Uniwersytet Warmińsko – Mazurski w Olsztynie

Wydział Nauki o Żywności

Katedra Przetwórstwa i Chemii Surowców Roślinnych

Ewa Dąbkowska

Wpływ odmiany ziarna orkiszu uzyskanego w warunkach produkcji ekologicznej na jakość mąki

Praca doktorska wykonana pod kierunkiem:

dr hab. inż. Katarzyny Majewskiej, prof. UWM

Olsztyn 2009
Autorka

oraz

Dziękuję wszystkim osobom, które swoją pomocą przyczyniły się do powstania niniejszej pracy:

Serdecznie dziękuję Marcie Żmojdzie – Kulik i Basi Mazur za jedność, wsparcie oraz wspólną walkę i dążenie do osiągnięcia tych samych celów przez cztery lata studiów.

Bez Was by mnie tu nie było...

Dziękuję również Marcie Ambrosewicz za życzliwość i wsparcie.

Serdeczne podziękowania kieruję do Pani dr inż. Małgorzaty Tańskiej za cenne wskazówki, rady, pomoc laboratoryjną, przekazaną wiedzę oraz wsparcie.

Serdecznie dziękuję Pani Elżbiecie Łaszek za mądrość życiową, życzliwość i wszystkie ciepłe słowa.

Szczególne podziękowania składam Panu dr inż. Piotrowi Zapotoczному za pomoc w realizacji części analiz laboratoryjnych i analiz statystycznej oraz za nieświadomą inspirację w trakcie trwania studiów.

Dziękuję również Panu dr hab. inż. Ireneuszowi Białobrzeskiemu, prof. UWM, za pomoc w opracowaniu wyników analizy statystycznej.

Serdecznie dziękuję Panu inż. Mieczysławowi Babalskiemu za współpracę, udostępnienie materiału badawczego i cenne wskazówki.

Szczególne podziękowania składam również Panu dr hab. Józefowi Tyburskiemu, prof. UWM za życzliwość, pomoc w zdobyciu materiału badawczego oraz cenne rady i przekazaną wiedzę.

Serdecznie dziękuję Pani hab. inż. Katarzynie Majewskiej, prof. UWM za opiekę, przekazaną wiedzę, życzliwość, wsparcie, cierpliwość, wyrozumiałość, mobilizację w czasie studiów i w trakcie przygotowywania niniejszej pracy.
Pracę dedykuję mojemu Mężowi.

Dziękuję Mu za cierpliwość, wyrozumiałość, wsparcie oraz za dom, który razem stworzyliśmy...
Spis treści

1. Wstęp ... 7

2. Zagadnienie w świetle literatury ... 8

2.1. Rynek pieczywa w Polsce a wykorzystanie mąki orkiszowej w produkcji piekarskiej 8

2.2. Rozwój rolnictwa i przetwórstwa ekologicznego oraz rynek żywności ekologicznej w Polsce ... 16

2.3. Pochodzenie, systematyka, morfologia oraz warunki uprawy orkiszu 19

2.3.1. Teorie na temat pochodzenia orkiszu.. 19
2.3.2. Systematyka orkiszu ... 21
2.3.3. Morfotypy orkiszu ... 22
2.3.4. Systemy produkcji rolnej a wymagania agrotechniczne i warunki uprawy orkiszu 23

2.4. Znaczenie gospodarcze i użytkowe orkiszu w przeszłości i obecnie 27

2.5. Aktualny stan badań na temat orkiszu w Europie i na świecie 32

2.6. Skład chemiczny i wartość odżywcza ziarna i mąki orkiszowej 38

2.7. Wartość technologiczna ziarna i mąki orkiszowej ... 49

2.7.1. Właściwości fizyczne i wartość przemialowa ziarna orkiszowej 49
2.7.2. Wartość wypiekowa mąki orkiszowej .. 57

3. Cel i hipoteza badawcza pracy ... 67

3.1. Cel pracy ... 67

3.2. Hipoteza badawcza .. 67

4. Część doświadczalna – zakres i metodyka badań .. 68

4.1. Materiał badań .. 68

4.2. Metodyka badań ziarna i mąki orkiszowej ... 71

4.2.1. Określenie wydajności ziarna orkiszuch z omlotu materiału oplewionego............. 71
4.2.2. Oznaczenie wilgotności ziarna i mąki .. 71
4.2.3. Oznaczenie masy 1000 ziaren ... 71
4.2.4. Oznaczenie gęstości ziarna w stanie zsypnym ... 71
4.2.5. Oznaczenie wyrównania ziarna .. 71
4.2.6. Oznaczenie twardości ziarna .. 71
4.2.7. Przemiał ziarna na mąkę wysokowyciągową .. 72
4.2.8. Oznaczenie popiołu całkowitego w ziarnie i mące ... 72
4.2.9. Obliczenie współczynników efektywności przemiału ziarna 72
4.2.10. Określenie barwy mąki .. 73
4.2.11. Oznaczenie granulacji mąki (analiza sitowa) .. 74
4.2.12. Oznaczenie kwasowości mąki .. 74
4.2.13. Oznaczenie zawartości tłuszczu ogółem w mące .. 74
4.2.14. Oznaczenie składu kwasów tłuszczowych w mące ... 74
4.2.15. Oznaczenie zawartości skrobi ogółem w mące ... 75
4.2.16. Oznaczenie zawartości skrobi amylozaopornej w mące ... 75
4.2.17. Oznaczenie zawartości błonnika ogółem i jego frakcji w mące 76
4.2.18. Oznaczenie liczby opadania w mące ... 77
4.2.19. Ocena amylograficzna mąki .. 77
4.2.20. Oznaczenie stopnia uszkodzenia skrobi w mące ... 77
4.2.21. Oznaczenie białka ogółem w mące .. 77
4.2.22. Określenie wydajności glutenu mokrego w mące ...77
4.2.23. Oznaczenie liczby sedymentacji w mące ..77
4.2.24. Badanie cech reologicznych ciasta ...78
4.2.25. Próbny wypiek laboratoryjny ...78
4.2.26. Ocena organoleptyczna oraz fizykochemiczna uzyskanego pieczywa.............81

4.3. Analiza statystyczna wyników ...82

5. Omówienie i dyskusja wyników badań...85

5.1. Warunki pogodowe podczas uprawy ziarna badanych odmian orkisu85

5.2. Wybrane składniki chemiczne i wartość odżywcza wysokowyciągowej mąki orkiszowej ...87

5.3. Wartość technologiczna ziarna orkisu oraz otrzymanej z niego mąki92

5.3.1. Właściwości fizyczne i wartość przemiałowa ziarna orkisu92

Uzysk ziarna ..92
Wartość przemiałowa ziarna ...93
Wyciąg mąki a zawartość popiołu całkowitego ..98
Granulacja mąki ..100
Barwa mąki ..104
Kwasowość mąki ..108

5.3.2. Wartość wypiekowa wysokowyciągowej mąki orkiszowej109

Właściwości skrobi ...109
Ilość i jakość białka ...113
Cechy reologiczne ciasta ...116
Próbny wypiek laboratoryjny ...119

5.4. Rezultaty analizy statystycznej wybranych parametrów ..131

5.4.1. Analiza związków korelacyjnych ..131
5.4.2. Analiza skupień ...135

6. Spostrzeżenia ...141

7. Wnioski ...142

8. Literatura ...144

9. Streszczenie ...158

10. Załączniki ..159
1. Wstęp

Wraz ze wzrostem liczby ludności na świecie w XX wieku, równolegle pojawiła się konieczność zaspokojenia rosnących potrzeb żywnościowych. Przyczyniło się to do powstania wielu problemów, a wzmożona produkcja żywności, wprowadzająca po drugiej wojnie światowej rolnictwo intensywne, wysokonawozowe i wykorzystujące szeroki wachlarz środków ochrony roślin, wpłynęła na pogorszenie stanu środowiska naturalnego. Wymusiło to po latach na rolnikach – producentach żywności konieczność zmiany technologii upraw, a część z nich świadomie zaczęła propagować ekologiczny system uprawy roślin obok rolnictwa niskonakładowego i zintegrowanego.

W dobie intensyfikacji rolnictwa i rosnącego skażenia środowiska, produkcji zmodyfikowanych i unowocześnionych odmian i gatunków zbóż, pojawił się również problem, które z aktualnie znanych roślin nadają się do uprawy w trudnych warunkach środowiskowych i jednocześnie nie wymagają stosowania pestycydów. Najlepszymi do tego celu okazały się starożytne zboża, które już stosunkowo dawno zostały zapomniane i w większości krajów całkowicie zaprzestano ich uprawy, a przez to, że nie były poddawane żadnym modyfikacjom, zachowały bardzo cenne cechy roślin pierwotnych. W konsekwencji, pojawiła się konieczność nie tylko ich rekultywacji, ale również sprawdzenia ich wartości odżywczej oraz określenia ich przydatności technologicznej i możliwości wykorzystania w przetworstwie. Stąd też, wiele ośrodków badawczych na całym świecie (a szczególnie w Europie) wraz z rolnikami ekologicznymi, podjęło intensywne badania nad różnymi możliwościami wykorzystania starożytnych gatunków pszenic, takich jak: samopsza, płaskurka oraz orkisz.

I tak, już kilka lat temu, orkisz pojawił się na polskim rynku produktów rolnych. Początkowo nie było wiadomo jak go wykorzystać, oprócz przeznaczenia na paszę. Zaczęto wobec tego sięgać do starej literatury oraz naśladować sąsiadów z zagranicy, którzy do dnia dzisiejszego w swojej kuchni wykorzystują to zboże. Obecnie coraz bardziej wzrasta wiedza na temat tego gatunku pszenicy wśród rolników i konsumentów, co przyczynia się do rozszerzenia popularności orkiszu. Choć już wiadomo, że ziarno można wykorzystać m. in. do produkcji mąki jasnej i ciemnej, kaszy, płatków, pieczywa, makaronu, wódki i piwa, to nadal polski rolnik i przetwórca mają do czynienia z kilkoma zasadniczymi problemami. Przede wszystkim, obszary zasiewów orkiszu w Polsce są za małe, żeby zaspokoić rodzime przetwórstwo i zapotrzebowanie. Wiele zakładów przetwórczych sprowadza orkisz z zagranicy, co znacząco podnosi koszty, a w konsekwencji ceny przetworów z orkiszu. W naszym kraju nie ma żadnych zarejestrowanych odmian tego gatunku pszenicy i nadal mało jest informacji, które odmiany orkiszu najlepiej sprawdzają się podczas uprawy w polskich warunkach wegetacyjnych, a jedynie dostępne odmiany orkiszu pochodzą głównie z Niemiec i Szwajcarii. Brak też jest jednoznacznych danych, które odmiany orkiszu uprawiane w Polsce najlepiej nadają się do produkcji dobrej jakości mąki piekarskiej. Nie ma również opracowanych polskich kryteriów jakościowych dla pszenicy orkisz, co dodatkowo komplikuje sprawę przy określaniu potencjalnej przydatności mąki orkiszowej na podstawie jedynie pośrednich wyróżników jakości (dotychczas powszechnie stosowanych jedynie w ocenie jakości pszenicy zwyczajnej).

Mając powyższe na uwadze, niniejsza praca ma na celu uzupełnić wiedzę na temat dostępnych odmian orkiszu z polskich upraw ekologicznych i ich wykorzystania w piekarstwie.
2. Zagadnienie w świetle literatury

2.1. Rynek pieczywa w Polsce a wykorzystanie mąki orkiszowej w produkcji piekarskiej

Branża spożywcza w Polsce zmienia się niezwykle szybko i diametralnie. Coraz większa konkurencja na rynku, rosnące wymagania konsumentów oraz zmieniające się trendy, stawiają przed producentami wyrobów spożywczych bardzo wysokie wymagania. Szybki rozwój sektora żywności i napojów doskonale widać zarówno na naszych stołach, jak i sklepowych półkach. Dlatego też tak ważne jest prezentowanie nowości produktowych przez producentów tam, gdzie podejmowane są decyzje o tym, co w kolejnym sezonie pojawi się w ofercie handlowej.

W wyniku przeprowadzenia w 2005 roku ogólnopolskich badań branży piekarskiej, stwierdzono, że przyczynami takiego stanu są również wysokie koszty zatrudnienia pracowników, brak rozwiązań ekonomiczno – prawnych wewnątrz branży oraz bardzo silna promocja substytutów chleba w mediach. Szczególnie istotna jest ta ostatnia kwestia. Wiadomo, że obniżającej się konsumpcji chleba, towarzyszy dynamiczny wzrost spożycia jego substytutów i innych produktów zbożowych (Nowakowski, 2006).

Dodatkowo, do negatywnych zjawisk socjologicznych i ekonomicznych w branży piekarskiej należą stały wzrost kosztów, ale jednocześnie stosunkowo niska cena wyrobów, brak środków na modernizację technologii i polepszenie higieny produkcyjnej, zmiany stylu zaopatrzenia gospodarstw domowych, zamykanie sklepów w pobliżu supermarketów, rozwój punktów dopiekania pieczywa, możliwość nabycia gotowych mieszanek chlebowych do wypieku chleba oraz nasilający się trend promujący ograniczenie spożycia węglowodanów (Stus, 2007a; Piesiewicz, 2008).

Z tych też powodów piekarze w celu utrzymania się na rynku oraz bycia konkurencyjnymi, nie tylko powinny mieć prawo do uczciwej konkurencji, ale przede wszystkim powinny mieć dostęp do nowych technologii i bardziej uregulowane kwestie prawne z zakresu branży (Nowakowski, 2006). Nie mniej jednak, wszystkie piekarnie muszą (nieustannie) szukać pomysłów na produkcję takich wyrobów, które zwrócą uwagę coraz bardziej świadomych i wymagających konsumentów.
Preferencje konsumentów a przyczyny spadku spożycia pieczywa

Rynek żywności jest jednym z najprężniej rozwijających się sektorów gospodarki w każdym państwie. Obecnie w zakresie zachowań konsumentów, można wyróżnić kilka tendencji (Diowski, 2008). Pierwszym wymienianym trendem jest rosnące zróżnicowanie wydatków. Jak wynika z badań konsumenckich, na rynku można wyłonić grupy kupujących, którzy wykazują dużą determinację w nabywaniu najtańszych produktów i jednocześnie bez oporów wydają dużo pieniędzy na inne wyroby. Daje to zakładom piekarskim możliwość zwiększenia swoich dochodów. Piekarnie mogą zachować rentowność przez oferowanie produktów z nieco tańszej grupy cenowej i produktów ekskluzywnych, z prozdrowotnymi dodatkami, takich jak np. chleby lub inne pieczywo, do produkcji których wykorzystane są surowce pochodzące z gospodarstw lub przetwórnów ekologicznych (Mruk, Mruk, 2007).

Ponadto, konsumenci nieustannie różnicują zapotrzebowanie na żywność, a producenci zmieniają swoją ofertę asortymentową. Wśród kupujących pojawia się zachowanie polegające na tzw. wyrażeniu siebie w produktach, które konsument nabywa lub też wzrost ilości klientów zainteresowanych przeżywania i silnymi wrażeniami, związanymi z nabywanymi produktami. Produenci tym samym powinni dać możliwość konsumentom wzięcia udziału w kształtowaniu produktów (Mruk, Mruk, 2007).

Dodatkowo, na polskim rynku żywności pojawił się trend, polegający na dostosowaniu niektórych produktów do potrzeb kobiet. Właśnie piekarze mogą wykorzystać tę szansę. Jednym ze sposobów jest promowanie pieczywa, w tym bułek i chleba, który korzystnie wpływa na przemianę materii, zdrowie i wygląd, pomagając w zachowaniu ładnej sylwetki, przez wspomaganie przemiany materii (Kot, 2007; Mruk, Mruk, 2007).

Jednym z najsilniej zaznaczających się trendów jest zainteresowanie konsumentów własnym zdrowiem i jakością życia. Objawia się to m. in., zwiększeniem popytu na pieczywo pełnoziarniste, z dodatkiem różnych ziół i nasion. Dla współczesnego człowieka istotny jest jego wygląd, energia, odporność fizyczna i psychiczna (Górskia – Warsewicz, 2001; Mruk, Mruk, 2007; Mruk, 2008). Powszechnie wiadomo, że wygląd i dobre samopoczucie zależą w dużej mierze od tego jak się odżywiamy i czy stosujemy dietę bogatą w składniki odżywcze. Producenci żywności powinni to przekonanie szczególnie wykorzystać.

Drugą grupą kupujących wyłonionych przez Górską – Warsezewicz (2001), są konsumenci ustabilizowani, o wyższych dochodach, wybierający te same rodzaje produktów, a w wyborze pieczywa kierujący się jego jakością.

Natomiast do ostatniej grupy konsumentów należą tradycjonalisci, którzy w niewielkim stopniu przy wyborze pieczywa sugerują się jego dietetycznymi właściwościami, ale raczej ceną. Jest to grupa ludzi o średnich i niskich dochodach (Górska – Warsezewicz, 2001).

Niestety, niezależnie od zmieniających się zachowań konsumentów i tak spada spożycie pieczywa (Nowakowski, 2006; Stus, 2007a). Wg IER i GŻ (Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej) w pierwszym półroczu 2007 r. przeciętny Polak zjadał 5,31 kg pieczywa miesięcznie, natomiast sześć lat wcześniej wynik ten wynosił 6,55 kg/osobę (Stus, 2007c). Wg danych GUS spożycie pieczywa i przetworów zbożowych ogółem corocznie zmniejsza się (Wykresy 1 i 2).

Sytuacja taka niepokoi zarówno młynarzy, piekarzy, specjalistów z zakresu żywienia jak i lekarzy, szczególnie kardiologów (Piesiewicz, 2007).

Wykres 1. Spożycie przetworów zbożowych w Polsce w ciągu pięciu lat (Główny Urząd Statystyczny, 2009).

Wykres 2. Spożycie pieczywa ogółem i przetworów zbożowych w Polsce w ciągu pięciu lat (Rynek zbóż…, 2008).

Specjaliści z zakresu piekarstwa i analizy rynku wymieniają kilka powodów takiego stanu. Pierwszą z przyczyn jest ciągle pogarszająca się jakość pieczywa, wynikająca ze stosowania mniej czasochłonnich metod produkcji, co powoduje coraz większe niezadowolenie konsumentów.

