µM</td>
<td>Hcy powyżej 16 µM</td>
</tr>
<tr>
<td>ADMA [µM]</td>
<td>2,5 ± 1,4</td>
<td>2,2 ± 1,3</td>
</tr>
<tr>
<td>Arg [µM]</td>
<td>66,6 ± 28,9</td>
<td>72,6 ± 33,1</td>
</tr>
<tr>
<td>Arg:ADMA</td>
<td>38,3 ± 28,4</td>
<td>53,4 ± 58,2</td>
</tr>
</tbody>
</table>

Średnia ± SD
Użyto nieparametrycznego testu Manna-Whitney’a dla zmiennych niepowiązanych
Brak statystycznie istotnych różnic

Rysunek 8. Stężenie ADMA i Arg u chorych z padaczką leczonych różnymi LPP z Hcy poniżej i powyżej 16 µM, przed włączeniem LPP(-) i w grupie kontrolnej

Średnia ± SD, użyto testu One-way ANOVA,
dla ADMA, **p<0,01 pomiędzy chorymi z Hcy<16 µM i kontrolą

Natomiast analiza stężenia parametrów biochemicznych (ADMA, Arg) u chorych z padaczką leczonych LPP z łagodną hHcy (Hcy>16 µM) (Tab. 8, Rys. 8) wykazała, że u tych chorych stężenie ADMA nie ulegało podwyższeniu (test One-way ANOVA, dla chorych z Hcy<16 µM, p<0,01 w porównaniu z kontrolą), a stężenie Arg i poziom stosunku Arg:ADMA u tych chorych ulegało niewielkiemu podwyższeniu w porównaniu z chorymi z Hcy<16 µM.
Tabela 9. Lokalizacja i częstość występowania genotypów genów MTHFR C677T, MTHFRD1 G1958A, MTR A2756 u chorych z padaczką i w grupie kontrolnej

<table>
<thead>
<tr>
<th>Lokalizacja genu</th>
<th>Genotypy</th>
<th>Grupa kontrolna</th>
<th>Chorzy z padaczką</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTHFR C677T</td>
<td>CC</td>
<td>46%</td>
<td>57%</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>50%</td>
<td>32%</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>4%</td>
<td>11%</td>
</tr>
<tr>
<td>MTR A2756</td>
<td>AA</td>
<td>69%</td>
<td>54%</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>31%</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>0%</td>
<td>7%</td>
</tr>
<tr>
<td>MTHFD1 G1958A</td>
<td>GG</td>
<td>27%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td>55%</td>
<td>49%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>18%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Analizie poddano również częstość występowania polimorfizmu C677T genu kodującego MTHFR (Tab. 9) i stwierdzono zróżnicowany rozkład genotypów tego genu zarówno w kontroli, jak i u chorych z padaczką. W grupie kontrolnej obserwowano największą ilość osób z genotypem heterozygotycznym CT oraz najmniejszą ilość osób z homozygotą nieprawidłową TT (C677T MTHFR). Natomiast wśród chorych z padaczką wzrastała ilość osób z homozygotą zarówno prawidłową CC, jak i nieprawidłową TT (prawie 3-krotnie więcej niż w grupie kontrolnej) C677T MTHFR.

Natomiast w przypadku genu kodującego MTR (A2756G) (Tab. 9) w grupie kontrolnej najwięcej było osób z genotypem prawidłowym AA (A2756G MTR) oraz w grupie tej nie występował genotyp homozygotyczny nieprawidłowy GG (A2756G MTR). Wśród chorych z padaczką natomiast wzrastała ilość osób z heterozygotą AG (A2756G MTR) i pojawiły się osoby z homozygotą nieprawidłową GG (A2756G MTR).

W przypadku polimorfizmu G1958A MTHFD1, wśród chorych z padaczką stwierdzono jedynie więcej osób z genotypem homozygotycznym AA (G1958A MTHFD1) niż w grupie osób kontrolnych (Tab. 9), chociaż zarówno u osób kontrolnych, jak i wśród chorych z padaczką w przewadze były osoby z genotypem heterozygotycznym GA (G1958A MTHFD1). Genotyp homozygotyczny prawidłowy GG (G1958A MTHFD1) w obu grupach występował praktycznie na jednakowym poziomie i jedynie w grupie kontrolnej był w przewadze w stosunku do nieprawidłowego AA (G1958A MTHFD1).
Tabela 10. Stężenie Hcy, Met, ADMA, Arg w zależności od genotypów MTHFR C677T
u chorych z padaczką leczonych różnymi LPP i w grupie kontrolnej

<table>
<thead>
<tr>
<th>Analizowany związek</th>
<th>Grupa kontrolna</th>
<th>Chorzy z padaczką</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC</td>
<td>CT</td>
<td>CC</td>
</tr>
<tr>
<td>Hcy [µM]</td>
<td>12,4 ± 4,6</td>
<td>11,1 ± 3,7</td>
<td>13,6 ± 5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met [µM]</td>
<td>23,0 ± 6,1</td>
<td>22,3 ± 4,8</td>
<td>20,2 ± 9,2*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met:Hcy</td>
<td>2,1 ± 1,0</td>
<td>2,2 ± 0,9</td>
<td>1,7 ± 1,0*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADMA [µM]</td>
<td>1,6 ± 0,9</td>
<td>1,3 ± 1,0</td>
<td>2,1 ± 1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg [µM]</td>
<td>74,6 ± 26,6</td>
<td>66,4 ± 22,3</td>
<td>73,1 ± 34,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg:ADMA</td>
<td>75,1 ± 68,1</td>
<td>124,2 ± 177,1</td>
<td>46,8 ± 35,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Średnia ± SD
Użyto nieparametrycznego testu Manna-Whitney’a dla zmiennych niepowiązanych
Statystycznie istotne różnice przy *p<0,05 oraz ***p<0,001 w porównaniu z kontrolą

Analizie poddano również poziom badanych parametrów biochemicznych (Hcy, Met, ADMA i Arg) uwzględniając genotypy genu MTHFR (C677T) (Tab. 10). Wykazano, że jedynie u chorych z padaczką leczonych LPP z genotypem heterozygotycznym MTHFR CT (C677T) nastąpił statystycznie istotny wzrost stężenia zarówno Hcy (test Manna-Whitney’ a, p<0,05 w porównaniu z kontrolą), jak i ADMA (test Manna-Whitney’a, p<0,001 w porównaniu z kontrolą).

Natomiast u chorych z padaczką z genotypem homozygotycznym MTHFR CC (C677T) statystycznie istotnie obniżyło się stężenie Met (test Manna-Whitney’a, p<0,05 w porównaniu z kontrolą). Zarówno u chorych z homozygotą prawidłową MTHFR CC (C677T), jak i heterozygotą MTHFR CT (C677T) obniżał się poziom stosunku Met:Hcy (test Manna-Whitney’a, p<0,05 w porównaniu z kontrolą), a także poziom stosunku Arg:ADMA (test Manna-Whitney’a, u chorych z heterozygotą MTHFR CT (C677T), p<0,001 w
porównaniu z kontrolą). Ze względu na małą liczebność badanych osób z genotypem homozygotycznym *MTHFR* TT (C677T) (2 osoby kontrolne i 6 chorych z padaczką), u tych osób nie poddano analizie statystycznej badanych parametrów biochemicznych.