Wpłynęło to niestety znacząco na miękisz wypiekanego pieczywa, który nie daje możliwości żucia, bo swoją strukturą często przypomina „watę” (Kownacki, 2005; Jankiewicz, 2005; 2008b). Jednocześnie sterowanie aktywnością amylaz i proteaz, spowodowało skrócenie cyklu produkcyjnego i ograniczyło tym samym powstawanie bogatego buktetu aromatu świeżeiego chleba (Jankiewicz, 2008b; Diowksz, 2008). Co więcej, na jakość chleba i bułek ma również wpływ coraz większe zapotrzebowanie na pieczywo z odroczonego wypieku, które głównie wykorzystywane jest w piekarniach przysklepowych (Jankiewicz, 2008b). Odzwierciedleniem tego stanu jest raport na temat jakości pieczywa sporządzony w koniec listopada 2006 roku przez GIJHARS (Główna Inspekcja Jakości Handlowej Artykułów Rolno – Spożywczych). Z dokumentu wynika, że wszechobecne markety „produkują” pieczywo gorszej jakości niż tradycyjne piekarnie. Jak okazuje się często nie dysponują one odpowiednimi technologiami i wykwalifikowanymi pracownikami, a jednocześnie bazują na surowcach i produktach o gorszych parametrach jakościowych (Lazarowicz, 2006c; Nowakowski, 2006).

Z tych też powodów zapotrzebowanie na rynku na pieczywo spada. Biorąc jednak pod uwagę wszystkie walory chleba, warto by było zmienić tę sytuację.

Walory pieczywa ze szczególnym uwzględnieniem pieczywa ciemnego

Piramida zdrowego żywienia podaje, że jej podstawę stanowią produkty pochodzenia zbożowego, co zawsze warto mieć na uwadze (Nowakowski, 2006; Diowksz, 2008). Co więcej, produkty zbożowe, wg Instytutu Żywności i Żywienia, w 2001 roku dostarczały ponad 30% energii, 30% białka i 55% węglowodanów (Piekut, 2007).

Co więcej, jak wynika z badań ankietowych prowadzonych we Francji, przy nadmiernym spożyciu tłuszczu i cukrów prostych, a pieczywa poniżej 70 kg na osobę na rok, znacznie wzrasta ryzyko wystąpienia chorób sercowo–naczyniowych. W Polsce spożycie pieczywa na jednego mieszkańca rocznie wynosi ok. 65 kg. Chleb (szczególnie ciemny), jako podstawowy pokarm stanowi źródło substancji biologicznie aktywnych, takich jak: inozytol, lignany, fruktooligosacharydy oraz włókno pokarmowe. Tym samym, w diecie przeciwniego konsumenta nie powinno zabraknąć produktów pochodzących z pełnego ziarna (Ruibal – Mendieta i in., 2005; Marciniak, Obuchowski, 2007; Piesiewicz, 2007; Diowksz, 2008).

Zgodnie z definicją, mąka ciemna, to taka, która pochodzi z przemiału całego ziarna pszenicy i zawiera powyżej 1% popiołu. W jej skład wchodzi większa ilość okrywy owocowo–nasionowej niż w przypadku mąki jasnej i z tego właśnie powodu cechuje się korzystniejszym składem pod względem żywieniowym. Z kolei, pieczywo ciemne jest przygotowywane z mąki o zawartości popiołu powyżej 1%, albo z mieszaniiny mąki, w której średnioważona zawartość popiołu przekracza 1% (Gąsiorowski, 2003; Rothkaehl, 2009).

Pieczywo specjalne i jego promocja na rynku przetworów zbożowych

Mąka otrzymana z niektórych surowców może być wykorzystana do produkcji pieczywa specjalnego, które zgodnie z definicją jest wytworzona z produktów przemiału pszenicy lub żyta lub jednocześnie z pszenicy i żyta, albo zawiera inne produkty zbożowe, względnie inne dodatki pochodzenia roślinnego lub zwierzęcego (Gąsiorowski, 2003). W Niemczech np. pieczywo specjalne może być dopuszczone do obrotu, jeśli zawiera ustalony poziom danego dodatku, tj. chleb zarodkowy zawiera 20 kg zarodków na 100 kg mąki, a chleb ze siemieniem lnianym powinien zawierać minimum
8 kg nasion lnu na 100 kg mąki. Do tego typu pieczywa należy również chleb specjalny o zmienionej wartości odżywczej i z możliwością stosowania w profilaktyce chorób (Gąsiorowski, 2003, 2004b).

Jak twierdzi Piesiewicz (2007) obecny wzrost zapotrzebowania na produkty bogate w substancje biologicznie aktywne, powinien zapoczątkować produkcję piekarskich dodatków prozdrowotnych. Warto sobie uświadomić, że właśnie pieczywo ciemne może stać się w wielu przypadkach pieczywem specjalnym. Niedobór błonnika pokarmowego, minerałów i witamin, szczególnie z grupy B w diecie przeciętnego konsumenta, może być powiązany z niskim spożyciem cienmskiego pieczywa (Mielcarz, 2004; Batifoulier i in., 2006). Zmiana stylu życia wymusiła konieczność promowania pieczywa cienmsnego, ponieważ może być ono pomocne w leczeniu takich schorzeń jak: otyłość, nowotwory oraz choroba niedokrwienna serca. Mąka ciemna jest dobrym źródłem tiaminy (B1), a regularne spożycie produktów z mąki wysokowyciągowej może dostarczyć nawet 20% dziennego zapotrzebowania na ryboflawinę (B2). Co więcej, chleb jest niezaprężalnym źródłem (16% dziennego zapotrzebowania) pirydoksyny (B6). Warto jeszcze dodać, że witaminy z grupy B występujące w zbożach cechują się wysoką biodostępnością i mogą być skutecznie wykorzystane przez organizm (Batifoulier i in., 2006).

W tym miejscu warto podkreślić szczególną rolę, jaką może odegrać w tej kwestii pieczywo orkiszowe. Pszenica orkisz znana jest od wieków w krajach głównie niemieckojęzycznych i jest tam ceniona ze względu na swoje walory żywniowe. Mąka orkiszowa (szczególnie mąka ciemna), w porównaniu do mąki otrzymanej z ziarna pszenicy zwyczajnej, zawiera więcej tłuszczu ogółem (w tym więcej kwasu oleinowego i fitosteroli), witamin (PP, B6, D, prowitaminy A, tokoferoli), mikro - (P, Fe, Zn, Cu) i makroelementów (K, Mg, Na) oraz białka. Jak wynika z literatury, mąka orkiszowa może stanowić dobry surowiec do produkcji pieczywa specjalnego (Ranhotra i in. 1995; Abdel – Aal i in., 2002; Marconi i in., 2002; Ruibal – Mendieta i in. 2005) zabiegowali, że mąka orkiszowa może być wartościowym surowcem do wykorzystania w piekarstwie ze względu na:

- wyższą zawartość tłuszczu, nienasyconych kwasów tłuszczowych, co jest spowodowane prawie dwukrotnie wyższą zawartością kwasu oleinowego,
- wyższą zawartość żelaza, cynku, miedzi, magnezu i fosforu,
- niższą o ok. 40% zawartość kwasu fitynowego, w porównaniu do mąki z ziarna pszenicy zwyczajnej.

Dodatkowo, biorąc pod uwagę wyższą zawartość białka w mące orkiszowej oraz jego wyższą strawność (choć nie zawsze), jak również zawartość związków o właściwościach przeciutleniających, warto wykorzystać ten surowiec do produkcji ciemnego chleba orkiszowego (Moudry i Dvořáček 1999; Bonafaccia i in., 2000; Chrenková i in., 2000; Capouchová, 2001; Marques i in., 2007; Dąbkowska i in., 2008; Gujska i in., 2008; Zieliński i in., 2008).

Pieczywo orkiszowe dobrze wypieka się, nie kruszy się podczas krojenia i ma często charakterystyczny orzechowy aromat oraz dłużej zachowuje świeżość, pod warunkiem, że wyprodukowane jest z samej mąki orkiszowej. Warto podkreślić, że ponieważ pszenica orkisz doskonale nadaje się do uprawy według zasad rolnictwa ekologicznego, zwiększa to atrakcyjność
produktów z orkiszu pod względem żywieniowym wśród zainteresowanych trendem „bio” konsumentów.

W Polsce od kilku lat wzrasta zainteresowanie zakładów piekarskich mąką orkiszową, którą można wykorzystać jako zamiennik mąk chlebowych (żytnich i pszennych) w recepturach piekarskich. W naszym kraju istnieją firmy, które sprowadzają (przeważnie z zagranicy) i wykorzystują ziarno i mąkę orkiszową do produkcji pieczywa:

- Diamant International Polska,
- Lesaffre,
- C. Witt,
- Gdańskie Młyny i Spichlerze Dr Cordesmeyer Sp. z o.o.,
- Bogutynmłyn – sprowadza ziarno orkiszu odmiany ÖKO – 10 z Węgier,
- Zeelandia – importuje mąkę z Węgier, a ziarno z Francji (dane z 2007 roku), ale w 2008 roku produkcja została przeniesiona do zakładu w Czechach,
- GFT Goldfruit Sp. z o.o. (Chleb Polski) – importuje ziarno z Węgier,
- Eco Trade – importuje mąkę z Czech,
- BioFuturo – sprowadza ziarno uprawiane w Polsce, na terenie Niemiec, Czech, Holandii i Słowacji,
- BakeMark Pol – Ratjen importuje ziarno z zagranicy.

Powyższe informacje autorka pracy uzyskała w wyniku bezpośredniego kontaktu z technologami i osobami pracującymi w dziale marketingu w poszczególnych firmach.

Jak wynika z badań rynkowych najistotniejszymi czynnikami, które wpływają na wybór pieczywa są: cena, tradycja i przyzwyczajenia wyniesione z domu rodzinnego, jak również preferencje własne i członków rodziny (Górska – Warsewicz, 2001). Pieczywo polskie jest nie tylko towarem konsumpcyjnym, ale przede wszystkim jest silnie zakorzenione w rodzimej kulturze i w dalszym ciągu zajmuje pierwszą pozycję wśród spożywanych przetworów zbożowych, a walory jakościowe (szczególnie smak) tradycyjnego polskiego pieczywa są cenione w kraju i za granicą (Nowakowski, 2006).

Jednym ze sposobów polepszenia sytuacji polskich piekarzy, jest wzbogacanie pieczywa i ciast w takie składniki, które korzystnie wpływają na zdrowie i jakość życia ludzi (Mruk, Mruk, 2007).
Dostosowanie oferty asortymentowej może korzystnie wpłynąć na kondycję finansową piekarni. Warto dodać, że dzisiejsze piekarstwo stoi pod znakiem „bio”, a produkty z upraw ekologicznych są stałym elementem rynku (Kania – Lentes, 2006). Innym rozwiązaniem jest produkowanie pieczywa wg starych technologii, z zastosowaniem naturalnych dodatków i jednocześnie z odrzuceniem sztucznych polepszaczy (Kownacki, 2005).

Dodatkowo piekarnie nie tylko powinny stawiać na nowe, przede wszystkim smaczne produkty, ale także właściwie je promować, znajdując wspólny język z konsumentem. Przede wszystkim pracownicy powinni być odpowiednio przeszkoleni, w celu udzielania profesjonalnych odpowiedzi na temat technologii produkcji i stosowanych dodatków (Mruk, Mruk, 2007; Piesiewicz, 2008).

Dlatego tak ważnym zadaniem jest podjęcie współpracy między środowiskiem naukowym a branżą piekarską, w celu promocji walorów żywieniowych polskiego chleba, ale przede wszystkim kultywowania tradycji. W celu promocji pieczywa warto jest integrować klientów z piekarniami i cukierniami. Może to odbywać się przez różnego rodzaju lokalne spotkania, wydarzenia, uroczystości, festyny organizowane dla całych rodzin i społeczności (Mruk, Mruk, 2007). Alternatywą jest także prowadzenie w firmowych piekarniach promocji danego rodzaju produktu przez degustacje, postery informacyjne i ulotki. Istnieje też możliwość zwrócenia się do dzieci, przez produkcję pieczywa atrakcyjnie zapakowanego (Lazarowicz, 2007c). Najwyższy czas przystąpić do programu edukacji przyszłego pokolenia – konsumentów pieczywa, co może w końcu zwiększyć wzrost spożycia pieczywa, szczególnie tego ciemnego. W Polsce nadszedł czas na efektywne działania. W edukację powinni włączyć się zarówno naukowcy, władze centralne i regionalne, specjaliści od żywienia i produkcji pieczywa, jak również dziennikarze (Nowakowski, 2006; Piesiewicz, 2007; Diovksz, 2008). Problem również tkwi w podejściu samych piekarzy, którzy nie wyказują namiernego zaangażowania w produkcję ciemnego pieczywa. Jak okazuje się jedynie 4% produkcji stanowi chleb razowy, a wynika to z małego zysku i problemów z technologią jego wypieku (Kowalewska, 2006; Rothkaehl, 2009).
Innym sposobem, mającym na celu zwiększenie dochodów piekarni, jest produkcja pieczywa szczególnie zalecanego przez dietetyków. W tej grupie znalazło się pieczywo bez konserwantów i dodatków chemicznych, pieczywo ekologiczne, pieczywo o zmniejszonej zawartości tłuszczu oraz pieczywo o obniżonym indeksie glikemicznym (Łazarowicz 2007b). Proponowanym sposobem rozwiązania problemów jest podjęcie współpracy piekarni z dostawcami surowców (Nowakowski, 2006).

Co więcej, małe piekarnie muszą szukać dla siebie nisz rynkowych (związanych np. z produkcją pieczywa specjalnego typu „bio”), tym bardziej, że największy udział w dochodach piekarni stanowi właśnie chleb. Jak już wcześniej wspomniano, dzisiejsze piekarstwo może rozwijać się włączając surowce z upraw ekologicznych, także przez wykorzystanie orkiszu lub płaskurki (Chleby Biosielski, 2006; Łazarowicz, 2006a; Kania – Lentes, 2006; Mruk, 2008; Piesiewicz, 2008).

Obecnie dla producentów żywności otwiera się szansa na produkty innowacyjne, szczególnie cenne pod względem wartości odżywczej. Poszukiuje się produktów adresowanych do poszczególnych grup wiekowych, osób wykonujących określony rodzaj pracy lub uprawiających sporty, jak również wymagających żywienia profilaktycznego, a nawet leczniczego. Coraz lepszy stan edukacji zdrowotnej i żywnościowej, lepsze możliwości techniczno–technologiczne przemysłu żywności oraz rosnąca kultura handlu, stwarzają ogromną szansę dla kreatywnych producentów żywności, w tym także producentów pieczywa (Jankiewicz, 2008b).

2.2. Rozwój rolnictwa i przetwórstwa ekologicznego oraz rynek żywności ekologicznej w Polsce

Gospodarstwa i przetwórstwo ekologiczne w Polsce

Warto podkreślić, że wzrost podaży surowców sprzyja rozwojowi przetwórstwa, które w przypadku ekologicznych metod przetwarzania jest domeną małych i średnich firm, stosujących rzemieślnicze metody produkcji. Sprzyjają temu również regulacje obowiązujące w produkcji i sprzedaży, jak również dotacje z UE, i rosnące zainteresowanie rolników i konsumentów żywnością (w tym także przetworami zbożowymi) wolną od środków ochrony roślin i nawozów sztucznych (Łazarowicz, 2006b; 2007a).
Rynek żywności ekologicznej w Polsce

Udział upraw ekologicznych w naszym kraju wynosi zaledwie 1,4%, a wartość rodzimego rynku ekożywności szacuje się na poziomie 50 mln euro (wg Inspekcji Jakości Handlowej Artykułów Rolno – Spożywczych), co stanowi jedynie 0,14% całego rynku żywności. Z innych źródeł wynika, że wartość tego rynku kształtuję się na poziomie 200 – 300 mln złotych lub nawet 500 – 600 mln złotych. Z kolei, w Czechach wartość ekoprodukcji wynosi 52 mln euro (ekoprodukcja zajmuje 7,32% powierzchni upraw) (Rybka, 2008; Stus, 2008, 2009). Przewiduje się, że do 2011 roku wartość tego rynku w na świecie zwiększy się nawet do poziomu 3 mld złotych (Przegalińska, 2008).

Żywność ekologiczna powstaje bez użycia środków ochrony roślin, chemicznych środków przyspieszających wzrost, nawozów syntetycznych i technik inżynierii genetycznej oraz sztucznych dodatków smakowych, aromatów i napromieniowania (Knysak, 2006; Szafulera, 2007; Sołtysiak, 2008; Jankowski, 2009). Produkty te wytwarzane są w warunkach nieszkodliwych dla środowiska, co dodatkowo budzi aprobatę konsumentów, zwłaszcza, jeśli poświadczono jest to odpowiednim certyfikatem jakości (Kihlberg i in., 2004; Knysak, 2006; Szeremeta, Jastrzębska, 2006). Żywność ta charakteryzuje się wysokimi walorami smakowymi i zdrowotnymi, szczególną jej cechą jest niższa zawartość azotanów i azotynów, a wyższa zawartość witamin C (owoce, warzywa), cukrów i związków fenolowych (Żakowska – Biemans, 2006; Ślęzak, 2007; Gierałtowska i in., 2007; Rybka, 2008).

Zachowania konsumentów na rynku żywności ekologicznej zależą od wielu czynników, w tym od tego jak konsumenci postrzegają te produkty. Do grupy kupujących produkty ekologiczne należą głównie osoby wykształcone, zarabiające powyżej średniej krajowej, zorientowane na zdrowy tryb życia, szukające w żywności wysokich walorów smakowych i dbające o środowisko (Chleby Biosielskie…2006; Żakowska – Biemans, 2006; Szeremeta, Jastrzębska, 2006; Mruk, Mruk, 2007; Stus, 2007c; Śmiechowska, 2007; Kania – Lentes, 2008). Jak wynika z badań Gierałtowskiej i in. (2007) ponad 75% ankietowanych deklarowało, że głównym powodem kupowania ekożywności jest dbałość o własne zdrowie i rodzinę, kolejnymi powodami była ciekawość, smak, namowa innych i moda.
Warto dodać, że właśnie piekarnie mogą produkować pieczywo ekologiczne, które wytworzone jest jedynie z produktów pochodzących z rolnictwa alternatywnego. Pieczywo takie zgodnie z definicją zawiera nie mniej niż 95% składników pochodzących z ekoprodukcji, a pozostałe 5% stanowią składniki pozaRolnicze (Żakowska – Biemans, 2006; Szafuler, 2007).

Niestety główną barierą rozwoju rynku produktów ekologicznych jest ich wysoka cena (o ok. 50 – 100% wyższa od ceny zwykłego produktu), dlatego część producentów zainteresowanych jest głównie eksportem. Dodatkowo, brak jest takiej żywności w sklepie, w którym klient z reguły robi zakupy, a sklep z ekożywnością jest za daleko. Dobrą perspektywą są markety i obecne w nich stoiska z ekożywnością. Problem natomiast stanowią trudności w odróżnianiu ekoproduktów od tych pozostałych (Żakowska – Biemans, 2006; Kania – Lentes, 2008; Stus, 2009). Według danych IJHARS (Inspekcja Jakości Handlowej Artykulów Rolno – Spożywczych) w 2007 roku w kraju było 17 piekarni ekologicznych i 5 zakładów produkcji ekologicznej (brak nowych danych) i jedynie 500 sklepów z ekożywnością (Stus, 2009). Jest to taka część rynku, która w najbliższych latach będzie się rozwijać. Warto wykorzystać tę niszę rynkową proponując taki asortyment – również pieczywo, który zainteresuje nową klientelę.

2.3. Pochodzenie, systematyka, morfologia oraz warunki uprawy orkiszu

2.3.1. Teorie na temat pochodzenia orkiszu

Pszenica orkisz (Triticum spelta), obok płaskurki (Triticum dicoccum) i samopszy (Triticum monococcum) należy do najstarszych gatunków pszenic, stanowiąc tym samym gatunek reliktowy (Gąsiorowski, 2004a; Marques i in., 2007). Historia uprawy tego zboża liczy sobie przeszło 7000 lat, choć niektóre źródła podają, że orkisz był znany od ok. 9000 lat (Neeson i in., 2008).

Pochodzenie orkiszu (Triticum spelta) na przestrzeni lat budziło wśród naukowców wiele kontrowersji i jak dotąd jednoznacznie go nie wyjaśniono (tabela 1 zawiera synonimy poszczególnych pszenyc i traw).

Tabela 1. Synonimy różnych pszenicy i traw.

<table>
<thead>
<tr>
<th>Polska nazwa pszenicy/trawy</th>
<th>Synonimy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pszenica zwyczajna</td>
<td>Triticum aestivum L.</td>
</tr>
<tr>
<td></td>
<td>Triticum aestivum valgare</td>
</tr>
<tr>
<td>Pszenica orkisz</td>
<td>Triticum spelta</td>
</tr>
<tr>
<td></td>
<td>Triticum aestivum ssp. spelta</td>
</tr>
<tr>
<td>Pszenica płaskurka (I gatunek)</td>
<td>Triticum dicoccum</td>
</tr>
<tr>
<td></td>
<td>Triticum dicoccum (Schrank) Schübler</td>
</tr>
<tr>
<td></td>
<td>Triticum turgidum ssp. dicoccum</td>
</tr>
<tr>
<td></td>
<td>Triticum dicoccum Schübler</td>
</tr>
<tr>
<td></td>
<td>Triticum dicoccum Schrank</td>
</tr>
<tr>
<td>Gatunek trawy z rodzaju ościec</td>
<td>Aegilops squarrosa Cosson</td>
</tr>
<tr>
<td></td>
<td>Aegilops squarrosa Lovari</td>
</tr>
<tr>
<td></td>
<td>Aegilops tuassic L.</td>
</tr>
<tr>
<td>Pszenica zbitokłosa</td>
<td>Triticum compactum</td>
</tr>
<tr>
<td></td>
<td>Triticum aestivum ssp. compactum (Host) MK</td>
</tr>
<tr>
<td>Pszenica tybetańska</td>
<td>Triticum aestivum ssp. tibetanum Shuao</td>
</tr>
<tr>
<td>Pszenica płaskurka (II gatunek)</td>
<td>Triticum dicoccoides</td>
</tr>
</tbody>
</table>

Z kolei, w 1949 roku Bertsch stwierdził, próbując obalić teorię McFaddena i Searsa, że w. „krzyżówka” (Triticum dicoccum lub Triticum dicoccoides x Aegilops squarrosa L.) nie byłaby w stanie przetrwać w naturalnych warunkach. Problem jednak nadal stanowiła obecność w orkiszu genomu D, który charakterystyczny był jedynie dla trawy z rodzaju Aegilops (Andrews, 1964).

Warto dodać, że obecnie część naukowców skłania się ku hipotezie, mówiącej o tym, że orkisz jest krzyżówką dzikiej oplewionej pšenicy tetraploidalnej Triticum dicoccum (genomy AABB lub Triticum dicoccoides (genomy AABB) oraz dzikiej trawy Aegilops tauschi Cosson (genom DD) z rejonu morza Kaspijskiego (McFadden, Sears, 1946; Abdel – Aal i in., 1998a; Chen, 2001; Blatter i in. 2002; 2004). Choć azjatyckie pochodzenie orkiszu zostało zasugerowane odkryciem jego upraw w Iranie, to niestety brak śladów orkiszu w innych znaleziskach Bliskiego Wschodu do końca nie potwierdza tej hipotezy (Luo i in., 2000; Blatter i in., 2002; 2004).

Kolejna teoria mówi o tym, że orkisz powstał w wyniku naturalnego krzyżowania pomiędzy pšenicą zwyczajną (Triticum vulgare) a płaskurką (Triticum dicoccum) (Akeret, 2005; Kalinowska – Zdun, 2005; Tyburski, Żuk – Gołaszewska, 2005). Jak podał Akeret (2005), do spontanicznego krzyżowania mogło dojść w sytuacji pojawienia się w tym samym miejscu tych dwóch gatunków zbóż, co mogło mieć miejsce już 5000 lat p.n.e. Możliwość tę potwierdzono eksperymentalnie, krzyżując...
te dwie pszenice. Niestety, choć wyniki badań archeologicznych wskazują na szerokie wykorzystanie płaskurki w epoce brązu, to jednocześnie informacje o innych pszenicach chlebowych z tamtego okresu na terenie ówczesnej Europy są nieliczne (Marconi i in., 1999; Blatter i in., 2002). Jednak właśnie ta teoria wyjaśnia małą rozbieżność w budowie genomu D w europejskich oplewionych i nieoplewionych pszenicach heksaploidalnych.

Jeszcze inne źródła podają, że orkisz powstał w wyniku samorzutnego krzyżowania dzikich traw Aegilops squarrosa ok. 6000 – 5000 lat p.n.e. (Tyburcy, 2005).

Problem pochodzenia orkiszu spowodował, że na przestrzeni lat stosowano różne metody, służące do jednoznacznego wyjaśnienia pochodzenia tej pszenicy. Jedna z nich opiera się na wykorzystaniu białek zapasowych, jako markerów genetycznych, umożliwiających analizę zróżnicowania wśród różnych gatunków pszenic. Druga natomiast polega na analizach RAPD (Randomly Amplified Polymorphic DNA – losowa amplifikacja polimorficznego DNA) (Sun i in., 1998; An i in., 2005).

Ponadto, ich badania mocno wspierają hipotezę, że europejska pszenica orkisz, powstała w wyniku hybrydyzacji uprawnej płaskurki i pszenicy zbitokłosej (Triticum aestivum ssp. compactum (Host) MK). Dodatkowo badania te wykazały, że prymitywny irański orkisz, był bardziej podobny do pszenicy zwyczajnej niż orkisz europejskiego (An i in., 2005).

Wcześniej również tę samą zależność zauważali Blatter i in. (2002), stwierdzając, że europejski orkisz wydaje się być bardziej odległym pod względem genetycznym od Triticum aestivum niż od orkiszu azjatyckiego, a europejski i azjatycki orkisz różnią się między sobą genami odpowiedzialnymi za morfologię kłosa (Luo i in., 2000; Blatter i in., 2002).

Warto jeszcze dodać, że Blatter i in. (2002) w badaniach prowadzonych z wykorzystaniem ziarna szwajcarskich odmian, pochodzących sprzed 250 – 300 lat, wykazali, że europejskie orkisze mogły powstać w wyniku połączenia się tetra i heksaploidalnych pszenic.

Na podstawie powyższych informacji nie można jednoznacznie określić pochodzenia orkiszu. Przypuszczałoby to na ten temat dalej będzie budziła wiele kontrowersji, choć równolegle będą kontynuowane badania dotyczące historii tego gatunku pszenicy oraz miejsca jej pochodzenia.

2.3.2. Systematyka orkiszu

Orkisz jest pszenicą heksaploidalną (genomy AABBDD – 42 chromosomy), o oplewionym ziarnie, które nie wypada z plew i plewek podczas omłotów, a kłosy w czasie zbioru łamią się na

Poniżej podano nazwy systematyczne orkiszu w różnych językach:

j. niemiecki : Dinkel, Dinkel – Weizen, Korn, Spelz,

j. angielski : spelt, spelt wheat,

j. francuski : épeautre,

j. włoski : spelta, farro,

j. hiszpański : eskandia (w niektórych regionach nazywany jest fisga) (Caballero i in., 2007),

j. węgierski : tönkölybuza,

j. czeski : pšenice špalda,

j. rosyjski : полба,

2.3.3. Morfotypy orkiszu

Obecnie uprawia się wiele odmian orkiszu, które różnią się między sobą barwą kłosa, ościstością i zimotrwałością. Są to formy jare i ozime, o długim źdźble (120 – 170 cm), w których kłos jest zwykle bardzo luźny, z przestrzeniami między kłoskami, wynoszącymi ok. 7 mm. Na pięterku w kłosku z reguły są 2 ziarniaki, ziarno jest przeważnie mniejsze, bardziej szkliste i różni się kształtem (ziarno orkiszu jest bardziej podłużne) w porównaniu z pszenicą zwyczajną (Szymona, 1996; Kalinowska – Zdun, 2005) (Fot. 1 i 2). Pszenica orkisz zachowała także jeszcze inne cechy, mniej korzystne, charakterystyczne dla zbóż pierwotnych tj. niską plenność, podatność na wyleganie i utrudniony zbiór (Cao i in., 1997; Moudrý, Dvořáček, 1999; Chen, 2001; Tyburski, Żuk – Gołaszewska, 2005; Onishi i in, 2006).

Fot. 1. Pszenica orkisz
„Flora von Deutschland, „Österreich und der Schweitz” (Prof. Dr. O.W. Thomé 1885, Gera, Germany) (Wikipedia, 2009).
Ziarno orkiszku jest oplewione, szkliste, barwy od białej do czerwonej, z wyraźną bródką, o zróżnicowanej masie 1000 ziaren (Cao i in., 1997; Gąsiorowski, 2004c; Kalinowska – Zdun, 2005, Tyburski, Żuk – Gołaszewska, 2005; Tyburski, Babalski, 2006). W zależności od barwy ziarna orkisz można podzielić na następujące morfotypy:

- biały, forma ozima, o kłosie bezostnym – najczęściej siany jest w Niemczech na terenach nizinnych, wymaga gleb zasobnych w wodę,
- biały, forma jara, o kłosie ościstym – najczęściej siany jest w górnych rejonach Alp (Tyrol),
- czerwony, forma ozima, o kłosie bezostnym – najbardziej plenny, najlepiej krzewi się i daje najlepszą mąkę,
- czerwony, forma jara, o kłosie bezostnym – najczęściej uprawiany w Szwajcarii (okolice Zurichu), wytrzymały na gwałtowne zmiany pogodowe,
- niebieskawy, o kłosie ościstym, jary i ozimy – cechuje go niska plenność, jest to najbardziej prymitywna forma orkiszku (Szymona, 1996).

Udział plew i plewek w masie kłoska sięga średnio 25 – 32%, więc wydajność ziarna orkisz po odplewieniu wynosi ok. 70%. Należy nadmienić, że obłuszczanie maszynowe jest szczególnie trudne w przypadku, gdy ziarniaki są bardzo małe, stąd wydajność tego procesu może być czasami niższa niż podczas obłuszczania ręcznego (Tyburski, Babalski, 2006).

2.3.4. Systemy produkcji rolnej a wymagania agrotechniczne i warunki uprawy orkiszku

Systemy produkcji rolnej

Mówiąc o wymaganiach agrotechnicznych i warunkach uprawy orkiszku należałoby krótko wspomnieć o najważniejszych systemach produkcji rolnej. Obecnie znane są trzy takie systemy.

Pierwszy z nich jest nazywany konwencjonalnym (tradycyjnym, intensywnym) rolnictwem, którego polityka opiera się głównie na zasadzie jak najwyższej wydajności i maksymalizacji zysku, przy jak najmniejszym koszcie produkcji. Rolnictwo to rozwija się od lat sześćdziesiątych zeszłego wieku, a po wojnie rozwiązało problem głodu na świecie. Wiadomo, że intensywny system uprawy obniża zdolność ekosystemu do samoregulacji, powoduje zanieczyszczenie wód gruntowych.
i powierzchniowych azotanami i pestycydami, a ostatecznie bardzo zanieczyszcza środowisko naturalne i niszczy jego równowagę. System ten również z czasem doprowadził do nadprodukcy
żywności (Granstedt, Tyburski, 2006; Grzebisz, 2008; Jankowski, 2009).

W rolnictwie konwencjonalnym można jeszcze wyróżnić rolnictwo ekstensywne (niskonakładowe), które zaczęło się rozwijać w latach pięćdziesiątych XX wieku oraz rolnictwo precyzyjne polegające na racjonalnym wykorzystaniu czynników produkcji z użyciem najnowszej techniki (Granstedt, Tuburski, 2006; Grzebisz, 2008; Jankowski, 2009).

Wymagania agrotechniczne i warunki uprawy orkiszu

Orkisz jest zbożem, które bardzo dobrze nadaje się do uprawy wg zasad rolnictwa ekologicznego, choć należy wspomnieć, że może być również wykorzystany w uprawach rolnictwa konwencjonalnego. Świadczy o tym pewna liczba doniesień, z których wynika, że analizowana pszenica orkisz, pochodziła z produkcji konwencjonalnej (Grela, 1996; Achremowicz, 1999; Løje i in., 2003; Sulewska, 2004). Jednak, jak wynika z badań Rüeggera i Winzlera (1993) stosowanie nawożenia azotowego w przypadku orkiszu nie wpływa na wydajność z hektara, natomiast bardziej istotny jest odpowiedni termin siewu. Tę informację potwierdzają również Troccoli i Codianni (2005), bardzo silnie sugerując celowość i funkcjonalność wykorzystania orkiszu w produkcji ekologicznej.

Wynika to z faktu, że pszenica ta jest gatunkiem odpornym na choroby i stresy środowiskowe (Oplinger i in., 1990; Grela, 1996; Pałys, Łabuda, 1997; Bojňanská, Frančáková, 2002; Marconi i in., 2002; Tyburcy, 2005; Sulewska, 2004; Tyburski, Żuk – Gołaszewska, 2005) oraz charakteryzuje

Obecnie w wielu krajach europejskich orkisz wysiewany jest na terenach gorszych, o płytkich, kamienistych, słabych glebach i surowszym klimacie. Może być również z powodzeniem uprawiany na wysokości powyżej 800 m n.p.m., a niektóre źródła podają nawet, że można go wysiewać na wysokości powyżej 1500 m n.p.m. (Szymona, 1996; Kalinowska – Zdun, 2005; Neeson, Luckett, 2005; Tyburski, Babalski, 2006; Zieliński i in., 2008). W związku z tym, że orkisz ma dużą zdolność przystosowawczą, dobrze znosi zimę, nadmiar wody lub jej brak podczas wegetacji, jak również jest bardziej odporny na zasolenie gleby w porównaniu do innych zbóż (Ostrowska, 1993; Skrabanja i in., 2001; Burgos i in., 2001; Sulewska, 2004; Szczypski, 2005). Jak podali Burgos i in. (2001), odmiany orkiszu narażone na nadmiar wody podczas kielkowania ziarna są bardziej odporne w porównaniu do ziarna pszenicy zwyczajnej. Z tych też powodów orkisz może wytworzyć zadawalający plon również w rejonach i warunkach mniej sprzyjających (Capouchová, 2001). Ze względu na swoje starożytne pochodzenie i zachowanie cech pszenic pierwotnych, w tym długiego źdźbła, nie wymaga nawożenia mineralnego (jedynie stosuje się odpowiedni przedplon lub nawożenie organiczne) i daje nawet bez niego zadawalające plony, a niewielkie dawki nawozów mineralnych mogą prowadzić wręcz do jego wylegania, co stanowi dodatkowy argument do wykorzystania orkiszu w rolnictwie ekologicznym (Szymona, 1996; Moudrý, Dvořáček, 1999; Capouchová, 2001; Gálová, Knoblochová, 2001; Skrabanja i in., 2001; Bojňanská, Frančáková, 2002; Tyburcy, 2005; Schober i in., 2006; Zieliński i in., 2008).

radioaktywność niż inne badane zboża (Szczypski, 2005). Co więcej, plewy i plewki orkiszu stanowią doskonałe zabezpieczenie przez metalami ciężkimi i pestycydami, takimi jak lindan i DDT, a potwierdziły to badania niemieckie i austriackie (Tyburski, Babalski, 2006).

Przeciętne plony orkiszu

Orkisz badany jest również pod względem plenności. Rüegger i Winzeler (1993) zbadali wydajność plonowania ziarna orkiszu odmian Oberkulmer i Hercule i dwóch odmian pszenicy zwyczajnej (Arina i Iena). Ziarno uprawiane było w Szwajcarii wg zasad rolnictwa konwencjonalnego, a wydajność plonowania orkiszu była podana dla ziarna nieodplewionego. Uzyskany przez badaczy średni wynik dla ziarna badanych odmian orkiszu był na poziomie 4,40 t/ha, podczas gdy analogiczny plon dla pszenicy zwyczajnej był nieco niższy (4,34 t/ha).