Tabela 11. Stężenie Hcy, Met, ADMA, Arg w zależności od genotypów MTR A2756G u chorych z padaczką leczonych różnymi LPP i w grupie kontrolnej

<table>
<thead>
<tr>
<th>Analizowany związek</th>
<th>Grupa kontrolna</th>
<th>Chorzy z padaczką</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MTR A2756G</td>
<td>MTR A2756G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>AG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>AG</td>
<td></td>
</tr>
<tr>
<td>Hcy [µM]</td>
<td>12,9 ± 5,1</td>
<td>10,6 ± 3,8</td>
<td>14,0 ± 4,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met [µM]</td>
<td>22,9 ± 6,8</td>
<td>21,6 ± 4,3</td>
<td>20,2 ± 6,7*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0247</td>
</tr>
<tr>
<td>Met:Hcy</td>
<td>2,1 ± 1,0</td>
<td>2,2 ± 1,0</td>
<td>1,5 ± 0,8*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0282</td>
</tr>
<tr>
<td>ADMA [µM]</td>
<td>1,6 ± 1,0</td>
<td>1,4 ± 1,0</td>
<td>2,4 ± 1,4*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0183</td>
</tr>
<tr>
<td>Arg [µM]</td>
<td>70,2 ± 26,5</td>
<td>82,7 ± 23,5</td>
<td>66,0 ± 29,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0495</td>
</tr>
<tr>
<td>Arg:ADMA</td>
<td>79,6 ± 83,1</td>
<td>145,5 ± 235,0</td>
<td>38,1 ± 28,5**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0057</td>
</tr>
</tbody>
</table>

Średnia ± SD
Użyto nieparametrycznego testu Manna-Whitney’a dla zmiennych niepowiązanych
Statystycznie istotne różnice przy *p<0,05 oraz **p<0,01 w porównaniu z kontrolą

Natomiast w przypadku chorych z padaczką leczonych LPP zarówno z homozygotą prawidłową *MTR* AA (A2756G), jak i z heterozygotą *MTR* AG (A2756G) nie stwierdzono statystycznie istotnego wzrostu stężenia Hcy, chociaż u tych chorych statystycznie istotnie wzrastało stężenie ADMA (test Manna-Whitney’a, p<0,05 w porównaniu z kontrolą) (Tab. 11). Jednocześnie zarówno u chorych z homozygotą prawidłową *MTR* AA (A2756G), jak i z heterozygotą *MTR* AG (A2756G) obniżało się stężenie Met i poziom stosunku Met:Hcy (test Manna-Whitney’a, p<0,05 w porównaniu z kontrolą) oraz Arg:ADMA (test Manna-Whitney’a, p<0,01 w porównaniu z kontrolą), a u chorych z *MTR* AG (A2756G) statystycznie istotnie obniżało się również stężenie Arg (test Manna-Whitney’a, p<0,05 w porównaniu z kontrolą).
Tabela 12. Stężenie Hcy, Met, ADMA, Arg w zależności od genotypów MTHFD1 G1958A u chorych z padaczką leczonych różnymi LPP i w grupie kontrolnej

<table>
<thead>
<tr>
<th>Analizowany związek</th>
<th>Grupa kontrolna</th>
<th>Chorzy z padaczką</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MTHFD1 G1958A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>GA</td>
<td>AA</td>
</tr>
<tr>
<td>Hcy [µM]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>10,1</td>
<td>14,4</td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td>± 3,4</td>
<td>± 4,4</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>14,1</td>
<td>11,6</td>
</tr>
<tr>
<td>Met [µM]</td>
<td>23,2</td>
<td>22,5</td>
<td>18,5</td>
</tr>
<tr>
<td></td>
<td>± 5,3</td>
<td>± 7,0</td>
<td>± 5,9</td>
</tr>
<tr>
<td>Met:Hcy</td>
<td>2,6</td>
<td>1,7</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>± 1,0</td>
<td>± 0,8</td>
<td>± 0,7</td>
</tr>
<tr>
<td>ADMA [µM]</td>
<td>1,0</td>
<td>1,7</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>± 0,6</td>
<td>± 0,8</td>
<td>± 1,5</td>
</tr>
<tr>
<td>Arg [µM]</td>
<td>67,1</td>
<td>75,2</td>
<td>76,6</td>
</tr>
<tr>
<td></td>
<td>± 19,1</td>
<td>± 21,9</td>
<td>± 40,1</td>
</tr>
<tr>
<td>Arg:ADMA</td>
<td>146,7</td>
<td>56,7</td>
<td>95,7</td>
</tr>
<tr>
<td></td>
<td>± 234,2</td>
<td>± 37,3</td>
<td>± 115,9</td>
</tr>
</tbody>
</table>

Średnia ± SD
Użyto nieparametrycznego testu Mann-Whitney’a dla zmiennych niepowiązanych
Statystycznie istotne różnice przy *p<0,05, **p<0,01, ***p<0,001 w porównaniu z kontrolą

Ponadto jedynie u chorych z homozygotą prawidłową MTHFD1 GG (G1958) leczonych LPP (Tab. 12) statystycznie istotnie wzrastało stężenie Hcy (test Manna-Whitney’a, p<0,05 w porównaniu z kontrolą) wraz ze wzrostem stężenia ADMA (test Manna-Whitney’a, p<0,001 w porównaniu z kontrolą). Natomiast stężenie Met obniżało się zarówno u chorych z homozygotą prawidłową MTHFD1 GG (G1958), jak i z
heterozygotą MTHFD1 GA (G1958) (test Manna-Whitney’a, p<0,05 w porównaniu z kontrolą), chociaż poziom stosunku Met:Hcy (test Manna-Whitney’a, p<0,01 w porównaniu z kontrolą) i Arg:ADMA (test Manna-Whitney’a, p<0,001 w porównaniu z kontrolą) jednocześnie obniżał się statystycznie istotnie jedynie u chorych homozygotą prawidłową MTHFD1 GG (G1958). Istotny spadek poziomu stosunku Arg:ADMA (test Manna-Whitney’a, p<0,05 w porównaniu z kontrolą) wykazano również u chorych z homozygotą nieprawidłową MTHFD1 AA (G1958), a u chorych z heterozygotą MTHFD1 GA (G1958) statystycznie istotny spadek stężenia Arg (test Manna-Whitney’a, p<0,05 w porównaniu z kontrolą).

Tabela 13. Stężenie Hcy, Met, ADMA, Arg w zależności od genotypów MTHFR (C677T), MTR A2756G, MTHFD1 G1958A u chorych z padaczką leczonych różnymi LPP i w grupie kontrolnej

<table>
<thead>
<tr>
<th>Analizowany związek</th>
<th>Grupa kontrolna</th>
<th>Chorzy z padaczką</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hcy [µM]</td>
<td>15,8 ± 5,1</td>
<td>8,2 ± 2,0</td>
<td>0,2394</td>
</tr>
<tr>
<td>Met [µM]</td>
<td>21,9 ± 6,4</td>
<td>22,2 ± 3,8</td>
<td>0,2512</td>
</tr>
<tr>
<td>Met:Hcy</td>
<td>1,5 ± 0,7</td>
<td>2,9 ± 1,1</td>
<td>0,1891</td>
</tr>
<tr>
<td>ADMA [µM]</td>
<td>1,7 ± 0,8</td>
<td>1,1 ± 0,9</td>
<td>0,0816</td>
</tr>
<tr>
<td>Arg [µM]</td>
<td>67,0 ± 24,7</td>
<td>81,2 ± 13,9</td>
<td>0,4810</td>
</tr>
<tr>
<td>Arg:ADMA</td>
<td>53,1 ± 40,7</td>
<td>262,4 ± 364,0</td>
<td>0,0867</td>
</tr>
</tbody>
</table>

Średnia ± SD
Użyto parametrycznego testu One-way ANOVA dla zmiennych niepowiązanych
Brak statystycznie istotnych różnic

MTHFR CC (C677T), MTHFD1 GA (1958A), MTR AA (A2756G)
MTHFR CC (C677T), MTHFD1 GA (1958A), MTR AG (A2756G)
MTHFR CC (C677T), MTHFD1 AA (1958A), MTR AA (A2756G)
MTHFR CC (C677T), MTHFD1 AA (1958A), MTR AG (A2756G)
MTHFR CT (C677T), MTHFD1 GG (1958A), MTR AG (A2756G)
MTHFR CT (C677T), MTHFD1 GA (1958A), MTR AA (A2756G)
Jednocześnie wykazano, że u wszystkich badanych chorych z padaczką z polimorfizmami genów włączonych w przemianę Hcy do Met, *MTHFR* (C677T), *MTR* (A2756G), *MTHFD1* (G1958A) wraz ze wzrostem (w sposób istotny i/lub nieistotny statystycznie) stężenia osoczowej Hcy wzrastało stężenia osoczowej ADMA (Tab. 10-13).
5. Dyskusja

Ukazało się wiele prac wskazujących na wzrost stężenia osoczowej Hcy u chorych z padaczką leczonych LPP. Z prac tych wynika, że u chorych z padaczką na wzrost stężenia krążącej Hcy w następstwie stosowanej farmakoterapii może wpływać wiele czynników, między innymi: dieta, wiek, rodzaj stosowanych preparatów farmaceutycznych, czas trwania leczenia oraz uwarunkowania genetyczne. Wydaje się, że jednym z istotnych czynników wpływających na generowanie Hcy u chorych z padaczką leczonych LPP jest rodzaj spożywanej diety, a szczególnie obecność w niej kofaktorów niezbędnych do metabolizmu Hcy (witaminy: B6 i B12, FA). Wydaje się również, że wykazany w populacji amerykańskiej brak wzrostu stężenia Hcy w następstwie stosowania LPP w odróżnieniu od populacji Europejczyków (Grecja, Niemcy, Włochy, Norwegia, Polska, Japończyców, Koreańczyców, Turków i Arabów) najprawdopodobniej wiąże się ze spożywaną przez większość Amerykanów diety bogatą w kofaktory niezbędne do remetylacji Hcy do Met (FA).

129 Yoo J.H., Hong S.B.: A common mutation in the methylenetetrahydrofolate reductase gene is a determinant of hyperhomocysteinemia in epileptic patients receiving anticonvulsants. Metabolism 1999; 48: 1047-1051
130 Karabiber H., Sonmezgoz E., Ozler E., Yakinci C., Otlu B., Yolgozlu S.: Effect of valproate and carbamazepine on serum levels of homocysteine, vitamin B12, and folic acid. Brain Dev. 2003; 25: 113-115
133 Centers for Disease Control and Prevention. Recommendations for the use of folic acids to reductase the number of cases of spinal bifida and other neural tube defects. MMWR 41 (RR-14) 1999; 1-7
Wydaje się również, że na generowanie Hcy u chorych z padaczką zasadniczo wpływa nie sama choroba, a raczej stosowana w niej farmakoterapia. Potwierdzają to badania przeprowadzone w populacji greckiej, u dzieci z padaczką w wieku od 4,5 do 14 lat leczonych LPP przez 20 tygodni, jak również badania przeprowadzone u dorosłych chorych z padaczką leczonych w mono- i w politerapii LPP przez ponad 30 dni oraz badania przeprowadzone u osób oczekujących na włączenie LPP zarówno prowadzone u dzieci, jak i w niniejszej pracy u chorych z padaczką w wieku pomiędzy 18 a 65 r.ż. Ponadto, jak wynika z przeprowadzonych badań na generowanie Hcy nie wydają się również wpływać zróżnicowane działania napadowe uzależnione od rozległości i umiejscowienia zaburzeń na poziomie komórkowym i synaptycznym w OUN, chociaż jak wskazują uzyskane w niniejszej pracy dane, chorych z zaburzeniami ogniskowymi wydają się mieć większą tendencję do zaburzenia metabolizmu Hcy.

Generowanie Hcy u chorych z padaczką, jak wskazują dane z piśmiennictwa jest związane zarówno z LPP indukującymi mikrosomalne enzymy wątrobowe, takimi jak: DPH, PB, pyrimidon, CBZ, które jednocześnie zwiększają aktywność enzymów cytochromu P450 i prowadzą do obniżenia poziomu FA w surowicy, jak i z LPP takimi jak: VPA, który w mniejszym stopniu indukuje aktywność enzymów wątrobowych i w mniejszym stopniu wpływa na stężenie Hcy w surowicy krwi. Wzrost stężenia Hcy wraz z obniżeniem stężenia FA u chorych z padaczką po podaniu CBZ wykazano w badaniach Verrotti i wsp., Karabiber i wsp. oraz Attilakos i wsp. Natomiast w przypadku terapii chorych z padaczką VPA wykazano zarówno wzrost stężenia Hcy wraz z obniżeniem poziomu FA, jak i bez obniżenia jego poziomu.

Uważa się, że obniżenie poziomu FA podczas terapii LPP następuje na skutek upośledzonego ich wchłaniania jelitowego, zwiększonego zapotrzebowania na FA do procesu hydroksylacji LPP, aktywacji enzymów wątrobowych prowadzących do końcowego obniżenia poziomu FA, bezpośrednich interakcji pomiędzy FA a LPP jako wynik strukturalnego podobieństwa pomiędzy koenzymami FA a LPP lub bezpośredniego wpływu na metabolizm Hcy i funkcję nerek.