Natomiast Stallknecht i in. (1996) prowadzili badania nad plennością ziarna orkiszu w warunkach rolnictwa intensywnego w Stanach Zjednoczonych. Uzyskane przez nich wyniki, w zależności od roku zbioru, mieściły się w granicach od 3,48 do 7,07 t/ha brutto, natomiast po odplewieniu (zbiory netto) od 2,09 do 4,24 t/ha, podczas gdy pszenica zwyczajna (twarda czerwona pszenica ozima – Tiber) uzyskała wartości w granicach 3,43 – 5,91 t/ha. Z kolei, Troccoli i Codianni (2005) uprawiali orkisz we Włoszech wg zasad rolnictwa konwencjonalnego, określając plonowanie ziarna orkiszu odmiany Altgold Rotkorn w porównaniu do innych starożytnych pszenic, w zależności od terminu siewu. Uzyskane przez nich wartości mieściły się w granicach 2,76 – 2,86 t/ha dla nieodplewionego ziarna orkiszu (w zależności od roku zbioru), natomiast pszenica samopsza uzyskała wynik brutto w zakresie 1,37 – 1,47 t/ha, a płaskurka 3,41 – 3,67 t/ha. Z kolei, inni badacze uzyskali wydajność ziarna orkiszu uprawianego w warunkach ekologicznych na terenie Słowacji, w zależności od odmiany (Holstenkorn, Frankenkorn, Rouquin, Schwabenkorn i Baulander Spelz), na poziomie od 5,87 do 7,21 t/ha brutto (Lacko – Bartošová, Rédlová, 2007).

W związku z tym, że orkisz jest pszenicą pierwotną niżej plonuje. Jak podali Neeson i Lucket (2005), średnie plony orkiszu w Australii (zbiory 2004) były zróżnicowane i mieściły się w zakresie od 2 do 4,5 t/ha ziarna oplewionego, chociaż, jak sugerowali autorzy, skrupulatna selekcja odmian lub też odpowiednie nawożenie organiczne, mogłoby dać szansę na polepszenie plonowania. Badania były kontynuowane z wykorzystaniem 20 genotypów orkiszu uprawianych w 2007 roku. Uzyskane przez badaczy wydajności ziarna uprawianego wg zasad rolnictwa organicznego były w granicach od 0,72 do 2,73 t/ha (netto) w zależności od odmiany, podczas gdy pszenica zwyczajna uzyskała plon na poziomie 3,77 t/ha (Neeson i in., 2008).

Jako wynika z innych danych literaturowych, plony orkiszu (po zbiorze kłosów określono wielkość plonowania) uprawianego wg zasad rolnictwa ekologicznego w Polsce w zależności od odmiany (Spelt inz. Droogendijk /39, Triticum spelta, Triticum spelta Duha meliamum, Triticum spelta L. album i Triticum spelta L. arduini) były na poziomie od 0,82 do 5,32 t/ha, podczas gdy współczesne ozime pszenice uzyskały wynik w granicach od 4,20 do 6,31 t/ha (Cyrkler – Degulis, Bulińska – Radomska, 2006).

Plenność pszenicy jest ściśle związana z klasą bonitacyjną gleby na jakie jest uprawiana, stosowanym płodozmianem i nawożeniem organicznym. Jak podali Tyburski i Babalski (2006) plon
2.4. Znaczenie gospodarcze i użytkowe orkiszu w przeszłości i obecnie

Lokalizacja i powierzchnia upraw orkiszu

Według Akereta (2005) za początek uprawy orkiszu w Europie można przyjąć rok 2300 p.n.e., ale najprawdopodobniej jego upowszechnienie w rolnictwie odbyło się w kilku niezależnych miejscach równocześnie. Jak podają Caballero i in. (2007), już w epoce żelaza (750 – 15 r. p.n.e.) orkisz wyparł płaskurkę, stając się na terenie południowych Niemiec i Szwajcarii, podstawowym zbożem uprawnym. To samo miało miejsce na południu Brytanii ok. roku 500 p.n.e. i w północnej części Hiszpanii, natomiast kolejne wzmianki na temat uprawy orkiszu w tym kraju, pojawiają się dopiero w średniowieczu (Caballero i in., 2007).

istotnym znaczeniu świadczą utworzone od orkiszu nazwy miejscowości: Dinkelsbohl, Dinkelhausen oraz Dinkelrode. W tym czasie orkisz znany był również na terenie Skandynawii (Szymona, 1996).

Znaleziska paleobotaniczne wskazują również, że orkisz był znany na terenie Polski (Pińczów) w końcowym okresie epoki kamienia (w neolicie). Późniejsze doniesienia wskazują, że ten gatunek pszenicy uprawiany był w VIII wieku nie tylko w Polsce, ale również na terenie obecnej Litwy (Szymona, 1996; Gąsiorowski, 2004a; Kalinowska – Zdun, 2005; Caballero i in., 2007; Schmidl i in., 2007).

Ślady tego zboża znaleziono także w Biskupinie (okres halsztacki – epoka brązu), a różne zapiski historyczne potwierdzają szeroką uprawę i wykorzystanie orkiszu (np. do produkcji piwa) na terenie Polski (Kohler – Schneider, 2003). Pod koniec XVIII wieku orkisz w Polsce był uprawiany jedynie w okolicach podgórskich (Szymona, 1996; Kalinowska – Zdun, 2005, Gąsiorowski, 2004c). Górale wypiekali z niego podpłomyki zwane moskolami, a jego ziarno palono na kawę. Kolejne wzmianki historyczne informują, że po II wojnie światowej we wsi Istebna z orkiszu przygotowywano podpłomyki zwane „dziubanymi plackami” (Gąsiorowski, 2004c).

z nielicznych zarejestrowanych danych, obszar zasiewów orkisz w stanach: Północnej i Południowej Dakocie, Nebrasce oraz Minesocie wynosił łącznie 233 000 ha. Natomiast obszar produkcji tych zbóż w 1919 roku obniżył się do poziomu 68 000 ha (Stallknecht i in., 1996).

Warto jednak w tym miejscu podkreślić, że obecnie ważniejsze jest raczej to, że ponownie wzrasta zainteresowanie orkiszem.

Przyczyny ponownego zainteresowania orkiszem

Przykładowo, Schäfer (2001) podaje następujące powody zainteresowania orkiszem w Finlandii w latach 90 – tych XX wieku:

– ciekawość rolników, odnośnie zachowania się tego zboża w warunkach uprawy ekologicznej,
– korzyści ekonomiczne wynikające z oferowania nowych, atrakcyjnych produktów,
– szukanie rynkowych nisz przez producentów żywności, w celu zwiększenia swoich dochodów,
– zgłoszenie przez konsumentów zapotrzebowania na tzw. żywność o właściwościach prozdrowotnych.

Co więcej, zainteresowanie orkiszem obecnie wynika również z nadprodukcji żywności, w tym zboż podstawowych. Zboże to uważane jest za zdrowy pokarm, wspomagający leczenie chorób nowotworowych lub zapobiegający jego występowaniu (dotychczas nie były jednak prowadzone na szerszą skalę badania kliniczne, które by to naukowo potwierdziły) i wzbogacający dietę przeciwnika konsumanta (Capouchová, 2001; Sulewska, 2004; Schober i in., 2006). Jak podaje Capouchová (2001), orkisz ceniony jest ze względu na swoje specyficzne właściwości i możliwości szerokiego wykorzystania w przetwórstwie. Przede wszystkim jednak, jego popularność wynika z zainteresowania producentów i konsumentów ziarnem i przetworami orkiszem z produkcji ekologicznej.

Równolegle, w Europie w kręgu hodowców i rolników, w latach 90 – tych XX wieku, pojawiła się konieczność zaproponowania nowych odmian pszenic. „Nowe” odmiany ziarna miały być wykorzystane na marginalnych obszarach, o mniej zasobnych w składniki mineralne glebach. Jednocześnie, prowadzenie kampanii mającej na celu zmniejszenie negatywnego wpływu tzw. konwencjonalnego rolnictwa na środowisko naturalne, dodatkowo zintensyfikowało poszukiwanie innych odmian roślin, jak również powrót do tych „zapomnianych” (Simonetti i in., 1999; Bonafaccia, 2000; Troccoli, Codianni, 2005; Teklu i in., 2006).

Buerli (2006) argumentując zainteresowanie zbożami oplewionymi stwierdził, że istotny jest powrót do bioróżnorodności (również w żywieniu człowieka), dokonanie rozdziału systemów rolniczych na mniej lub bardziej intensywne oraz ponowne odkrycie znaczenia produktów regionalnych.

Ponadto, jak już wcześniej wspomniano, w Polsce od kilku lat sukcesywnie rośnie liczba certyfikowanych gospodarstw ekologicznych. Równolegle, odnotowuje się zainteresowanie uprawą starych, już zapomnianych gatunków i odmian zbóż, w tym również orkiszu (Kalinowska – Zdun, 2005).

W powojennej Polsce, pionierem uprawy pszenicy orkisz stał się Mieczysław Babalski, który w 1988 roku podjął się jej uprawy w swoim gospodarstwie ekologicznym, po przywiezieniu ziarna
ze Szwajcarii. Pierwsze podejście jednak nie powiodło się i dopiero w 1990 roku ponownie zasiał orkisz, tym razem sprowadzony z Niemiec (była to odmiana *Schwabenkorn*) (Raszkowski, 2008). Jednak w tamtym czasie niewielu rolników było zainteresowanych zasiewami tego zboża. Rolnicy nie wiedzieli jak się je uprawia, a konsumenci nie wiedzieli, za co mają płacić znacznie większe pieniądze w porównaniu do ceny przetworów uzyskanych z ziarna pszenicy zwyczajnej (Tyburski, Babalski, 2006). Mimo to, od początku lat 90 – tych XX wieku, sukcesywnie wzrasta zainteresowanie orkiszem w Polsce, tak samo jak i w Europie, co jest pośrednio związane z dynamicznym rozwijaniem rolnictwa ekologicznego (Tyburski, Babalski, 2006).

Obecnie uprawy pszenicy orkisz można spotkać w Europie, głównie w krajach niemieckojęzycznych, tj. na południu Niemiec, w Szwajcarii i Austrii. Jednakże orkisz jest również uprawiany na terenie Belgii, Czech, Słowacji i Węgier (Moudrý, Dvořáček, 1999; Wiwart, Perkowski, 2005; Tyburski, Żuk – Gołaszewska, 2005; Tyburski, Babalski, 2006). W latach 90 – tych zeszłego wieku całkowita powierzchnia upraw orkiszu w Europie (Niemcy, Czechy, Stara Słowacja), mieściła się w granicach od 14 000 do 18 000 ha. Z kolei, w 2005 roku uprawy orkiszu w Europie zajmowały ok. 50 000 ha (Moudrý, Dvořáček, 1999; Capouchová, 2001; Majewska, 2005). Wg szacunków przeprowadzonych w 2006 roku powierzchnia upraw orkiszu w całej Europie wynosiła ok. 60 000 ha (Tyburski, Babalski, 2006).

W latach 90 – tych XX wieku zbiór orkiszu w Niemczech wyniósł 25 000 ton, natomiast powierzchnia upraw ekologicznych tego zboża w tym kraju w 2003 roku osiągnęła poziom 9 500 ha, a w roku 2004 orkisz był już zbierany z powierzchni 22 833 ha (Kostecki, 2005).

Wiadomo również, że niewielkie obszary upraw orkiszu znajdują się obecnie w USA, Kanadzie i Australii (Neeson, Luckett, 2005; Neeson i in., 2008). W tym ostatnim kraju orkisz stanowi ważne zboże w strefie lasów deszczowych (Winter rainfall zone), które jest szczególnie cenione za zdolność adaptacyjną do trudnych warunków uprawowych (Neeson, Luckett, 2005). Aktualna produkcja orkiszu w Australii wynosi 4000 ton, podczas gdy zapotrzebowanie na rynku szacuje się na poziomie 10 000 ton (Neeson i in., 2008).

Obecnie szacuje się, że powierzchnia upraw orkiszu w Polsce wynosi ok. 1000 ha i jest on uprawiany jedynie w gospodarstwach ekologicznych. Tymczasem zapotrzebowanie na ziarno orkiszu w naszym kraju sukcesywnie wzrasta. Ponadto, w ostatnich latach ponad połowa zasiewów była przeznaczona na materiał siewny, a niedobory tego zboża uzupełniano importem głównie z Czech i Węgier oraz Niemiec (Tyburski, Żuk – Gołaszewska, 2005; Tyburski, Babalski, 2006; Żakowska – Biemans, 2006).

Jak podali Tyburski i Żuk – Gołaszewska (2005), pomimo korzystnych cen, tj. 1000 zł za tonę oplewionego ziarna i 2500 za tonę ziarna obłuszczonego, w 2004 roku rolnicy nadal niechętnie podejmowali się uprawy orkiszu. Porównywalnie, cena ziarna pszenicy zwyczajnej z gospodarstwa
ekologicznego w tym samym czasie kształtowała się na poziomie 650 zł za tonę. Natomiast w 2008 roku cena nieodplewionego ziarna orkiszu była na poziomie 1400 – 1900 zł/t, a ziarna po obłuszczeniu od 3500 do 4000 zł/t (Raszkowski, 2008). Należy nadmienić, że do obsiania 100 ha należy zużyć ok. 200 t nieodplewionego ziarna (Babalski, 2009).

2.5. Aktualny stan badań na temat orkiszu w Europie i na świecie

W ostatnich latach w różnych krajach europejskich prowadzone były projekty badawcze, dotyczące zarówno orkiszu, jak i płaskurki oraz samopszy. Głównym celem badań było propagowanie rzadkich i zapomnianych gatunków i odmian roślin, ze względu na ich unikatowe właściwości.

Europejskie projekty badawcze dotyczące orkiszu

Breeding of cereal varieties for bio-/ ecological agriculture

W 1982 roku rozpoczął się pierwszy program mający na celu określenie gatunków i odmian zbóż szczególnie przydatnych i nadających się do rolnictwa biologicznego. Prace nad nowymi odmianami były prowadzone w Szwajcarii, Niemczech, Austrii i Francji. Zbożem, któremu szczególnie poświęcono uwagę podczas badań była pszenica orkisz. W związku z tym, że w rolnictwie ekologicznym nie można stosować metod polegających na modyfikacji genetycznej, korzystano z tradycyjnych metod krzyżowania (od tzw. „krzyżówki” do odmiany) i z tego też powodu, projekt trwał od 12 do 15 lat. W efekcie wytworzono kilka dobrych odmian. W ramach projektu było kilka ważnych wydarzeń:

- lata 1984 – 1991: badania w Research Institute AT Goetheanum, Dornoch; pierwsze badania nad wytworzeniem nowych odmian orkiszu,
- lata 1992 – 2000: założenie prywatnej instytucji o nazwie Grain Breeding Peter Kunz
- rok 2000: przekształcenie wcześniejszej instytucji w Society for Crop – Plant Development,
- rok 2002: zarejestrowanie nowej odmiany orkiszu Alkor w Szwajcarskim Narodowym Katalogu Odmian i Katalogu OECD,
- rok 2004: wprowadzenie i zarejestrowanie dwóch kolejnych odmian orkiszu Sirino i Tauro,

Hulled Wheat Genetic Resource Network

przedsiębiorstwie, określone mianem Hulled Wheats Genetic Resource Network. Celem tego projektu były m.in.:
- ochrona starych gatunków roślin od wyginięcia i zachowanie ich różnorodności genetycznej,
- promowanie badań nad rozwojem wybranych gatunków pszenic,
- zachęcenie m. in. rolników do zachowania w uprawie i propagowania wykorzystania tych gatunków roślin,
- stworzenie nowych produktów i promowanie zdrowej/funkcjonalnej żywności otrzymanej z ww. gatunków roślin.

Projekt przyniósł wiele korzyści. Przede wszystkim, zainteresowali się tymi roślinami rolnicy i naukowcy, co uchroniło te gatunki od wyginięcia. Poza tym, pomysł ten obecnie uważany jest za pierwowzór późniejszych projektów (Buerli, 2006; Minor cereals…, 2008).

SESA: Spelt, a recovered crop for the future of sustainable agriculture in Europe – Projekt FAIR – CT96 – 1569 SESA

W trakcie realizacji projektu badano dwadzieścia pięć odmian orkisz, w tym m.in.: *Albin, Altgold Rotkorn, Baulander Spelz, Fuggers Babenhauser Zuch, Frankenkorn, Goldir, Hercule, Hubel, Leug, Neuegger Weißkorn, Ostar, Oberkulmer Rotkorn, Ostro, Schwabenkorn* (Schober, 2002). Nowsze odmiany orkisz są zdolne do adaptacji i lepiej plonują w niekorzystnych warunkach w porównaniu do tych starszych, jak również cechują się wyższą odpornością na wyleganie i rdzę żółtą.
Multiregional Operative Programme on Farro POM – B13 (MOP)

Celem tego programu był powrót do rolnictwa zachowawczego – ekologicznego we Włoszech. W ramach projektu określono wartość odżywczą ziarna różnych odmian orkiszu i wytworzonych z niego produktów. Projekt był finansowany przez Unię Europejską, a badania przeprowadzono w National Institute for Agro – Economy. Główne cele projektu odnosiły się do:

- dostosowania odmian zbóż oplewionych do warunków rolnictwa ekologicznego w zakresie optymalnego planowania i późniejszego wykorzystania,
- unowocześnienia obecnych technologii przetwarzania zbóż oplewionych, w celu otrzymania innowacyjnych produktów o właściwościach dietetycznych i pozytywnych cechach organoleptycznych, z zachowaniem wszystkich zasad higieny produkcyjnej (Buerli, 2006).

National Program on Plant Genetic Resources Conservation and Utilization in the Czech Republic

Program był realizowany w Czechach i obejmował analizę 51 000 różnych próbek nasion. Projekt dotyczył zachowania i monitorowania cennej roślinności, propagowania jej uprawy na pierwotnych obszarach i gromadzenia materiału siewnego w Czeskim Banku Genów znajdującym się w Instytucie Badawczym Produkcji Plonów w Pradze (Research Institute of Crop Production). Program dotyczył również zbóż oplewionych, w tym samopszy, płaskurki i orkiszu, które miały być uprawiane głównie na obszarach chronionych, a materiał siewny miał być zabezpieczany bezpośrednio na miejscu. Celem tej działalności było zachowanie „wymierających” gatunków zbóż oraz zwiększenie agrobioróżnorodności w rolnictwie. Produkty wytworzone z tych zbóż mogą być wykorzystane do projektowania nowej żywności, a przez to, że zboża te nie wymagają nawożenia mineralnego i stosowania pestykidy podczas wegetacji, doskonale nadają się do rolnictwa ekologicznego (Dotlacil i in., 2001).

Badania krajowe

W Polsce dopiero na początku lat 90 – tych XX wieku środowisko naukowe zainteresowało się orkiszem. Pionierem badań nad uprawą tego zboża był Jerzy Szymona z Akademii Rolniczej w Lublinie, który jako pierwszy podał zalecenia agrotechniczne do uprawy tej pszenicy (Szymona, 1996).