Są jednak również doniesienia w piśmiennictwie świadczące o braku wpływu LPP zarówno indukujących enzymy wątrobowe, jak i niewpływających na aktywność enzymów wątroby na poziom krążącej Hcy. Zarówno w pracy Sener i wsp., jak i w przeprowadzonych badaniach nie wykazano istotnego wzrostu stężenia Hcy po terapii chorych z padaczką CBZ, a w pracy Apeland i wsp. oraz Unal i wsp. i w niniejszych badaniach również istotnego wzrostu stężenia Hcy po podaniu VPA. Brak istotnego wzrostu stężenia Hcy po terapii chorych z padaczką CBZ i VPA może być związany z nieznacznym wpływem tych LPP na poziom kofaktorów (w piśmiennictwie wykazano niejednoznaczny wpływ tych leków na poziom kofaktorów).

FA i witaminy B12) niezbędnych do procesu remetylacji Hcy, a w przypadku VPA, jak wykazano w pracach Apeland i wsp., Gidal i wsp., Attilakos i wsp. być może z wpływem tego leku na podwyższenie stężenia witaminy B12 i najprawdopodobniej w ten sposób zapobieganiu nadmiernemu gromadzeniu Hcy w krwi chorych z padaczką.

Uważa się również, że LPP NG takie jak: LTG oraz OCBZ, u chorych z padaczką nie zmieniają poziomu witaminy B12 i FA i nie podwyższają stężenia Hcy. Wydają się to również potwierdzać przeprowadzone w niniejszej pracy badania stężenia Hcy u chorych leczonych LPP NG w monoterapii. Jednocześnie przeprowadzone badania wskazują, że połączenie terapii LPP NG szczególnie z VPA może przyczyniać się do zwiększonego generowania Hcy. O tym, że leczenie chorych z padaczką w politerapii przyczynia się do zwiększonego generowania Hcy świadczą nie tylko przeprowadzone badania, ale również prace Schwaninger i wsp., Ono i wsp., Hamed i wsp. z pracą Belcastro i wsp.

Innym czynnikiem predysponującym do zwiększonego generowania osoczowej Hcy wydaje się być długotrwała kuracja chorych z padaczką LPP (powyżej 5 lat). W piśmiennictwie podwyższone stężenie Hcy wykazano u chorych po długotrwałej kuracji zarówno: CBZ, DPH, PB, VPA, jak i w politerapii. Z pracy Hamed i wsp. wynika, że zarówno długotrwała terapia CBZ, jak i VPA są włączone w uszkodzenia naczyń z udziałem zaburzonego metabolizmu Hcy i FA. Udział Hcy w patogenezie chorób naczyniowych nie jest jednokierunkowy i nie został dotychczas w pełni wyjaśniony. Uważa się, że wzrost osoczowej Hcy może indukować zmiany miażdżycowe w kilku mechanizmach. Postuluje się bezpośrednie cytotoxiczne działanie Hcy na komórki śródbłonka naczyniowego, pobudzanie proliferacji mięśni gładkich naczyń oraz aktywację czynników zapalnych mających wpływ na powstawanie chorób naczyniowych. Uważa się także, że Hcy może indukować zmiany aterogenne poprzez zaburzenia funkcji czynników krzepnięcia oraz płytek krwi. Innym patomechanizmem zmian naczyniowych w hHcy wydaje się być modyfikujący wpływ metabolitu Hcy- HCTL na białka osocza (min. fibrynogenu, hemoglobinę), powodujący zmianę ich właściwości: wzrost ich podatności na uszkodzenia oksydacyjne i tworzenia agregatów. Uważa się również, że HCTL może mieć działanie modyfikujące składową LDL- apolipoproteinę apo-100 i w ten sposób indukować agregację LDL oraz powstawanie komórek piankowatych, które są jednym z czynników biorących udział w powstawaniu blaszki miażdżycowej.

Wiadomo również, że niedobory kofaktorów reakcji remetylacji Hcy (witamina B12, FA) mogą przyczyniać się obniżenia wydajności tego procesu, a w konsekwencji do spadku poziomu Met. Spadek stężenia Met u chorych z padaczką leczonych w mono- i w politerapii wykazano zarówno w pracy Ono i

wsp., jak i w niniejszej pracy, zwłaszcza w przypadku terapii chorych z padaczką lekami obniżającymi poziom FA (CBZ w mono- i w politerapii). W przeprowadzonych badaniach wykazano również, że wraz z obniżeniem stężenia Met u chorych obniżeniu ulegał poziom stosunku Met:Hcy. Według jednej z nowszych teorii spadek poziomu tego stosunku może być związany z transformacją Hcy do HCTL w komórkach śródbłonka i pośredniczyć w tworzeniu zmian miażdżycowych indukowanych przez Hcy.

Z pracy Engbersen i wsp. wynika, że na skuteczność procesu remetylacji Hcy do Met silny pośredni wpływ wywiera również enzym MTHFR. Występowanie tej formy enzymu jest związane z mutacją punktową C677T genu kodującego MTHFR. Z doniesień piśmiennictwa i z przeprowadzonych badań wynika, że zarówno w populacji polskiej, jak i w populacji norweskiej, angielskiej, koreańskiej, tureckiej najmniej rozpowszechniony był genotyp homozigotyczny MTHFR TT (C677T) i posiadał on tendencję wzrostową częstości występowania u chorych z padaczką. Uważa się, że polimorfizm genu kodującego MTHFR wszkutek obniżenia FA-zależnej aktywności tego enzymu prowadzi do upośledzenia procesu remetylacji Hcy do Met i wzrostu poziomu Hcy. Jednocześnie uważa się, że tranzycja C→T w genie MTHFR (C677T) obniża aktywność enzymu o 50%, a formy homozygotyczne tego genu obniżają jego aktywność o 30%.

Z doniesień piśmiennictwa wynika, że w populacji koreańskiej jedynie genotyp homozygotyczny MTHFR TT (C677T) prowadził do istotnego wzrostu stężenia Hcy i tylko u chorych z padaczką leczonych lekami indukującymi enzymy wątrobowe i obniżającymi FA (CBZ). Natomiast z przeprowadzonych badań wynika, że stężenie Hcy istotnie wzrastało również u osobników heterozygotycznych MTHFR CT C677T z padaczką leczonych różnymi LPP zarówno w mono-, jak i w politerapii. Wyniki badań na temat współdziałania LPP z polimorfizmem C677T genu kodującego MTHFR

w generowaniu Hcy są niejednoznaczne. Synergystyczne działanie LPP indukujących enzymy wątrobowe z heterozygotą MTHFR (C677T) potwierdzają badania przeprowadzone przez Apeland i wsp.83, chociaż z pracy Vurucu i wsp.142 wynika, że polimorfizm C677T genu kodującego MTHFR nie jest włączony w hHcy u chorych z padaczką leczonych CBZ, a z pracy Ono i wsp.145 wynika, że koreluje jedynie z hHcy u chorych z padaczką leczonych w politerapii.