W roku 1994 Bohdan Achremowicz i jego współpracownicy z Akademii Rolniczej w Krakowie badali cztery odmiany orkiszu, a pszenica zwyczajna odmiany Kobra była wykorzystana jako wzorzec. Materiał pochodził z doświadczeń Katedry Ekologii Rolniczej AR. W otrzymanych
mąkach określono liczbę opadania, wydajność glutenu mokrego i właściwości reologiczne ciasta oraz przeprowadzono próbny wypiek laboratoryjny (Achremowicz i in., 1999).

Z kolei, w latach 1997 – 2000 Hanna Sulewska z Akademii Rolniczej w Poznaniu zajmowała się wpływem stosowanego materiału siewnego i głębokością siewu na plon i skład chemiczny ziarna orkisz odmiany Bauländer Spełz, uprawianego w sposób konwencjonalny (Sulewska, 2004).

Niezależnie od powyższej działalności naukowej, podejmowane były również inne badania z wykorzystaniem orkisz.

Natomiast, w Katedrze Hodowli Roślin i Nasiennictwa Wydziału Kształtowania Środowiska i Rolnictwa Uniwersytetu Warmińsko – Mazurskiego cały czas prowadzone są prace nad pełnoścą ziarna orkisz jarych rodów hodowlanych (Wiwart, 2009).

ich odporności na choroby, warunki uprawy i stresy środowiskowe (Cyrkler – Degulis, Bulińska – Radomska, 2006). Wstępne spostrzeżenia skłaniają do sformułowania stwierdzenia, że pszenice oplewione, w tym orkisz, mogą stać się cennym materiałem do uprawy w warunkach produkcji ekologicznej i niskonakładowej produkcji w gospodarstwach konwencjonalnych.

Inne badania

Kolejnym kontynuitem, na którym obecnie prowadzone są intensywne badania nad uzyskaniem nowych odmian pszenicy orkisz jest Australia. Jak podali Neeson i Luckett (2005), rolnicy ekologiczni w tej części świata, w rejonie Cootamundra, uprawiają formę orkiszku, która jest „krzyżówką” dwóch starszych odmian. Niestety informacje na temat jej zdolności przystosowawczych są bardzo nieliczne, a inne odmiany orkiszku są niedostępne na rynku. Dlatego też, australijscy rolnicy ekologiczni zgłosili zapotrzebowanie na gatunki i odmiany zbóż niewymagające intensywnego nawożenia mineralnego i stosowania pestycydów. Z tego też powodu w Centrum Innowacyjności Rolnictwa w Wagga Wagga (EH Graham Center for Agricultural Innovation in Wagga Wagga) w latach 2000 – 2005 prowadzono badania z wykorzystaniem 43 genotypów ziarna orkiszku. Głównym celem było uzyskanie odpowiedzi na pytanie, która odmiana cechowała się najwyższym potencjałem i jakie miała wymagania glebowe i środowiskowe. Ziarno różnych odmian orkisz uprawiano w szklarniach w kontrolowanych warunkach, a następnie porównywano ich plenność między sobą (Fot. 3).

Fot. 3. Uprawa orkiszku w szklarni (Neeson, Luckett, 2005).

Kontynuacją powyższych badań był tym razem 3 – letni projekt, podjęty przez Centrum Innowacyjności Rolnictwa w Wagga Wagga, NSW DPI (New South Wales Department of Prime Industries) i Uniwersytet Charlesa Stuarta. Badacze chcieli m.in. uzyskać odpowiedź na pytanie, która odmiana orkisz najlepiej nadaje się do produkcji ekologicznej. Projekt był wspomagany przez Rural Industry Research and Development Corporation’s (RIRDC), Organic Produce Program, Department of Primary Industry, rolników ekologicznych i The Biological Farmers of Australia Co – op Ltd.
(BFA). W badaniach wykorzystano 82 próbki ziarna (Australian Winter Cereals Collection oraz próbki ziarna pochodzące od rolników ekologicznych), w tym również 20 odmian ziarna orkisz (Neeson i in., 2008). Jak okazało się, odporność ziarna na choroby (w tym również na rdzę żółtą), zapotrzebowanie na fosfor i tolerancję na glin (aluminium tolerance), zależne były w dużym stopniu od badanej odmiany pszenicy (Neeson i in., 2008).

Ponadto, w różnych krajach prowadzone są prace mające na celu zachowanie rzadkich gatunków roślin w bankach genów. Jak podała Michalová (Minor crops…, 2008) w Europejskim Banku Genów zgromadzonych zostało 2269 próbek ziarna gatunków o oplewionym ziarnie, z czego 579 próbek stanowiło ziarno pszenicy orkisz.

Aktualnie (wg stanu na koniec lutego 2009 roku), w Szwajcarskim Banku Genów zgromadzonych jest 2276 próbek pszenic o oplewionym ziarnie, pochodzących z Niemiec, Szwajcarii, Luksemburga, Hiszpanii, Stanów Zjednoczonych, Belgii i Hiszpanii (Swiss National…, 2009).

Warto dodać, że również Czeski Bank Genów posiadał w swojej kolekcji ziarno pszenicy oplewionych: 74 próbki orkisz, 104 próbki plaskurki i 38 próbek samopszy (Dotlacil i in., 2001). Z najnowszych danych wynika, że w Banku Genów Instytutu Badawczego w Pradze zgromadzonych jest obecnie 78 próbek ziarna orkisz, a w Nordyckim Banku Genów (Nord…, 2009) kolekcja obejmuje 22 próbki ziarna. Z kolei, w Stanach Zjednoczonych (Wheat Genetic & Genomic Resources Center, Stanowy Uniwersytet w Kansas) zgromadzonych jest 1294 próbek ziarna orkisz (Autorka pracy zdobyła powyższe informacje kontaktując się z ww. instytucjami).

Należy dodać, że od kilku lat Mieczysław Babalski (właściciel gospodarstwa ekologicznego: certyfikat AGRO BIO TESTU 90001 04194 – B) bierze czynny udział w rozpowszechnianiu upraw orbisz w Polsce. Jak sam podaje, z banku genów otrzymuje się 100 ziaren wybranych odmian roślin, a po pięciu latach rozmnażania można obsiąć już jeden hektar pola. Do głównych jego osiągnięć w tej dziedzinie, należy namnożenie pięciu odmian orkisz jarego (Babalski, 2008).

Należy podkreślić, że nadal istnieją trudności związane z promocją orbisz w różnych krajach świata. Jak podał Schäfer (2001), w Finlandii główny problem stanowiło pozyskanie ziarna z certyfikowanych gospodarstw ekologicznych. Dodatkowo brak zalegalizowanych odmian orbisz stworzył ograniczenia prawne do promowania tego starożytnego zboża. Pojawiły się również utrudnienia wynikające z braku maszyn do siewu i odpiewania ziarna po zbiorze oraz braku punktów, w których można byłoby sprzedać i kupić pełen asortyment produktów z orbisz.
Sytuacja w Polsce jest podobna, a wyżej wymienione problemy są aktualne także i u nas. Wielu rolników ekologicznych nie ma możliwości kupna certyfikowanego ziarna orkiszu. Dostępne na polskim rynku odmiany sprowadzane są głównie z Niemiec, jak dotąd żadna z dostępnych odmian orkiszu nie jest wpisana w polskim rejestrze odmian zbóż, a najczęściej uprawiana jest odmiana Schwabenkorn.

Jakkolwiek, istnieją w Polsce Regionalne Ośrodki Doradztwa Rolniczego, Centrum Doradztwa Rolniczego (CDR), Stowarzyszenie Producentów Żywności Metodami Ekologicznymi EKOLAND, Polski Klub Ekologiczny Koło Miejskie w Gliwicach, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie, Główny Inspektorat Jakości Handlowej Artykułów Rolno – Spożywczych oraz Informator Rynku Produktów Ekologicznych InfoBio (Informator Rynku …, 2008) i inne instytucje podane na stronie internetowej Rolnictwo Ekologiczne (Rolnictwo…2009). Mogą być one pomocne w rozwiązaniu wielu problemów, z którymi borykają się rolnicy ekologiczni. Za pośrednictwem tych instytucji można uzyskać informacje o ziarnie orkiszu, m.in., jako materiale siewnym, sposobie uprawy oraz możliwości odplewiania ziarna i późniejszego jego wykorzystania. Dodatkowo organizowane są spotkania w formie warsztatów, podczas których rolnicy mogą dowiedzieć się znacznie więcej o starożytnych zbóżach. Bardzo życzliwy jest również Mieczysław Babalski – z pewnością pierwszy propagator orkiszu w Polsce, który nie tylko od wielu lat prowadzi skrupulatną selekcję odmian, ale gromadzi wszelkie spostrzeżenia, udzielając wraz z innymi praktykami i badaczami cennych rad (Tyburski, Babalski, 2006).

2.6. Skład chemiczny i wartość odżywcza ziarna i mąki orkiszowej

Ziarno pszenicy orkisz, jak już wcześniej wspomniano, cenione jest za wysoką koncentrację różnych składników odżywczych. Szczególnie bogate jest w niektóre zwiąki Mineralne i witaminy oraz pozostałe substancje biologicznie aktywne o właściwościach przeciwc五一leniujących. Ponadto, ziarno tej pszenicy cenione jest za korzystne walory smakowe i dietetyczne uzyskiwanych z niego przetworów (Campbell, 1997; Capouchová, 2001; Bojňanská, Frančáková, 2002; Tyburski, 2005; Onishi i in., 2006; Zieliński i in., 2008). Literatura podaje szeroki zakres zawartości poszczególnych składników chemicznych ziarna orkiszu i uzyskanej z niego mąki, co jest skutkiem poddawania analizom różnych odmian orkiszu, pochodzących z różnych regionów oraz różnych technologii przemiany ziarna na mąkę. Co więcej, poszczególne badacze w odmienny sposób prezentują uzyskane wyniki, podając ich wartości w różnych jednostkach, co niejednokrotnie uniemożliwia ich dokładne porównanie.

Pszenica orkisz jest materiałem, który obecnie badany jest w kilku płaszczyznach. Przez ostatnie lata określano zawartość podstawowych składników w ziarnie i uzyskanej z niego mące jasnej oraz ciemnej (jednak w znacznie mniejszym stopniu). Ponadto, podejmowano próby określenia wartości wypiekowej mąki orkiszowej wykorzystując zarówno pośrednie i bezpośrednie metody do jej oceny.
Węglowodany

Podstawowym i zasadniczo jedynym polisacharydem zapasowym gromadzącym się w ziarnie pszenicy w ilości od 55 do 70% jest skrobia. Jest to składnik, który ma bardzo istotny wpływ na właściwości wypiekowe mąki (Skrabanja, 2001; Gąsiorowski, 2004a).

Jak wynika z przeglądu danych literaturnych ziarno orkiszsu cechuje się przeważnie nieco niższą zawartością skrobi ogółem (66,0 – 67,6 % s.m.), w porównaniu do ziarna pszenicy zwyczajnej (59,4 – 68,1 % s.m.) (Grela, 1996) (*Tabela 2*). Zawartość tego składnika w ziarnie orkiszsu jest jednak zależna nie tylko od odmiany, ale i od roku zbioru. Jak podały Bojňanská i Frančáková (2002) najniższą zawartością skrobi cechowało się ziarno ze zbiorów z roku, w którym podczas uprawy wystąpiły najtrudniejsze warunki wegetacyjne (susze). Z kolei, zawartość skrobi w ziarnie hybryd orkiszsu mieści się w granicach od 71,6% do 85,4% i jest wyższa od wcześniej podanych wartości (Zieliński i in., 2008).

Tabela 2. Skład chemiczny ziarna orkiszsu i pszenicy zwyczajnej – węglowodany.

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orkisz czysty gatunkowo</td>
<td>Hybrydy orkisz</td>
</tr>
<tr>
<td>Skrobia ogółem [% s.m.] [%]</td>
<td>66,0 – 67,6</td>
<td>10,8 – 12,8</td>
</tr>
<tr>
<td>Błonnik ogółem [%]</td>
<td>48,3 – 67,4</td>
<td>10,6 – 11,0</td>
</tr>
<tr>
<td>Błonnik rozpuszczalny [%]</td>
<td>0,9 – 1,5</td>
<td>-</td>
</tr>
<tr>
<td>β- glukan [%]</td>
<td>0,6 – 1,2</td>
<td>-</td>
</tr>
</tbody>
</table>

Cukry redukujące odgrywają również istotną rolę w procesie wypieku pieczywa. Marconi i in. (2002) w mąkach orkiszowych uzyskali wyższą zawartość cukrów redukujących (0,29 – 0,39% s.m.), w porównaniu do kaszki z pszenicy durum (0,48 – 0,53% s.m.). Z kolei, analiza składu chleba orkiszowego wykazała, że zawiera on mniej maltozy niż chleb z pszenicy zwyczajnej (Marques i in., 2007).

W związku z tym, że zboża stanowią podstawę jadłospisu przeciętnego konsumenta, są znaczącym źródłem błonnika pokarmowego. Z badań Ranhotry i in. (1996) wynika, że zawartość błonnika ogółem w ziarnie orkiszsu mieściła się w zakresie 10,8 – 12,8%, podczas gdy frakcji rozpuszczalnej było od 0,9 do 1,5% (*Tabela 2*).

Zawartość błonnika ogółem w ciemnych mąkach orkiszowych mieściła się w granicach od 10,0 do 14,9% s.m., natomiast frakcji rozpuszczalnej było od 1,2 do 4,0% s.m., a zawartość frakcji nierozpuszczalnej mieściła się w granicach od 8,4 do 12,9% s.m (Marconi i in., 1999; Bonafaccia i in.

Tabela 3. Skład chemiczny mąki (jasnej i ciemnej) z ziarna orkiszu i pszenicy zwyczajnej – węglowodany.

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skrobia ogółem [%]</td>
<td>Mąka jasna</td>
<td>Mąka ciemna</td>
</tr>
<tr>
<td>[g/100g próbki]</td>
<td>75,9</td>
<td>-</td>
</tr>
<tr>
<td>Glukoza [g/100g próbki]</td>
<td>3,64</td>
<td>-</td>
</tr>
<tr>
<td>Fruktoza [g/100g próbki]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maltoza [g/100g próbki]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Błonnik ogółem [% s.m.]</td>
<td>2,54</td>
<td>10,0 – 14,9</td>
</tr>
<tr>
<td>Węglowodany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skrobia oporna [% s.m.]</td>
<td>-</td>
<td>0,92 – 1,27</td>
</tr>
<tr>
<td>Pieczywo [% s.m.]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szybko trawiona skrobia RDS</td>
<td>57,3 – 64,2</td>
<td>55,8</td>
</tr>
<tr>
<td>Wolno trawiona skrobia SDS</td>
<td>8,2 – 14,7</td>
<td>24,0</td>
</tr>
<tr>
<td>Skrobia oporna RD</td>
<td>1,8 – 2,5</td>
<td>1,8</td>
</tr>
<tr>
<td>Indeks strawności skrobi SDI%</td>
<td>80 – 84</td>
<td>68</td>
</tr>
</tbody>
</table>

Niekトルy badacze oznaczał także zawartość β-glukanu w orkiszu. Należy on do obszerniej grupy wielocukrów, które występują w postaci błonnika rozpuszczalnego (Løje i in., 2003). Z badań Løje i in. (2003) oraz Demibrasa (2005) wynika, że ziarno orkiszu zawierało od 0,6 do 1,2% β-glukanu, podczas gdy w ziarnie pszenicy zwyczajnej zawartość tej frakcji błonnika mieściła się w zakresie od 0,5 do 1,1%. Według Marconiego i in. (1999) ilość β-glukanu w ciemnej mące orkiszowej mieściła się w granicach od 0,92 do 1,27% s.m., co było zależne od odmiany ziarna orkiszu z jakiej została otrzymana badana mąka (Tabele 2 i 3).

Skrobia oporna (Resistant Starch RS) może powstać np. w wyniku ogrzewania skrobi bez odpowiedniego dodatku wody. Taka skrobia nie ulega kleikowaniu i nie poddaje się działaniu enzymów trawiennych, tym samym przechodzi przez układ pokarmowy w nienaruszonym stanie (Leszczyński, 2004). Przez to, że nie jest trawiona pełni funkcje takie jak błonnik pokarmowy, powodując obniżenie kaloryczności posiłków. Podczas procesu produkcji wyrobów cukierkowych i piekarskich następuje podwyższenie zawartości skrobi oporej, podobnie jak w czasie przechowywania pieczywa, w wyniku retrogradacji amylopektyny (Leszczyński, 2004). Wraz ze zwiększeniem zawartości skrobi opornej w mące zwiększa się wartość indeksu jej strawności. Bonafaccia i in. (2000) w chlebach wypieczonych z ciemnej mąki orkiszowej i z pszenicy zwyczajnej określili zawartość skrobi opornej (Tabela 3). Jak okazało się ciemny chleb orkiszowy zawierał
od 57,3 do 64,2% szybko trawionej skrobi, a analogiczny chleb pszenny jedynie 55,8% tego składnika. Jak tłumaczą autorzy, rozbieżności w wartościach mogły być spowodowane różną popiołowością mąk wykorzystanych do wypieku (Bonafaccia i in., 2000). Skrabanja i in. (2001) analizując strawność skrobi w chlebie (jasnym i ciemnym) orkiszowym i z pszenicy zwyczajnej uzyskali podobną zależność.

Białko

Tabela 4. Skład chemiczny ziarna orkiszu, pszenicy zwyczajnej i pszenicy durum – białko.

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
<th>Pszenica durum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orkisz czysty gatunkowo</td>
<td>Hybrydy orkiszu</td>
<td>Hybrydy orkiszu</td>
</tr>
<tr>
<td>Biała ogółem [%]</td>
<td>10,7 – 18,6</td>
<td>14,3 – 17,3</td>
<td>8,5 – 14,7</td>
</tr>
<tr>
<td>[% s.m.]</td>
<td>12,6 – 19,4</td>
<td>-</td>
<td>11,3 – 16,5</td>
</tr>
<tr>
<td></td>
<td>14,1 – 16,1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

W zimnie orkiszu (czystym gatunkowo) zawartość białka ogółem mieściła się w zakresie od 12,6 do 19,4% s.m., a w pszenicy zwyczajnej była na poziomie od 11,3 do 16,5% s.m. Z kolei, mąka orkiszowa jasna zawierała od 11,4 do 18,4% s.m. tego składnika, a wysokowyciągowa od 12,8 do 17,3% (Ceglińska, 2003; Zieleński i in., 2008) (Tabele 4 i 5).