Wykazano również, że w następstwie stosowania fenytoiny może dochodzić zmniejszenia aktywności MTR włączonej w remetylację Hcy do Met i w ten sposób w regulację poziomu Met146. Wydaje się jednak, że w przebadanej w niniejszej pracy grupie chorych z padaczką leczonych różnymi LPP w mono- i lub politerapii nie dochodziło do znacznego obniżenia aktywności tego enzymu.

Jednocześnie z przeprowadzonych badań wynika, że w generowanie osoczowej Hcy u chorych z padaczką leczonych różnymi LPP w mono- i politerapii jest również włączony gen kodujący enzym MTHFD1 (G1958A), szczególnie homozygota prawidłowa MTHFD1 GG (G1958A).

Jak również wynika z przeprowadzonych badań, polimorfizmy genów związanych z remetylacją Hcy do Met u chorych z padaczką leczonych LPP, wydają się być także włączone w zaburzenia proporcji pomiędzy poziomem Met i Hcy, i w ten sposób prowadzić do wzrostu stężeń Hcy.

Jak wykazano, podwyższenie stężenia Hcy powyżej 15 µM u chorych z padaczką leczonych LPP może wiązać się z wieloma komplikacjami klinicznymi. Jak wiadomo może trzykrotnie zwiększać ryzyko wystąpienia zaawalłu mięśnia sercowego i dwukrotnie zwiększać ryzyko stenozy naczyń wieńcowych147, oraz może prowadzić do rozwoju chorób naczyniowych148, neuropsychiatricznych80, jak również jest uważane za czynnik ryzyka napadów padaczkowych oraz oporności na LPP79.

W ostatnich latach ukazały się prace podkreślające związek pomiędzy hHcy i stężeniem ADMA w chorobach naczyniowych149, 94, 150, 151. Wiele z nich wskazuje na wzrost stężenia osoczowej ADMA w hHcy

\footnotesize

w chorobach naczyń wieńcowych, w chorobach naczyń obwodowych, udarze. Wzrost stężenia ADMA w warunkach hHcy jest wyjaśniany w oparciu o kilka teorii. Jedna z nich zakłada, że generowanie osoczowej ADMA może się odbywać w środowisku podwyższonego poziomu Met pochodzącej z wyższego poziomu Hcy w hHcy z udziałem SAM, który prowadzi do zwiększonej produkcji ADMA z Arg poprzez wzrost aktywności SAM-zależnej PRMT lub nieprawidłowej regulacji ekspresji tego genu w warunkach hHcy. Inny mechanizm zakłada wzrost stężenia ADMA w hHcy jako wynik obniżonej czynności wydzielniczej nerek lub obniżonej ekspresji i aktywności enzymu DDAH, który jak wiadomo jest odpowiedzialny za rozkład ADMA do L-cytruliny. Wykazano, że w warunkach in vitro Hcy może bezpośrednio hamować aktywność enzymu DDAH poprzez oksydacyjną jego inaktywację i prowadzić do wzrostu stężenia ADMA.

Wzrost stężenie ADMA w środowisku wzrastającego poziomu Hcy wydaje się mieć zarówno podłoże organiczne, i jak wynika z przeprowadzonych badań również może być skutkiem farmakoterapii LPP. W niniejszej pracy po farmakoterapii LPP u chorych z padaczką wzrostowi stężenia Hcy towarzyszył istotny lub nieistotny wzrost stężenia ADMA, niezależnie od rodzaju stosowanych leków czy posiadanych polymorfizmów genów kodujących enzymy odpowiedzialne za efektywność metabolizmu Hcy do Met. Jednocześnie zarówno z przeprowadzonych badań (szczególnie podczas przedłużającej się kuracji LPP), jak i z pracy Jonasson i wsp. prowadzonej u chorych z chorobami naczyniowymi wynika, że w warunkach hHcy nie zawsze dochodzi do wzrostu stężenia ADMA. Jak wykazano w chorobach naczyniowych, brak wzrostu stężenia ADMA w hHcy najprawdopodobniej wiąże się ze współistniejącą u tych chorych subtelną dysfunkcją nerek -nieznacznie zwiększa się czynność wydzielnicza nerek.

Ponadto wykazano, że ADMA może pośredniczyć w miażdżycogennym działaniu Hcy. ADMA jest zaliczana do czynników ryzyka chorób krążenia oraz markerów miażdżycy. Uważa się także, że ADMA jako inhibitor NOS może odgrywać pośrednią rolę w powstawaniu zjawisk drgawkowych, poprzez regulację poziomu NO. Jak wykazano, w mózgu wzrost produkcji NO może działać pro- i antydrgawkowo.

levels of asymmetric dimethylarginine (ADMA) in subject with elevated risk for cardiovascular disease. Atherosclerosis 2007; 193: 168-176

153 Sydow K., Schwedhelm E., Arakawa N., Bode-Böger S.M., Tsikas D., Hornig B., Fröhlich J.C., Böger R.H.: ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovasc. Res. 2003, 57, 244-252

Większość powstającego ośrodkowo NO jest syntezowana przez nNOS, podczas gdy aktywność iNOS wykazano głównie w stanach patologicznych związanych z cytotokszycznym działaniem NO z udziałem receptorów NMDA. Uważa się, że NO może działać jako inhibitor receptora NMDA i wykazywać z jednej strony działanie prodrgawkowe, a z drugiej strony działanie przeciwdrgawkowe poprzez hamowanie presynaptyczne receptorów glutaminergicznych. Potwierdzają to badania przeprowadzone w modelach doświadczalnych, gdzie wykazano, że wewnątrzprążkowiowa iniekcja Arg powoduje wzrost produkcji prążkowiego NO i działanie ochronne przed indukowanym MMA (ang. Methylomalonic Acid, kwas metylomalonoowy) stresem oksydacyjnym i napadem padaczkowym, ale ukazały się także publikacje o prodrgawkowym działaniu Arg.

Jak wiadomo, patologiczne działanie ADMA może wiązać się zarówno z jej podwyższonym poziomem, a także z obniżonym stężeniem jej metabolitu i substratu do produkcji NO, Arg. Jak wynika z przeprowadzonych badań obniżenie poziomu Arg u chorych z padaczką może być związane z pewnymi predyspozycjami genetycznymi. Wśród przebadanych chorych, osoby z heterozygotami MTR AG (A2756G) i MTHFD1 GA (G1958A) wydają się być szczególnie predysponowane do obniżania poziomu tego aminokwasu. Wydaje się również, że obniżenie poziomu Arg u chorych z padaczką leczonych LPP może być związane z mechanizmem epileptogenezy, w którym dochodzi do zwielokrotnienia biosyntezy neurotransmiterów o charakterze pobudzającym (glutaminan) i hamującym (GABA) z udziałem tego aminokwasu, lub być skutkiem mobilizacji organizmu do przeciwdziałania nadmiernemu pobudzeniu w mechanizmie działania wielu LPP (wzrost stężenia GABA). Obniżenie stężenia Arg u chorych z padaczką wydaje się również skutkować zaburzeniem proporcji pomiędzy Arg i ADMA, będące zdaniem Dayal i Lentz, najprawdopodobniej skutkiem wzrastającego stresu oksydacyjnego towarzyszącego podwyższonemu poziomowi Hcy. Z pracy Maas wynika, że w warunkach stresu oksydacyjnego związanego z interwencją farmakologiczną dochodzi do generowania ADMA poprzez zmianę ekspresji genów odpowiedzialnych za syntezę i rozkład ADMA. Z pracy Matsuoka i wsp. wynika, że zaburzenie proporcji pomiędzy Arg i ADMA może być przyczyną hipercholesterolemii, nacisku tętniczego, chorób mięśnia sercowego i naczyń. W badaniach Bode-Böger i wsp. w szczurach z hipercholesterolemią stwierdzono dwukrotnie wyższe stężenie oscoczowej ADMA oraz obniżenie poziomu stosunku Arg:ADMA, który jednocześnie ulegał normalizacji po zastosowaniu diety bogatej w Arg.

Natomiast w badaniach Chan i wsp. stwierdzono wzrost poziomu czynników adhezyjnych monocyttów i limfocytów T dla komórek śródbłonka u pacjentów z hipercholesterolemią, korelujący z obniżonym poziomem stosunku Arg:ADMA. Jednocześnie wykazano, że suplementacja Arg u tych chorych prowadziła do normalizacji tego stosunku oraz do normalizacji poziomu czynników adhezyjnych. Natomiast na podstawie wyników badań uzyskanych u szczurów z zastoinową niewydolnością serca wynika, że obniżone stężenie osoczowej ADMA koreluje z zaburzeniami relaksacji naczyniowej. Według Feng i wsp. poziom stosunku Arg:ADMA może być uważany za index istotny dla oceny funkcji śródbłonka. W piśmiennictwie ukazały się także doniesienia o obniżonym poziomie stosunku Arg:ADMA u chorych z cukrzycą typu I leczonych insuliną. Z badań tych wynika, że stosunek ten wykazuje ujemną korelację z wartościami BMI (ang. Body Mass Index, wskaźnik masy ciała) i wartościami osoczowego stężenia frakcji LDL oraz dodatnią z wartościami frakcji HDL. Wiadomo, że podwyższone wartości BMI oraz frakcji LDL przy obniżonej wartości frakcji HDL należą do czynników ryzyka chorób naczyniowych.

W wielu opublikowanych pracach wykazano skuteczność suplementacji witaminami z grupy B i FA w obniżaniu poziomu Hcy u chorych z padaczką leczonych LPP. Jednakże z pracy Sydow i wsp. prowadzonej u chorych z hHcy z chorobą naczyń obwodowych wynika, że kuracja witaminami z grupy B reguluje tylko poziom Hcy, ale nie jest niewystarczająco do obniżenia poziomu ADMA. Ponadto z pracy Feng i wsp. oraz Koga i wsp. wynika, że do regulacji obu czynników jednocześnie skuteczniejsza jest terapia skojarzona, witamin z grupy B, FA i Arg. Na skuteczność skojarzonej terapii u chorych z padaczką leczonych LPP wydają się również wskazywać uzyskane w niniejszej pracy dodatnie korelacje z udziałem Met i Arg po leczeniu tymi lekami.

Z przeprowadzonych badań wynika, że farmakoterapia LPP u chorych z padaczką prowadzi do wzrostu stężenia Hcy, szczególnie u chorych leczonych w politerapii oraz przy długotrwałej kuracji. Bardziej podatne na wzrost stężenia Hcy podczas kuracji LPP wydają się być osoby z genotypem MTHFR CT (C677T) oraz MTHFD1 GG (G1958A). Uwarunkowania genetyczne wydają się być również związane z

zaburzeniami w proporcjach Hcy i Met oraz Arg i ADMA. W warunkach hHcy związanej z terapią LPP u chorych z padaczką kontrola Hcy nad ADMA wydaje się być zaburzona. Wydaje się również, że jedynie skojarzona suplementacja witaminami z grupy B i FA oraz Arg u chorych z padaczką leczonych LPP może przyczynić się skutecznej regulacji poziomu czynników ryzyka chorób naczyniowych: Hcy i ADMA u tych chorych.
6. Wnioski

1. Farmakoterapia lekami przeciwpadaczkowymi u około 27% chorych z padaczką prowadzi do wzrostu stężenia osoczowej homocysteiny powyżej dolnej granicy łagodnej hiperhomocysteinemii.

2. Politerapia i długotrwałe leczenie lekami przeciwpadaczkowymi chorych z padaczką (powyżej 5 lat) przyczyniają się do istotnego wzrostu stężenia osoczowej homocysteiny.

3. W warunkach łagodnej hiperhomocysteinemii u chorych z padaczką leczonych lekami przeciwpadaczkowymi kontrola homocysteiny nad ADMA wydaje się być zaburzona.

4. Szczególne predyspozycje do generowania homocysteiny wraz z ADMA mają chory na padaczkę z heterozygotą MTHFR CT (C677T) i homozygotą MTHFD1 GG (G1958T).

5. Geny odpowiedzialne za remetylację homocysteiny do metioniny są najprawdopodobniej włączone w zaburzenia proporcji pomiędzy stężeniem zarówno homocysteiny i metioniny, jak i ADMA i L-argininy.
7. Streszczenie

Padaczka jest jedną z najczęstszych chorób neurologicznych, przyjmuje się, że dotyczy ok. 1% populacji polskiej. Mimo ciągłego postępu wiedzy na temat przyczyn i przebiegu padaczki, jej leczenie nadal pozostaje procesem skomplikowanym i najczęściej wieloletnim. Ponadto w świetle najnowszych doniesień piśmiennictwa, uważa się, że przewlekłe stosowanie leków przeciwpadaczkowych (LPP) może wywoływać różne objawy niepożądane oraz zaburzać metabolizm wielu związków, w tym aminokwasów siarkowych, m.in. homocysteiny (Hcy). Homocysteina, endogenny aminokwas, powstaje w organizmie wyniku demetylacji metioniny (Met) i jest metabolizowany w procesach remetylacji i transsulfuracji z udziałem kofaktorów: kwasu foliowego, witamin B6 i B12. W procesie remetyzacji Hcy ulega przekształceniu do Met, która może ulegać ponownie demetylacji do Hcy z udziałem S-adenozyłmetioniny (SAM) i S-adenozyłhomocysteiny (SAH). S-adenozyłmetionina jest uważana za głównego donora grup metylowych w licznych przemianach metabolicznych, a jednym z produktów jej metylacji jest asymetryczna dimetyloarginina (ADMA), endogenny inhibitor syntazy tlenku azotu (NOS). Asymetryczna dimetyloarginina, podobnie jak Hcy jest istotnym czynnikiem ryzyka chorób naczyniowych i neurodegeneracyjnych. Uważa się, że na poziom osołowym Hcy u chorych leczonych LPP ma wpływ m.in. dieta, czas i rodzaj stosowanej terapii, a także czynniki genetyczne.