Ważnym wskaźnikiem mówiącym pośrednio o wartości odżywczej, a tym samym przyswajalności białka jest jego strawność. Jak wykazali Chrenková i in. (2000) białko orkiszu
posiada istotnie wyższą strawność (PD = 83%) oraz istotnie wyższy wskaźnik NPU (58 – 64) niż białko pszenicy zwyczajnej (PD = 78%, NPU = 57).

O wartości żywniowej białka decyduje także jego skład aminokwasowy i poziom aminokwasu ograniczającego (Piergiovanni i in., 1996). Na przestrzeni lat różni badacze prowadzili studia nad składem aminokwasowym białek orkiszu porównując go do ziarna pszenicy zwyczajnej, stąd też w literaturze można spotkać różne opinie na temat składu aminokwasowego tego zboża. Niektórzy uważają, że skład aminokwasowy mąki orkiszowej jest podobny do mąki z ziarna pszenicy zwyczajnej, inni natomiast twierdzą, że ziarno orkiszu wykazuje zwiększony udział aminokwasów niezbędnych (Belitz i in., 1998; Bonafaccia i in., 2000; Gálová i Knoblochová, 2001; Seilmeier i in., 2001; Abdel – Aal, Hucl, 2002) (Tabela 5).

Tabela 5. Skład chemiczny mąki (jasnej i ciemnej) z ziarna orkiszu i pszenicy zwyczajnej – skład aminokwasowy.

<table>
<thead>
<tr>
<th>Wyróżniony skład aminokwasowy [g/100g białka]</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ogółem [% s.m] [c]</td>
<td>Mąka jasna</td>
<td>Mąka ciemna</td>
</tr>
<tr>
<td>Mąka jasna</td>
<td>11,4 – 18,4</td>
<td>12,8 – 17,3</td>
</tr>
<tr>
<td>Mąka ciemna</td>
<td>11,1 – 16,3</td>
<td>14,0</td>
</tr>
<tr>
<td>Cysteina</td>
<td>2,1 – 2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>Kwas asparginowy</td>
<td>4,3 – 5,3</td>
<td>2,4</td>
</tr>
<tr>
<td>Teonina</td>
<td>2,7 – 2,9</td>
<td>4,6</td>
</tr>
<tr>
<td>Seryna</td>
<td>4,4 – 4,6</td>
<td>4,6</td>
</tr>
<tr>
<td>Kwas glutaminowy</td>
<td>30,9 – 39,8</td>
<td>35,1</td>
</tr>
<tr>
<td>Prolina</td>
<td>12,0 – 13,6</td>
<td>8,6 – 10,9</td>
</tr>
<tr>
<td>Glicyna</td>
<td>3,7 – 3,9</td>
<td>3,7 – 4,4</td>
</tr>
<tr>
<td>Alanina</td>
<td>3,5 – 3,8</td>
<td>2,9 – 3,6</td>
</tr>
<tr>
<td>Walina</td>
<td>4,1 – 4,4</td>
<td>3,9 – 4,7</td>
</tr>
<tr>
<td>Metionina</td>
<td>1,6 – 2,0</td>
<td>1,6</td>
</tr>
<tr>
<td>Izoleucyna</td>
<td>2,5 – 3,8</td>
<td>3,5</td>
</tr>
<tr>
<td>Leucyna</td>
<td>7,0 – 7,1</td>
<td>7,0</td>
</tr>
<tr>
<td>Tyrozyna</td>
<td>2,3 – 2,8</td>
<td>2,9</td>
</tr>
<tr>
<td>Fenylalanina</td>
<td>4,9 – 5,1</td>
<td>4,7</td>
</tr>
<tr>
<td>Histidyina</td>
<td>2,2 – 2,4</td>
<td>2,2</td>
</tr>
<tr>
<td>Lizyna</td>
<td>4,1 – 4,5</td>
<td>5,1</td>
</tr>
</tbody>
</table>

Część badaczy wykazała, że skład aminokwasowy białek orkiszu i pszenicy zwyczajnej był porównywalny niezależnie od roku, sytemu uprawy, badanych odmian oraz typu badanej mąki (Belitz i in., 1998; Bonafaccia i in., 2000; Gálová i Knoblochová, 2001; Seilmeier i in., 2001; Abdel – Aal, Hucl, 2002).

W tym miejscu należy podkreślić, że choć niektóre źródła podają, że ziarno orkiszu lub jego przetwory mogą być spożywane przez osoby chore na celiakię, nie należy ich podawać ludziom z tym

Należy podkreślić, że Codex Alimentarius, jednoznacznie podaje, że osoby z nietolerancją glutenu nie mogą spożywać pokarmów zawierających prolamine pochodzące z orkiszu, który tak jak pszenica zwyczajna należy do rodzaju *Triticum* (Forssel, Wieser, 1995; Katina i in., 2005).

Lipidy

Tłuszcze ziarna zbóż stanowią dużą grupę różnorodnych związków chemicznych, które są rozpuszczalne w rozpuszczalnikach organicznych. Na przestrzeni lat podejmowano studia nad składem chemicznym ziarna orkiszu, określając w nim zawartość tłuszczu ogółem oraz zawartość oraz skład i proporcje kwasów tłuszczowych. Lipidy są ilościowo niewielkim, ale bardzo istotnym składnikiem ziarna pszenicy. Jak wynika z danych literaturowych, zboża są roślinami, w których ziarnie średnia zawartość tłuszczu wynosi ok. 3,6% s.m. Lipidy odgrywają istotną rolę: od znaczenia technologicznego (wpływać na wartość wypiekową) do żywieniowego (NKT – nienasycone kwasy tłuszczowe, witaminy rozpuszczalne w tłuszczach, fitosterole obniżające poziom cholesterolu we krwi) (Panazzo i in. 1993; Ruibal – Mendieta i in., 2002; Gąsiorowski 2004a; Čertík i in., 2006).

Badania dotyczące zawartości tłuszczu ogółem w ziarnie i uzyskanej z niego mące wykazały, że orkisz jest bogatszym źródłem tłuszczu w porównaniu do pszenicy zwyczajnej (*Tabele 6 i 7*). Wartość tego składnika w ziarnie orkiszu kształtowała się na poziomie od 1,4% do 2,6%, podczas gdy w ziarnie pszenicy zwyczajnej było go w większości przypadków mniej (1,43 – 1,90%). Co więcej, zarówno mąka orkiszowa jasna, jak i ciemna cechowały się wyższą zawartością tłuszczu w porównaniu do analogicznych mąk otrzymanych z ziarna pszenicy zwyczajnej (Marconi i in., 1999; Moudrý, Dvořáček, 1999; Ruibal – Mendieta i in., 2002; Ruibal – Mendieta i in., 2005; Čertík i in., 2006; Lacko – Bartošová, Rédllová, 2007).

O wartości żywnościowej tłuszczu w ziarnie zbóż mówi jego skład kwasów tłuszczowych. Dostępna literatura naukowa podaje, że skład kwasów tłuszczowych w ziarnie orkiszu i pszenicy zwyczajnej w większości przypadków jest zbliżony. Dominującym kwasem tłuszczowym w ziarnie większości zbóż jest kwas linolowy, podczas gdy kwas linolenowy występuje w niewielkiej ilości (Čertík i in., 2006). Stąd też, biorąc pod uwagę fakt, że ziarno pszenicy orkisz zawiera istotnie więcej tłuszczu ogółem, może stać się cennym źródłem kwasów jednonienasyconych, lepszym niż pszenica zwyczajna.

Badania wykazały, że w orkiszu najwięcej było kwasu linolowego (54,0 – 58,1%), następnie oleinowego (19,8 – 20,8%) i palmitnowego (15,2 – 19,9%), a pozostałe kwasowe w mniejszej ilości (Grela, 1996; Ranhotra i in., 1996; Piergiovanni i in., 1996; Moudrý i Dvořáček, 1999; Gąsiorowski, 2004a; Čertík i in., 2006; Lacko – Bartošová, Rédlová, 2007) (Tabele 6 i 7).

Tabela 6. Skład chemiczny ziarna orkiszu i pszenicy zwyczajnej – lipidy

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Orkisz czysty gatunkowo</th>
<th>Pszenica zwyczajna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tłuszcz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odzielony tłuszcz [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mirystynowy C16:0</td>
<td>0,04 – 0,70</td>
<td>-</td>
</tr>
<tr>
<td>Palmitynowy C16:1</td>
<td>15,20 – 19,90</td>
<td>16,70</td>
</tr>
<tr>
<td>Palmitoleinowy C16:2</td>
<td>0,04 – 0,40</td>
<td>0,20</td>
</tr>
<tr>
<td>Stearynowy C18:0</td>
<td>1,10 – 1,60</td>
<td>0,80 – 1,70</td>
</tr>
<tr>
<td>Oleinowy C18:1</td>
<td>19,80 – 20,80</td>
<td>11,30 – 15,70</td>
</tr>
<tr>
<td>Linolowy C18:2</td>
<td>54,00 – 58,10</td>
<td>59,30 – 62,80</td>
</tr>
<tr>
<td>Linolenowy C18:3</td>
<td>2,70 – 3,0</td>
<td>4,40 – 7,10</td>
</tr>
<tr>
<td>Eikozenowy C20:1</td>
<td>0,7</td>
<td>0,60</td>
</tr>
<tr>
<td>Ogółem [%]</td>
<td>1,4 – 2,6</td>
<td>1,43 – 1,90</td>
</tr>
</tbody>
</table>

Opis - Tabela 6 przedstawia skład chemiczny ziarna orkiszu i pszenicy zwyczajnej, z hmotnością tłuszczu i składem kwasów tłuszczowych.

Opis - Tabela 7 przedstawia skład chemiczny ziarna orkiszu i pszenicy zwyczajnej, z hmotnością tłuszczu i składem kwasów tłuszczowych.
Tabela 7. Skład chemiczny mąki (jasnej i ciemnej) z ziarna orkiszu i pszenicy zwyczajnej – lipidy

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mąka jasna</td>
<td>Mąka ciemna</td>
</tr>
<tr>
<td>Ogółem [%]</td>
<td>1,14</td>
<td>2,57 – 3,08</td>
</tr>
<tr>
<td>[% s.m.]</td>
<td>2,2 – 4,9</td>
<td>1,30</td>
</tr>
<tr>
<td>Tłuszcz</td>
<td>Mirystynowy C16:0</td>
<td>b.d.</td>
</tr>
<tr>
<td></td>
<td>Palmitynowy C16:1</td>
<td>15,4 – 19,4</td>
</tr>
<tr>
<td></td>
<td>Stearynowy C18:0</td>
<td>0,6 – 1,2</td>
</tr>
<tr>
<td></td>
<td>Oleinowy C18:1</td>
<td>13,7 – 20,3</td>
</tr>
<tr>
<td></td>
<td>Linolowy C18:2</td>
<td>58,0 – 63,7</td>
</tr>
<tr>
<td></td>
<td>Linolenowy C18:3</td>
<td>3,3 – 5,7</td>
</tr>
<tr>
<td></td>
<td>Eikozenowy C20:1</td>
<td>0,7 – 1,3</td>
</tr>
<tr>
<td></td>
<td>C18:1/C16:1</td>
<td>-</td>
</tr>
</tbody>
</table>

Ruibal – Mendieta i in. (2004a, 2005) prowadzili również szerokie studia nad składem i wzajemnymi stosunkami ilościowymi kwasów tłuszczowych w ziarnie orkiszu. Określili również proporcję kwasu oleinowego i palmitynowego w badanym materiale. Jak okazało się, orkisz charakteryzował się prawie dwa razy wyższą zawartością kwasu oleinowego niż pszenica zwyczajna tj. w orkiszu stosunek ten przyjmował wyższą wartość (0,7 – 1,3) niż w pszenicy zwyczajnej (0,4 – 0,7) (Tabela 7). Z tego powodu, autorzy zasugerowali możliwość wykorzystania zaobserwowanej zależności do wykrywania zafałszowań mąki orkiszowej mąką z ziarna pszenicy zwyczajnej.

Związki mineralne, witaminy i inne składniki biologicznie aktywne oraz antyżywieniowe

W skład popiołu wchodzą związki w tkankach ziarna, wyłącznie w formie nieorganicznej, natomiast składniki mineralne to pierwiastki i ich związki w formie nieorganicznej i organicznej (Gąsiorowski, 2004a). Oznaczanie zawartości popiołu jest analizą powszechnie wykonywaną, a zawartość popiołu całkowitego jest jednym z wyróżników jakości. Przeprowadzone dotychczas badania składu chemicznego orkiszu wykazały, że ziarno tej pszenicy charakteryzuje się wyższą zawartością popiołu całkowitego w porównaniu do ziarna pszenicy zwyczajnej. Uzyskane przez badaczy wartości popiołowości ziarna orkiszu mieściły się w zakresie od 1,96 do 2,63% s.m., podczas gdy w ziarnie pszenicy zwyczajnej wartość tego parametru była na niższym poziomie (1,72 – 1,96% s.m.) (Grela, 1996; Piergiiovanni i in., 1996; Pałys, Łabuda, 1997; Moudrý, Dvořáček, 1999; Capouchová 2001; Marconi i in. 2002, Zieliński i in., 2008) (Tabela 8). Zieliński i in. (2008) wyższą zawartość popiołu w ziarnie orkiszu tłumaczą wysoką koncentracją mikro- i makroelementów, szczególnie fosforu, cyanku, miedzi i selenu w porównaniu z ziarnem innych zbóż.

Omawiając i porównując wartość odżywczą orkiszu i pszenicy zwyczajnej, należy zwrócić szczególną uwagę na zawartość składników mineralnych. Część autorów sugeruje, że orkisz jest dobrym źródłem cyanku, choć pojawiają się doniesienia, które nie potwierdzają tego (Moudrý,
Dvořáček, 1999; Ruibal – Mendieta i in., 2005; Zieliński i in., 2008). Ruibal – Mendieta i in. (2005) wykazali, że średnia zawartość cynku w ciennej mące orkiszowej w porównaniu z mąką otrzymaną z ziarna pszenicy zwyczajnej była wyższa o ok. 60%, żelaza o ok. 43%, fosforu o ok. 40%, a magnezu o ok. 32%. Natomiast w przypadku pozostałych związków mineralnych nie wykazano istotnych różnic.

Pałys, Łabuda (1997) i Demibras (2005) stwierdzili, że zawartość poszczególnych związków mineralnych jest w znacznej mierze zależna od badanej odmiany orkiszu, a ziarno orkiszu szczególnie bogate jest w fosfor, potas, magnez oraz wapń (Pałys, Łabuda, 1997). Natomiast Moudrý i Dvořáček (1999) zauważyli, że zawartość miedzi w orkiszu była o ok. 25% wyższa niż w ziarnie pszenicy zwyczajnej, potasu o ok. 5%, fosforu o ok. 14%, magnezu, sodu i żelaza o ok. 15%. Podobną tendencję wykazał Demibras (2005).

Tabela 8. Skład chemiczny ziarna orkiszu i pszenicy zwyczajnej – związki mineralne, bioaktywne i antyżywieniowe.

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zawartość popiołu całkowitego [% s.m.]</td>
<td>1,96 – 2,63</td>
<td>1,72 – 1,96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Związki mineralne</th>
<th>Fosfor [mg/100g]</th>
<th>Wapń [mg/100g]</th>
<th>Magnez [mg/100g]</th>
<th>Sód [mg/100g]</th>
<th>Potas [mg/100g]</th>
<th>Żelazo [mg/100g]</th>
<th>Mangan [mg/100g]</th>
<th>Cynk [mg/100g]</th>
<th>Miedź [mg/100g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makroelementy</td>
<td>383 – 450</td>
<td>21,0 – 48,7</td>
<td>97 – 157</td>
<td>0,4 – 5,3</td>
<td>439 – 512</td>
<td>4,7 – 11,3</td>
<td>2,4</td>
<td>1,8 – 5,7</td>
<td>0,39 – 0,64</td>
</tr>
<tr>
<td>Mikroelementy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>434 – 463</td>
<td></td>
<td></td>
<td>3,3 – 4,0</td>
<td>4,3 – 4,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Witaminy</th>
<th>[μg/g s.m.]</th>
<th>B1</th>
<th>5,85 – 6,13</th>
<th>2,59 – 5,41</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B2</td>
<td>0,77 – 0,80</td>
<td>0,48 – 1,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B6</td>
<td>3,15 – 3,16</td>
<td>1,74 – 3,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP</td>
<td>2,0 – 5,7</td>
<td>2,3 – 2,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tokoferole</th>
<th>[mg/100 g]</th>
<th>α – tokoferyl</th>
<th>1,44 – 1,51</th>
<th>1,18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>β – tokoferyl</td>
<td>0,38 – 0,56</td>
<td>0,43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ – tokoferyl</td>
<td>2,05 – 2,28</td>
<td>0,64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ – tokoferyl</td>
<td>ślad. – 0,26</td>
<td>ślad.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[IU]</th>
<th>Aktywność witaminy E</th>
<th>32 – 35</th>
<th>23</th>
</tr>
</thead>
</table>

| Kwas fitynowy [% średnich zawartości w pszenicy] | 0 – 54* | 14 – 194* |
| | 0 – 196** | 45 – 174** |

<table>
<thead>
<tr>
<th>Związki fenolowe ogółem [% s.m.]</th>
<th>0,60 – 0,77</th>
<th>0,55 – 0,61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taniana [mg/100g s.m.]</td>
<td>0,14 – 0,23</td>
<td>0,20</td>
</tr>
<tr>
<td>Alkiloresorcinol [mg/100g s.m.]</td>
<td>33,70 – 49,40</td>
<td>47,50</td>
</tr>
<tr>
<td>Aktywność inhibitorów trypsyny [TIU/mg s.m.]</td>
<td>0,96 – 1,11</td>
<td>1,28</td>
</tr>
</tbody>
</table>

*Zawartość kwasu fitynowego w drobnych otrębach; **Zawartość kwasu fitynowego w grubych otrębach

Ziarno zbóż i otrzymana z niego mąka są również źródłem składników, które wykazują biologiczną aktywność, w tym właściwości przeciwutleniające. Grupę tych związków stanowią m.in. tokoferole, tokotrienole oraz inne witaminy, kwasy fenolowe oraz fitosterole (Zieliński i in., 2008).
Witaminy biorą udział w reakcjach zachodzących w żywych komórkach. Znajdują się one istotną rolę w metabolizmie węglowodanów, białek i tłuszczów (Batifoulier i in., 2006). Ich koncentracja w ziarnie nie tylko zależy od odmiany pszenicy, ale również od warunków agrotechnicznych. Stosowanie nawozów naturalnych powoduje wzrost zawartości tiaminy (B\(_1\)), z kolei używanie pestycydów obniża koncentrację tego składnika. Co więcej, koncentracja witamin z grupy B w ziarnie, mące i pieczywie zależy od warunków magazynowania, sposobu przemiału ziarna oraz samego procesu wypieku pieczywa (szczególnie temperatury i czasu wypieku) (Mielcarz, 2004; Batifoulier i in., 2006).