Celem pracy było oznaczenie częstości występowania polimorfizmów genów **MTHFR** (C677T), **MTR** (A2756G), **MTHFD1** (G1958A) oraz analiza stężenia osocowej Hcy i Met oraz ADMA i argininy (Arg) u chorych z padaczką przed rozpoczęciem leczenia oraz w trakcie terapii LPP a także u osób z grupy kontrolnej. W przeprowadzonych badaniach uwzględniono również analizę oznaczanych parametrów biochemicznych w zależności od posiadanego genotypu genów włączonych w przemiany Hcy do Met.

Badaniu poddano 63 osoby, 28 kobiet i 35 mężczyzn, w wieku od 18 do 65 lat z padaczką kryptogenną. Wśród chorych z padaczką 55 osób było leczonych LPP, 8 chorych oczekiwano na włączenie terapii LPP. Grupę kontrolną stanowiło 61 osób, 41 kobiet i 20 mężczyzn w wieku od 22 do 67 lat.

Stężenia Hcy i Met w osoczu krwi oznaczono metodą wysokosprawnej chromatografii cieczowej (HPLC) z detekcją elektrochemiczną. Stężenia ADMA i Arg oznaczono metodą HPLC z detekcją fluoroscencją. Badanie polimorfizmów genów **MTHFR**, **MTR** i **MTHFD1** przeprowadzono przy użyciu techniki reakcji łańcuchowej polimerazy z zastosowaniem enzymów restrykcyjnych (PCR-RFLR).

W wyniku przeprowadzonych badań stwierdzono, że farmakoterapia LPP u około 27% pacjentów z padaczką prowadzi do wzrostu stężenia osocowej Hcy powyżej dolnej granicy łagodnej hiperhomocysteinemii (hHcy) oraz, że do istotnego generowania osocowej Hcy przyczynia się szczególnie politerapia i długotrwałe (powyżej 5 letnie) leczenie LPP. Wydaje się również, że szczególne predyspozycje do hHcy i zwiększonego stężenia osocowej ADMA mają chorzy z heterozygotą MTHFR CT.
(C677T) i homozygotą MTHFD1 GG (G1958T) a uwarunkowania genetyczne mogą mieć wpływ na zaburzenia proporcji Hcy i Met oraz Arg i ADMA. Ponadto wydaje się również, że w warunkach hHcy związanej z terapią LPP u chorych z padaczką kontrola Hcy nad ADMA jest zaburzona.

Przeprowadzone badania wskazują, że monitorowanie stężenia osocznego Hcy u pacjentów z padaczką leczonych LPP, a szczególnie z polimorfizmami genów predysponujących do hHcy u tych chorych, może przyczyniać się do redukcji czynników ryzyka zmian naczyniowych i zapobiegać rozwojowi chorób neurologicznych.
8. Summary

Epilepsy is one of the most common neurological diseases, it is supposed to affect about 1% of general population. In spite of advance knowledge about etiology and course of epilepsy, the treatment is still complicated and usually long term process. Moreover, from last publications there is known, that long-term anticonvulsive therapy can lead to undesirable effects and change metabolism of many compounds, therein sulfur amino acids included i.a. homocysteine (Hcy). Homocysteine, endogenous amino acid, is synthesized in organism by demethylation of methionine (Met) and is metabolized through two pathways: remethylation and transsulfuration with use as co-factors folate, vitamin B6 and B12. In remethylation-pathway Hcy is transformed to Met, with can be again demethylated to Hcy with use s-adenozylmethionine (SAM) and S-adenozylhomocysteine (SAH). S-adenozylmethionine is the main donor of methyl groups in many metabolic processes and one of the product its methylation is an asymmetric dimethylarginine (ADMA), endogenous nitrous oxide syntase (NOS) inhibitor. Homocysteine is regarded as an important risk factor of vascular and neurodegeneratative diseases. It is considered, that diet, term of using and type of anticonvulsant drug and genetic factors influence on the level of plasma Hcy and ADMA in patients with epilepsy taking antiepileptic drugs (AEDs).

The aim of the study was the estimation of frequency of polymorphisms of genes MTHFR (C677T), MTR (A2756G), MTHFD1 (G1958A) and comparing of blood serum concentrations of Hcy, Met, ADMA and arginine (Arg) in patients with epilepsy before treatment and during AEDs therapy versus control group.

In assessed subjects the examined biochemical parameters have been also analyzed in course of owned type of genes included in metabolism Hcy to Met.

The study were conducted on 63 patients, 28 women and 35 men, aged from 18 to 65 with cryptogenic epilepsy. Among patients with epilepsy 55 subjects were treated with AEDs, and 8 patients were before the start of the anticonvulsive therapy. Control group included 61 people, 41 women and 20 men, aged from 22 to 67, without symptoms of neurological disorders.

The plasma blood concentrations of Hcy and Met has been identified by high performance liquid chromatography method (HPLC) with electrochemical detection. The concentration of ADMA and Arg has been identified by HPLC method with fluorescence detection. Determination of genes frequency of MTHFR, MTR and MTHFR1 was conducted by polymerase chain reaction– restriction fragment length polymorphism (PCR-RFLR) method.

The study demonstrates that AEDs treatment in about 27% epileptics leads to increase of plasma Hcy concentration above the level of mild hyperhomocysteinemia (hHcy) and, that polytherapy and long-term (above 5 years) using of anticonvulsants are factors that especially generating plasma hHcy. Also seems, that patients heterozygous with MTHFR CT (C677T) and homozygous with MTHFD1 GG (G1958T) have specific predisposition to hHcy and higher concentration of plasma ADMA, and genetic
conditionings can influence to proportions of Hcy to Met and Arg to ADMA. Moreover, it seems that in state of hHcy induced by AEDs in epileptics the control Hcy over ADMA is disturbed.

The study also demonstrates, that monitoring of concentration of plasma Hcy in patients with epilepsy on AEDs, and especially with polymorphism of genes that predispose to hHcy, may contribute to reduction of risk factors of vascular lesions and protect from development of neurological disorders.
<table>
<thead>
<tr>
<th>Spis Treści</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wprowadzenie ...</td>
</tr>
<tr>
<td>1.1. Rys historyczny ...</td>
</tr>
<tr>
<td>1.2. Definicja padaczki i rodzaje napadów padaczkowych</td>
</tr>
<tr>
<td>1.3. Epidemiologia padaczki ..</td>
</tr>
<tr>
<td>1.4. Etiologia padaczki ..</td>
</tr>
<tr>
<td>1.5. Epileptogeneza i neurochemiczne podstawy napadów padaczkowych</td>
</tr>
<tr>
<td>1.5.1. Rola kanałów jonowych w patomechanizmie padaczki</td>
</tr>
<tr>
<td>1.5.2. Znaczenie układu glutaminergicznego w mechanizmie napadów padaczkowych</td>
</tr>
<tr>
<td>1.5.3. Rola układu GABA-ergicznego w zjawiskach drgawkowych</td>
</tr>
<tr>
<td>1.5.4. Rola innych neuroprzekaźników w patogenezie padaczki</td>
</tr>
<tr>
<td>1.5.5. Znaczenie tlenku azotu w patomechanizmie padaczki</td>
</tr>
<tr>
<td>1.6. Diagnostyka padaczki ...</td>
</tr>
<tr>
<td>1.7. Leczenie padaczki ...</td>
</tr>
<tr>
<td>1.8. Homocysteina ...</td>
</tr>
<tr>
<td>1.8.1. Metabolizm homocysteiny ...</td>
</tr>
<tr>
<td>1.8.2. Hiperhomocysteinemia ..</td>
</tr>
<tr>
<td>1.8.3. Udział hiperhomocysteinii w patogenezie chorób sercowo-naczyniowych</td>
</tr>
<tr>
<td>1.8.4. Wpływ hiperhomocysteinemii na patogenezę chorób neurologicznych, psychiatrycznych, wad rozwijowych i patologię ciąży</td>
</tr>
<tr>
<td>1.8.5. Hiperhomocysteinemia a rozwój padaczki</td>
</tr>
<tr>
<td>1.8.6. Hiperhomocysteinemia w terapii lekami przeciwpadaczkowymi u chorych</td>
</tr>
<tr>
<td>z padaczką..</td>
</tr>
<tr>
<td>1.9. ADMA ..</td>
</tr>
<tr>
<td>1.9.1. Metabolizm ADMA ...</td>
</tr>
<tr>
<td>1.9.2. Czynniki wpływające na stężenie ADMA w osoczu krwi</td>
</tr>
<tr>
<td>1.9.3. Udział ADMA w patogenezie chorób naczyniowych</td>
</tr>
<tr>
<td>1.9.4. ADMA jako czynnik patogenezy innych schorzeń</td>
</tr>
<tr>
<td>1.9.5. Arginina ..</td>
</tr>
<tr>
<td>2. Cel pracy ...</td>
</tr>
<tr>
<td>3. Materiał i metody ...</td>
</tr>
</tbody>
</table>
3.1. Materiał ..32
 3.1.1. Grupy badane ..32
 3.1.2. Grupa kontrolna ..32
 3.1.3. Kryteria włączenia do badań ..32
3.2. Metody ...33
 3.2.1. Przygotowanie krwi do badań ..33
 3.2.2. Analiza stężenia homocysteiny i metioniny ..33
 3.2.3. Analiza stężenia ADMA i argininy ..33
 3.2.4. Genotypowanie ..34
3.3. Statystyczna ocena wyników ...35
4. Wyniki ..36
5. Dyskusja ...51
6. Wnioski ...60
7. Streszczenie ..61
8. Summary ...63
Alfabetyczny wykaz skrótów zastosowanych w pracy

AEDs- ang. Antiepileptic Drugs
ADMA- asymetryczna dimetyloarginina
AMPA- receptory kwasu α-amino-3-hydroksy-5-metylo-4-izoksazolopropionowego
Arg- L-arginina
BFNC- ang. Benign Familial Neonatal Convulsions, łagodne rodzinne drgawki noworodków
BFNIS- ang. Benign Familial Neonatal- Infantile Seizures, łagodne rodzinne drgawki noworodków i dzieci
BMI- ang. Body Mass Index, wskaźnik masy ciała
CBS- syntaza cystationinowa
CBZ- karbamazepina
ChA- choroba Alzheimera
ChP- choroba Parkinsona
COMT- kateholotlenometyltransferaza
Cys- cysteina
DDAH- dimetyloaminohydrolaza dimetyloargininy
DPH- fenytoina
EEG- elektroencefalografia
ESM- etosuksymid
FA- foliany
FBM- felbamat
GABA- kwas γ-aminomasłowy
GABA-T- transaminaza GABA
GBP- gabapentyna
GEFS+ - ang. Generalized Epilepsy with Febrile Sizures plus, uogólniona padaczka z drgawkami gorączkowymi plus
iGluR- glutaminergiczne receptory jonotropowe
mGluR- glutaminergiczne receptory metabotropowe
HCTL- ang. Homocysteine Thiolactone, tiolakton homocysteiny
Hcy- homocysteina
hHcy- hiperhomocysteinemia
HPLC/EC- ang. High Pressure Liquid Chromatography/Electrochemical Detection, wysokosprawna chromatografia cieczowa z detekcją elektrochemiczną
ILAE- ang. International League Against Epilepsy, Międzynarodowa Liga Przeciwpadaczkowa
IMT- ang. Intima Media Thickness, kompleks śródbłonek- błona środkowa
LPP- leki przeciwpadaczkowe
LPP NG- leki przeciwpadaczkowe nowej generacji
LTG- lamotrygina
LEV- lewetryracetam
MCP-1- ang. Monocyte Chemotactic Protein-1, białko przyciągające monocyty-1
Met- metionina
MMA- ang. Methylomalonic Acid, kwas metylomalonowy
NMDA- receptory kwasu N-metylo-D-asparaginowego
MTHFD1- ang. Methylene tetrahydrofolate Dehydrogenase/ Methenyl tetrahydrofolate Cyclohydrolase/ Formyl tetrahydrofolate Synthetase
MTHFR- reduktaza metylenotetrahydrofolianowa
MTHFR (C677T), MTR (A2756G), MTHFD1 (G1958A)- polimorfizmy genów MTHFR, MTR, MTHFD1
MTR- syntaza metioniny
NO- ang. Nitric Oxide, tlenek azotu
NOS- ang. Nitric Oxide Synthase, syntaza NO
eNOS- śródbłonkowa syntaza NO
iNOS- indukowana syntaza NO
nNOS- neuronalna syntaza NO
OCBZ- okskarbazepina
OUN- ośrodkowy układ nerwowy
PB- fenobarbital
PCR-RFLP- ang. Polymerase Chain Reaction– Restriction Fragment Length Polymorphism, polimerazowa reakcja łańcuchowa z zastosowaniem enzymów restrykcyjnych
PRMT I- N-metylotransferaza argininowa typu I
SAH- S- adenozylohomocysteina
SAM- S-adozylometionina
TGB- tiagabina
THF- tetrahydrofolian
TNF-α- ang. Tumor Necrosis Factor, czynnik martwicy nowotworów
TPM- topiramat
VCAM-1- ang. Vascular Cell Adhesion Molecule-1, naczyniowa molekuła adhezyjna-1
VPA- kwas walproinowy
VGB- wigabatryna