Batifoulier i in. (2006) analizowali koncentrację tiaminy (B\(_1\)), ryboflawiny (B\(_2\)) i pirydoksyny (B\(_6\)) w 49 próbkach ziarna pszenicy (różnych gatunków i odmian). Na podstawie uzyskanych wyników stwierdzili, że ziarno orkiszu dwóch analizowanych odmian (Balmeg i Poem) na tle pozostałych próbek ziarna innych gatunków pszenic, charakteryzowało się najwyższą zawartością tiaminy (5,85 – 6,13 µg/g), ryboflawiny (0,77 – 0,80 µg/g) oraz pirydoksyny (B\(_6\)) (3,15 – 3,16 µg/g) (Tabela 8). Z kolei, z innych badań wynika, że w ciemnej mące orkiszowej najwięcej było niacyny (PP), następnie tiaminy (B\(_1\)), a na końcu ryboflawiny (B\(_2\)) (Ranhotra i in., 1996).

Do witamin z grupy B zaliczane są również foliany. Stanowią one szeroką grupę związków różniących się stanem utlenienia pierścienia pirozynowego, rodzajem jednowęglowych fragmentów oraz ilością reszt kwasu glutaminowego (Ziemlański, Wartanowicz, 2001; Mierzecki i in., 2006). Gujska i in. (2008) określili zawartość folianów ogółem w ziarnie dziesięciu odmian orkiszu i dwudziestu odmian pszenicy zwyczajnej pochodzących z uprawy ekologicznej. Uzyskane przez autorów wyniki wykazały, że zawartość folianów ogółem w przeliczeniu na kwas foliowy mieściła się w granicach od 41,2 do 46,2 μm/100g s.m. dla ziarna odmian jarych i od 44,2 do 48,6 μm/100g s.m. dla ziarna odmian ozimych. W większości przypadków zawartość folianów ogółem była wyższa w ziarnie orkiszu niż w pszenicach wzorcowych, choć w dużym stopniu zależała od badanej odmiany (Gujska i in., 2008).

Wśród witamin rozpuszczalnych w tłuszczach można wyróżnić można witaminę A, E i D. Abdel–Aal i in. (1995) dowiedli, że zawartość β – karotenu i ekwiwalentu retinolu w orkiszu były wyższe (30,7 – 782 IU/100) niż w pszenicy zwyczajnej (42,6 – 408 IU/100 g) (Tabela 8). Z kolei, Grela (1996) stwierdził, że ziarno orkiszu może stać się cennym źródłem tokoferoli, w tym α – tokoferolu, którego w orkiszu było od 1,44 do 1,51 mg/100g w zależności od odmiany, podczas gdy ziarno pszenicy zwyczajnej zawierało jedynie 1,18 mg/100g tego składnika. Co więcej, ziarno orkiszu zawierało od 2,05 do 2,28 mg/100g γ – tokoferolu, podczas gdy we wzorcowej pszenicy zwyczajnej było go jedynie 0,64 mg/100g. Zawartość β i δ – tokoferolu w ziarnie badanych odmian orkiszu była również wyższa niż w pszenicy zwyczajnej. Dodatkowo, wyżej cytowany autor, określił aktywność witaminy E w ziarnie badanych gatunków pszenicy. Jak okazało się, dla ziarna orkiszu wartość tego parametru wyniosła średnio 33,25 IU, podczas gdy w ziarnie pszenicy zwyczajnej była na poziomie 23 IU (Grela, 1996). Z kolei, w innych badaniach wykazano, że zawartość tokoferolu w ciemnej mące orkiszowej była na poziomie od 2,48 do 3,44 mg/100g ś.m., podczas gdy w ciemnej mące pszennej zawartość tego składnika mieściła się w szerszym zakresie (od 2,54 do 4,14 mg/100g.
ś.m.). Wartości średnie dla mąki orkiszowej i mąki pszennej wyniosły odpowiednio: 2,88 i 3,24 mg/100g ś.m., co świadczy o tym, że badane ciemne mąki orkiszowe były uboższe w tokoferol (Ruibal – Mendieta i in., 2005).

Jak dotąd niewielu autorów określiło zawartość związków fenolowych ogółem w orkiszu. Gujska i in. (2008) stwierdzili, że w ziarnie orkiszu ozimego zawartość tych związków mieściła się w zakresie od 0,60 do 0,71 mg/g s.m., podczas gdy w ziarnie orkiszu jarego kształtowała się w granicach od 0,60 do 0,77 mg/g s.m. Wartość tego parametru w ziarnie pszenicy zwyczajnej odmian Korweta i Torka była na poziomie odpowiednio: 0,61 i 0,55 mg/g s.m (w przeliczeniu na kwas ferulowy). Większość badanych odmian orkiszu cechowała się wyższą zawartością związków fenolowych ogółem w porównaniu do wyników uzyskanych dla pszenicy zwyczajnej. Co więcej, ich zawartość zależała była zarówno od odmiany, jak i od formy odmianowej orkiszu.

Fitosterole, które przypominają budową cholesterol są składnikiem błon komórkowych roślin. W zbożach występują w trzech postaciach: jako steryle wolne, zestyfikowane i w formie zacylowane (Rudzińska i in., 2005).

w temperaturze pokojowej) może zawierać fitazę o wyższej aktywności, powodując tym samym intensywniejszą degradację fitynianów obecnych w mące (Ruibal – Mendieta i in., 2005).

Tabela 9. Skład chemiczny mąki (jasnej i ciemnej) z ziarna orkiszu i pszenicy zwyczajnej – związki mineralne i bioaktywne.
(opracowanie własne na podstawie literatury: Batifoulier i in., 2006; Ruibal – Mendieta i in., 2004b; Ruibal – Mendieta i in., 2005).

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mąka ciemna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popioł całkowity [mg/100g ś.m.]</td>
<td>244,5 – 317,3</td>
<td>1318 – 304,1</td>
</tr>
<tr>
<td>Makroelementy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnez</td>
<td>118,81 – 133,31</td>
<td>91,14 – 102,24</td>
</tr>
<tr>
<td>Sód</td>
<td>6,10 – 1,89</td>
<td>6,15 – 14,11</td>
</tr>
<tr>
<td>Potas</td>
<td>310 – 403</td>
<td>356 – 394</td>
</tr>
<tr>
<td>Żelazo</td>
<td>2,84 – 3,80</td>
<td>1,89 – 2,48</td>
</tr>
<tr>
<td>Mangan</td>
<td>2,60 – 3,19</td>
<td>2,44 – 3,01</td>
</tr>
<tr>
<td>Cynk</td>
<td>2,51 – 3,51</td>
<td>1,67 – 2,19</td>
</tr>
<tr>
<td>Miedź</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>[mg/g ś.m.]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witaminy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>0,27 – 0,36</td>
<td>-</td>
</tr>
<tr>
<td>B2</td>
<td>0,11 – 0,19</td>
<td>-</td>
</tr>
<tr>
<td>PP</td>
<td>5,01 – 7,23</td>
<td>-</td>
</tr>
<tr>
<td>Ergosterol</td>
<td>6,7 – 12,1</td>
<td>6,4 – 9,3</td>
</tr>
<tr>
<td>Δ7-avenasterol</td>
<td>6,2 – 15,3</td>
<td>5,3 – 11,2</td>
</tr>
<tr>
<td>Stigmasterol</td>
<td>1,7 – 3,6</td>
<td>2,0 – 2,8</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>1,4 – 2,4</td>
<td>1,4 – 2,4</td>
</tr>
<tr>
<td>Kampesterol</td>
<td>96,2 – 155,5</td>
<td>113,3 – 145,3</td>
</tr>
<tr>
<td>β-sitosterol</td>
<td>307,1 – 463,3</td>
<td>349,6 – 394,0</td>
</tr>
<tr>
<td>Kampestenol</td>
<td>7,3 – 19,6</td>
<td>7,3 – 16,8</td>
</tr>
<tr>
<td>Sitostanol</td>
<td>5,7 – 19,1</td>
<td>6,2 – 16,4</td>
</tr>
</tbody>
</table>

2.7. Wartość technologiczna ziarna i mąki orkiszowej

2.7.1. Właściwości fizyczne i wartość przemiałowa ziarna orkiszu

Cechy fizyczne ziarna stanowią podstawę oceny towaroznawczej zbóż, a wynikają przede wszystkim z budowy morfologicznej, struktury (twardości) oraz składu chemicznego ziarniaka. Mówiąc jednak o właściwościach fizycznych ziarna orkiszu nie należy zapominać, że jest to pszenica niewymłacalna. Z tego też powodu pierwszą omówioną cechą jest uzysk ziarna.

Uzysk ziarna

Oplewiony po zbiorze kombajnowym orkisz należy poddać obłuszczeniu. W tym celu obecnie wykorzystywane są różne urządzenia i rozwiązania techniczne. Jak informują Tyburski i Babalski (2006) w przewodniku dla rolników „Uprawa pszenicy orkisz”, w Polsce maszyną wykorzystywaną najczęściej do oplewania ziarna jest odpowiednio przerobiony bukownik do koniczyny, który jest tani i wydajny (Fot.4 i 5).
Powyżsi autorzy zalecają, aby siatka na sitach bukownika służącego do odplewiania orkiszu była stalowa, a rozmiar oczek mieścił się w granicach od 4 do 5 mm. Wydajność tej maszyny w przeliczeniu na jednostkę czasu, w dużym stopniu zależy od dorodności ziarna i z reguły przyjmuje wartości od 50 do 100 kg na godzinę. Przyjmuje się również, że do zużycia sit można odpławić od 50 do 100 ton ziarna (Tyburski, Babalski, 2006).

Ziarno orkiszu można również odpławić stosując kamienny śrutownik. Odpławianie odbywa się pomiędzy dwoma płaskimi, kamiennymi dyskami, pomiędzy którymi szczelina powinna być ustawiona na grubość ok. 4 mm. Kłoski przepuszcza się przez śrutownik kilka razy, a obłuszczone ziarno oczyszcza się na wialni (Tyburski, Babalski, 2006).

Graner i łuszczarka (Fot. 6 i 7) są kolejnymi maszynami wykorzystywanymi do obłuszczania ziarna orkiszu. W krajach, w których orkisz uprawiany jest jako zboże tradycyjne, do odpławiania ziarna wykorzystywane są specjalne maszyny rzutowe, działające na zasadzie wirnika, tzn. wirnik rzuca kłoski na sito, przez które wypada już oczyszczone ziarno. Ostatnio firma Franz Horn Maschinen – Und Anlagenbau GmbH zaproponowała łuszczarkę do pszenicy orkisz. Urządzenie działa na zasadzie ciernej i dzięki łagodnej pracy uzyskuje wydajność w granicach 90 – 95%, przy udziale ziaren połamanych od 1 do 2% (Tyburcy, 2007).

Należy sobie jednak uświadomić, że wydajność maszynowego odpławiania orkiszu, zależy przede wszystkim od wielkości ziarniaków. Im ziarniaki są dorodniejsze, tym lepiej i łatwiej poddają się oczyszczaniu z plew i plewek. Dorodność ziarna oczywiście zależy od sposobu jego uprawy, jakości gleby oraz stosowanego przedplonu (Tyburski, Babalski, 2006).
Jak wynika z przeanalizowanej literatury, udział plew i plewek w badanym ziarnie orkiszu mieścił się przeważnie w granicach od 21,9 do 30,7%. Przy optymalnych warunkach procesu odplewania uzysk ziar na orkiszu (netto) wynosił od 69,0 do 78,0% (Ostrowska, 1993; Hucl i in. 1995; Abdel – Aal i in., 1996; Abdel – Aal i in., 1998b; Lacko – Bartošová, Otepka, 2001; Lacko – Bartošová Rédllová, 2007; Markowski i in., 2007). Z kolei, poniżej zaprezentowano wieloletnie obserwacje inż. Mieczysława Babalskiego (Tabela 10).

Tabela 10. Wydajność netto procesu odplewania ziarna orkiszu z wykorzystaniem bukownika.
(opracowanie własne na podstawie: Tyburski, Babalski, 2006).

<table>
<thead>
<tr>
<th>Jakość gleby</th>
<th>Charakterystyka ziarna</th>
<th>Wydajność czystego ziarna [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleby dobre</td>
<td>Ziarna dorodne, grube, łatwe do wyluskania</td>
<td>65 – 70</td>
</tr>
<tr>
<td>Gleby słabe</td>
<td>Ziarno drobne, ściśłe przylegające do plew i plewek</td>
<td>40 – 60</td>
</tr>
</tbody>
</table>

Jednak, jak podkreślają Tyburski i Babalski (2006), wydajność netto ziarna ręcznie obłuskanego (na skalę laboratoryjną) i wydajność technologiczna mogą się między sobą różnić, co oczywiście zależeń jest również od odmiany orkiszu. Z ich spostrzeżeń wynika, że najlepiej odplewaniu poddaje się ziar no orkiszu odmiany *Holstenkorn*, a następnie odmian: *Oberkulmer Rotkorn*, *Frankenkorn*, *Schwabenspelz*, *Ostro*, a najsłabiej ziar no orkiszu odmiany *Ceralio*.

Wartość przemiałowa ziarna

Wartość przemiałowa jest pojęciem, pod którym rozumie się możliwość uzyskania określonej ilości mąki ze 100 kg oczyszczonego ziar na. Ocenia się ją przez przemia ziarna w specjalnych młynkach laboratoryjnych, określa się procentowy wyciąg mąki (wydajność mąki), a następnie ilość popiołu w mące. Obecnie stosowane pośrednie metody służące do oceny wartości przemiałowej ziarna wykorzystują badanie takich parametrów, jak:

- twardość ziarna – im wyższa twardość, tym wyższy wyciąg mąki,
- ciężar objętościowy – im wyższy, tym lepsza wartość przemiałowa,
- wyrównanie ziarna – jako zlot z sita o otworach podłużnych, o szerokości 2,5 mm i długości 25 mm – im jest wyższe tym lepsza wartość przemiałowa,
- masa 1000 ziaren – im wyższa, tym wyższy wyciąg mąki (Jurga, 1994; Dziki, Laskowski, 2004; Muhamad, Campbell, 2004).

Analiza danych literaturowych dotyczących właściwości fizycznych ziarna orkiszu, wykazała, że gęstość ziarna w stanie zsypnym mieściła się w granicach od 67,6 do 78,7 kg/hl, natomiast masa 1000 ziaren kształtowała się w zakresie 36,2 – 51,9 g. Z kolei, wartości tych dwóch parametrów dla ziarna pszenicy zwyczajnej były na nieco wyższym poziomie (Abdel – Aal i in., 1997; Capouchová, 2001; Lacko – Bartošová, Otepka, 2001; Sulewska, 2004; Bartošová, Rédllová, 2007; Zieliński i in., 2008) (Tabela 11).

Parametrem, który ma istotny wpływ na wartość przemiałową ziarna jest jego twardość (Turnbull, Rahman, 2002; Muhamad, Campbell, 2004). Obecnie jednak nie ma jednoznacznej definicji twardości ziarna. Wiadomo, że zależy ona od różnych czynników, takich jak: warunki agrotechniczne,
gatunek i odmiana, jak również twardość endospermu, która maleje wraz ze wzrostem wilgotności ziarna, zależy też od warunków przeprowadzania pomiarów (Gąsiorowski i in., 1999; Muhamad, Campbell, 2004; Konopka i in., 2005).

Tabela 11. Wybrane właściwości fizyczne oraz wartość przemiałowa ziarna orkiszu, pszenicy zwyczajnej i pszenicy durum.

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
<th>Pszenica durum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uzysk ziarna [%]</td>
<td>69,0 – 78,0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Właściwości fizyczne ziarna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gęstość ziarna w stanie zsypnym [kg/ha]</td>
<td>67,6 – 78,7</td>
<td>58,8 – 79,3</td>
<td>77,0 – 78,1</td>
</tr>
<tr>
<td>Masa 1000 ziaren [g]</td>
<td>36,2 – 51,9</td>
<td>-</td>
<td>43,6 – 47,7</td>
</tr>
<tr>
<td>Średnica ziarnika [mm]</td>
<td>2,2 – 2,5</td>
<td>-</td>
<td>3,0 – 3,2</td>
</tr>
<tr>
<td>Twardość ziarna</td>
<td>Indeks twardości</td>
<td>21 – 37</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Twardość [j.B.</td>
<td>290</td>
<td>230 – 460</td>
</tr>
<tr>
<td>Właściwości przemiałowe ziarna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czas przemiału ziarna [min]</td>
<td>26,3 – 38,8</td>
<td>15,5 – 17,6</td>
<td>7,3</td>
</tr>
<tr>
<td>Właściwości przemiałowe ziarna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Młyn laboratoryjny Bühler</td>
<td>Mąka z pasaży śrutowych [%]</td>
<td>16,6 – 18,7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Mąka z pasaży przemiałowych [%]</td>
<td>50,7 – 54,8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Całkowity wyciąg mąki [%]</td>
<td>69,1 – 71,4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wyciąg otrąb grubych i średnich [%]</td>
<td>18,9 – 19,7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wyciąg otrąb drobnych [%]</td>
<td>5,5 – 10,5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Całkowity wyciąg otrąb [%]</td>
<td>25,2 – 29,6</td>
<td>-</td>
</tr>
<tr>
<td>Właściwości przemiałowe ziarna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Młyn Brabender Quadrumat Senior</td>
<td>Mąka śrutowa [%]</td>
<td>48,7</td>
<td>40,4 – 51,0</td>
</tr>
<tr>
<td></td>
<td>Mąka wymiałowa [%]</td>
<td>19,2</td>
<td>20,5 – 35,7</td>
</tr>
<tr>
<td>Młyn Brabender Quadrumat Junior</td>
<td>Całkowity wyciąg mąki</td>
<td>67,9</td>
<td>65,0 – 76,2</td>
</tr>
<tr>
<td>Młyn laboratoryjny produkcji węgierskiej typu QC 109/2 i Cyclotec1093</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Całkowity wyciąg mąki [%]</td>
<td>69,3 – 69,9</td>
<td>70,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42,2 – 50,5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>65,0 – 76,6</td>
</tr>
<tr>
<td>Mąka</td>
<td>Skład granulometryczny mąki [%]</td>
<td>>183 μm</td>
<td>14,0 – 14,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130 – 183 μm</td>
<td>15,6 – 24,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85 – 130 μm</td>
<td>11,0 – 34,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 85 μm</td>
<td>19,5 – 35,0</td>
</tr>
<tr>
<td></td>
<td>Skład granulometryczny produkcji mąki [%]</td>
<td>> 150 μm</td>
<td>18,1 – 26,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 – 106 μm</td>
<td>23,8 – 30,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106 – 74 μm</td>
<td>24,7 – 31,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 74 μm</td>
<td>16,6 – 27,8</td>
</tr>
</tbody>
</table>
Z literatury naukowej wynika, że wśród pszenic można wyróżnić dwa główne typy, tzn. te o twardym i miękkim ziarnie. Porównując na przestrzeni lat pszenie twarde i miękkie, zauważono, że pszenie twarde na przekroju są szkliste i prześwitujące, podczas gdy ziarniaki zaliczane do tej drugiej grupy są białe i nieprzezroczyste na przekroju (Maklakiewicz, 1996; Gąsiorowski i in., 1999; Konopka i in., 2005; Jurga, 2006c). Ma to oczywiście istotny wpływ na zachowanie się ziarna podczas przemiału. Jak wynika z wieloletnich obserwacji, podczas przemiału ziarna twardzej pszenicy potrzebny jest duży nakład energii. Bielmo takiego ziarna składa się z granulek skrobi wbudowanych ściśle w matrycję białkową, co wyraźnie widać w podczas odsiewania cząstek, które są znacznie większe. Z kolei, mąkę z ziarna miękkiej pszenicy trudniej się odsiwa i przez to, że granule skrobiowe nie są wbudowane w matrycję białkową, taka mąka ma tendencję łączenia się większe aglomeraty (Maklakiewicz, 1996; Gąsiorowski i in., 1999; Muhamad, Campbell, 2004, Jurga, 2006c). Sprawia to oczywiście trudności w przeprowadzeniu precyzyjnej analizy sitowej takiej mąki (Maklakiewicz, 1996; Jurga, 2005). Natomiast granulacja mąki ma również istotny wpływ na zdolność chłonienia wody (Jurga, 2005). Mąka z twardzej pszenicy cechuje się większą zawartością grubszych cząstek, stąd absorbcja wody przez taką mąkę jest wolniejsza, w porównaniu do mąki uzyskanego z pszenic miękkich (Jurga, 2006c). Tym samym, potrzebna jest większa praca w celu rozłaczenia cząstek szklistej skrobi i glutenu. Hydratacja glutenu jest opóźniona ze względu na przeważnie wyższy stopień mechanicznego uszkodzenia skrobi w mące z twardzej pszenicy. Tak więc, czas mieszania ciasta uzyskanego z mąki otrzymanej z ziarna twardej pszenicy jest dłuższy, aniżeli z mąki z ziarna pszenicy miękkiej (Maklakiewicz, 1996; Gąsiorowski i in., 1999).

Warto dodać, że również proces kondycjonowania ziarna przed przemiałem wpływa na powyższe parametry (Muhamad, Campbell, 2004). Większe dawki wody dodawane do ziarna lub dłuższy czas jej penetracji w głąb bielma pomagają w łatwiejszym uzyskiwaniu mąki podczas przemiału, bez konieczności używania dużych sił podczas rozdrabniania, co przekłada się na niższy stopień mechanicznego uszkodzenia skrobi (Jurga, 2004; Muhamad, Campbell, 2004).

Na przestrzeni lat wykorzystywane były różne metody pomiaru twardości ziarna. Niektóre z nich polegają na pomiarze siły ściśkającej (odkształcającej) ziarno (całe lub tylko jego część – bielmo), inne na pomiarze czasu przemialu masy ziarna, wielkości cząstek powstałych po przemiale lub stopnia mechanicznego uszkodzenia skrobi (Gąsiorowski i in., 1999; Muhamad, Campbell, 2004). Niestety istnieją nadal trudności w rzetelnym porównaniu wyników otrzymywanych przez badaczy, a przyczyną tego stanu jest brak jednolitych metod i różnorodność urządzeń pomiarowych (Janiak, Laskowski, 1996). Niektórzy badacze określają twardość pojedynczych ziarniaków, oznaczając indeks twardości ziarna (Hardness Index), którego skala mieści się w zakresie od 0 do 100 i nie ma żadnej jednostki, podczas gdy inni przeprowadzają pomiar twardości ziarna w masie, wykorzystując w tym celu takie parametry jak: indeks twardości WHI – Wheat Hardness Index, indeks wielkości cząstek PSI – Particie Size Index, bądź wskaźnik odporności na obluziwanie PRI – Pearling Resistance Index (Gąsiorowski i in., 1999; Muhamad, Campbell, 2004).

Jak podała Ceglińska (2003), twardość całego ziarna lub bielma są ważnymi wskaźnikami właściwości mechanicznych ziarna, które decydują o jego zachowaniu się podczas przemiału. W większości przypadków badane przez ww. autorkę hybrydy orkiszów charakteryzowały się
twardszym ziarnem (280 – 460 j.B.) niż ziarno orkiszu czystego gatunkowo (290 j.B.) \((\text{Tabela 11}) \).

Powyższe spostrzeżenia potwierdzili Zieliński i in. (2008).

Hucl i in. (1995) oraz Abdel – Aal i in. (1996) badali twardość ziarna orkiszu, pszenicy durum i pszenicy zwyczajnej, przeprowadzając w tym celu pomiary czasu przemiału ziarna. W metodzie tej ziarno poddaje się przemiałowi i mierzy jego czas przejścia przez młyn (Brabender Quadrumat Junior). Powszechnie wiadomo, że ziarno bardzo miękkie, trudniej poddaje się przemiałowi, stąd czas jego przejścia przez młyn jest dłuższy. Natomiast twardze ziarniaki znacznie łatwiej się przemielają, co powoduje, że czas przemiału takiego ziarna jest krótszy. Uzyskane przez badaczy wyniki mieściły się w granicach od 26,3 do 38,8 min dla ziarna orkiszu, podczas gdy ziarno pszenicy zwyczajnej i pszenicy durum uzyskało krótszy czas przemiału (15,5 – 17,6 min) \((\text{Tabela 11}) \).

Marconi i in. (2002) również określili wartość przemiałową ziarna badanych odmian pszenicy orkisz. Przeprowadzili w tym celu przemiał ziarna (w wcześniej kondycjonowanego do 15% wilgotności) z wykorzystaniem młyna laboratoryjnego Cyclotec 1093. Autorzy stwierdzili, że ziarno orkiszu o niskiej zawartości białka (11,4% s.m.) miało wyższą wydajność mąki od wyciągu mąki otrzymanego z ziarna orkiszu o wysokiej zawartości białka (13,2 – 13,7% s.m.). Dodatkowo przeprowadzona analiza sitowa mąki wykazała, że mąka z wysokobiałkowej pszenicy orkisz charakteryzowała się wyższym udziałem cząstek poniżej 85 μm.

Analiza ta jest o tyle istotna, że jak podał Jurga (2005) mąka o najbardziej wyrównanych w zakresie wielkości cząstek cechuje się najlepszymi właściwościami wypiekowymi i użytkowymi. Najlepsza mąka pochodzi z pierwszych pasażów przemiałowych, a jej średnia wielkość cząstek powinna mieścić się w zakresie 60 – 72 μm (Jurga, 2005).

Jak już wcześniej wspomniano, w Polsce prowadzone są badania nad właściwościami ziarna hybryd orkiszu (Ceglińska, 2003; Krawczyk i in., 2008a; Krawczyk i in., 2008b; Zieliński i in., 2008). Badane przez Ceglińską (2003) ziarno hybryd orkiszu, orkiszu czystego gatunkowo oraz pszenicy zwyczajnej poddano przemiałowi z wykorzystaniem laboratoryjnego młyna Brabender Quadrumat Senior \((\text{Tabela 11}) \). Na podstawie uzyskanych wyników stwierdzono, że hybrydy ziarna orkiszu dały więcej mąki wymialowej (20,5 – 35,7 %) i uzyskały (w większości przypadków) wyższy całkowity wyciąg mąki niż ziarno orkiszu (65,0 – 76,2%), ale niższy niż ziarno pszenicy zwyczajnej. Było to związane z twardością ziarna. Autorka potwierdziła prawidłowość, że im większa twardość ziarna poddawanego przemiałowi, tym większa wydajność przemiału. Z kolei Zieliński i in. (2008) dodatkowo określiły dla 10 hybryd orkiszu współczynnik efektywności przemiału ziarna K. Uzyskane przez nich wyniki mieściły się w zakresie od 118 do 147.

W pozostałych analizowanych przypadkach całkowity wyciąg mąki orkiszowej wynosił w przeważnie ok. 70%, jednak wartości tego parametru zależały w dużym stopniu od właściwości
fizycznych ziarniaków, ich wilgotności oraz rodzaju młyna, w którym przeprowadzany był przemiał (Abdel – Aal i in., 1997; Marconi i in., 2002; Ceglińska, 2003; Krawczyk i in., 2008a; Krawczyk i in., 2008b; Zieliński i in., 2008). Wyjątkiem są badania Achremowicza i in. (1999), którzy uzyskali wyciąg mąki orkiszowej w granicach 42,2 – 50,5%, a mąki z pszenicy zwyczajnej na poziomie 59,7%, wykorzystując młyn laboratoryjny produkcji węgierskiej typu QC 109/2 (Tabela 11).

Właściwości fizykochemiczne mąki uzyskanej z przemiału ziarna orkisz

Kolejnym parametrem służącym ocenie ziarna oraz efektywności jego przemiału jest barwa ziarna i uzyskiwanej z niego mąki. Należy sobie uświadomić, że barwa mąki jest pojęciem, które budzi wiele kontrowersji podczas definiowania. Do wyrażenia wrażeń wzrokowych odbieranych podczas obserwacji powierzchni mąki stosuje się określenie „bieł mąki”. Biel mąki może być oceniana na podstawie oceny wzrokowej za pomocą próbek wzorcowych (próba Pekara), jednak nie jest ona obiektywna. Z tego też powodu na przestrzeni lat dopracowano metody wykorzystujące aparaty mierzące intensywność odbitego strumienia odpowiednio dobranego światła monochromatycznego od powierzchni mąki (Piesiewicz, 1997). Oznaczenie bieli mąki pozwala w przybliżeniu ocenić udział okrywy owocowo – nasiennej w mące; im on jest niższy, tym jaśniejsza mąka. W zakresie wyciągu mąki do 65% zmiany bieli i zawartości popiołu w mące są niewielkie i nie zawsze są ze sobą skorelowane, natomiast po przekroczeniu tego poziomu wyciągu mąka wyraźnie ciemnieje (Oliver i in., 1992; Jurga, 2006a). Wiadomo również, że barwa mąki zależy od barwy samego ziarna, stopnia zanieczyszczenia użytego surowca, wilgotności i stopnia rozdrobnienia ziarna. Mąka uzyskana z twardego ziarna, podczas przemięcia rozdrabnia się na większe cząstki, natomiast mąka z pszenicy miękkiej daje mąkę o drobniejszej granulacji (Jurga, 2006c). Ma to istotny wpływ na barwę mąki. Mąka o grubszej granulacji jest ciemniejsza w porównaniu z mąką o drobnej granulacji, co jest bezpośrednio związane z innym kątem odbicia światła na powierzchni mąki (Jurga, 2006a). Barwę mąki, a dokładnie stopień jej żółtości, zależy od udziału związków karotenoidowych, które są jej naturalnymi pigmentami (Oliver i in., 1992). Należy dodać, że podczas dojrzewania, związki te ulegają rozpadowi w wyniku utleniania, w wyniku czego mąka ulega tzw. bieleniu (Jurga, 1998; Ceglińska i in., 2006; Ceglińska, 2006).

Barwę mąki można wyrazić za pomocą dwóch równań, biorąc pod uwagę trzy barwy monochromatyczne (czerwień, zieleń i błękit), a biel mąki można przedstawić za pomocą jednego równania. Co więcej, biel mąki jest wypadkową dwóch niezależnych parametrów tj. jasności i stopnia żółtości (Piesiewicz, 1997). Jak podała Majewska (2005), miarą zmiany barwy mąki są różnice jej parametrów. W sytuacji, gdy jasność L* jest stała, a nasycenie barwy (parametry a*, b*) w niewielki stopniu ulega zmianie, barwa również jest stała. Warto dodać, że L* jest funkcją światła zielonego spektralnego i miarą jasności w skali od 0 (powierzchnia czarna) do 100 (powierzchnia biała). Z kolei a* jest funkcją różnicy barwy czerwonej i zielonej, a b* jest funkcją barwy zielonej i niebieskiej. Pozytywna wartość a* wskazuje na stopień czerwieni, negatywna na stopień zieleni, podczas gdy pozytywna wartość b* wskazuje na stopień żółtości, a negatywna na stopień błękitu (Piesiewicz, 1997). Majewska (2004) dodatkowo zaproponowała obliczanie indeksów WI, YI i Z%, w celu uzyskania dodatkowych informacji o chromatyczności i odcieniu barwy mąki.

Tabela 12. Wybrane właściwości fizykochemiczne mąki uzyskanej z ziarna orkiszu, pszenicy zwyczajnej i durum.

(opracowano własne na podstawie literatury: Abdel – Aal i in., 1997; Marconi i in., 2002; Radomski i in. 2007).

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Orkisz</th>
<th>Pszenica zwyczajna</th>
<th>Pszenica durum</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>89,9 – 93,1</td>
<td>89,6</td>
<td>85,6 – 87,3</td>
</tr>
<tr>
<td>a</td>
<td>-1,4 – 0,1</td>
<td>0,3</td>
<td>-1,9 – 0,2</td>
</tr>
<tr>
<td>b</td>
<td>8,1 – 11,2</td>
<td>10,6</td>
<td>17,3 – 24,7</td>
</tr>
<tr>
<td>ΔE</td>
<td>8,8 – 10,0</td>
<td>11,4</td>
<td>18,4</td>
</tr>
</tbody>
</table>

Kwasowość

<table>
<thead>
<tr>
<th>Potencjalna (miareczkowa)</th>
<th>Typ mąki</th>
<th>700</th>
<th>750</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>° kwasowości</td>
<td></td>
<td></td>
<td>6,3</td>
<td>-</td>
<td>3,8</td>
</tr>
</tbody>
</table>

450 – 500) nie powinien przekroczyć wartości 3°, dla mąki jasnej o typie 850 wartość tego parametru nie powinna być wyższa niż 5°, a dla mąki ciemnej o typie 1400 – nie powinien wynosić więcej niż 7° (Horubałowa, Haber, 1994).

2.7.2. Wartość wypiekowa mąki orkiszowej

Wartość wypiekową mąki pszennej można określić za pomocą pośrednich lub bezpośrednich metod. Pośrednie metody skupiają się na badaniu jakości skrobi, glutenu lub struktury ciasta i jego zdolności fermentacyjnych. Duże znaczenie ma badanie aktywności amylolitycznej i proteolitycznej ziarna i mąki. Z kolei bezpośrednie metody polegają na przeprowadzeniu próbnego wypieku laboratoryjnego (Jurga, 1994).

Właściwości skrobi

Podstawowym składnikiem mąki, jak już wcześniej wspomniano, jest skrobia (Skrabanja, 2001; Gąsiorowski 2004a). Natomiast wskaźnikiem, który w sposób pośredni mówi o wartości wypiekowej mąki pszennej jest stopień uszkodzenia skrobi (Krawczyk i in 2008b). W przypadku mąki, co również już wcześniej wspomniano, istotna jest jej zdolność do wiązania wody podczas procesu tworzenia ciasta oraz ilość wytworzonego dwutlenku węgla podczas fermentacji. Przydatność mąki

- jest wrażliwa na działanie enzymów amylolitycznych,
- utraciła częściowo lub całkowicie strukturę krystaliczną,
- posiada zwiększoną zdolność wiązania wody.

Na poziom uszkodzenia skrobi, oprócz twardości ziarna, może mieć wpływ sposób przemiału ziarna na mąkę, stąd też poprzez sterowanie parametrami przemiału można uzyskać mąkę o pożądanych właściwościach wypiekowych (Tyburcy, 2001; Górniak, 2006). Jak podali Ceglińska i in. (2007), mąka nie powinna zawierać nadmiernie uszkodzonej skrobi, bo mimo, że znacznie się zwiększa wodochłonność mąki, co daje wyższą wydajność pieczywa, to wpływa to przede wszystkim na zmniejszenie objętości chleba i zanik porowatej struktury miękiszu. Pojawia się również problem podczas miesienia ciasta, które jest bardzo kleiste i ma zbyt miękką konsystencję (Jurga, 2004).

Pojęcie uszkodzenia skrob opiera się także na zjawisku jej współzawodnictwa z glutenem w absorpcji wody (Maklakiewicz, 1996; Bonafaccia i in., 2000). Jeśli skrobia jest nieuszkodzona, woda w pierwszej kolejności wchłaniana jest przez gluten, natomiast, w przeciwnym przypadku, to uszkodzona skrobia wiąże wodę. W takiej sytuacji glutennu musi pokryć większą powierzchnię granulek skrobiowych, a w wyniku niecałkowitej hydratacji nie jest w stanie ukształtować trwałej matrycy miękiszu chleba. Wtedy glutennowi (w kategoriach reologicznych) można przypisać niską jakość, podczas gdy problem tkwi w nadmiernie uszkodzonej skrobi, która wiąże wodę w pierwszej kolejności. Optymalny poziom uszkodzenia skrobi może być wyrażony jako iloraz: (zawartość białka)²/6 (Jurga, 1996b; Maklakiewicz, 1996).

Obecnie istnieje kilka metod pomiaru wartości tego parametru, ale najkrótszą i stosunkowo dokładną jest metoda amperometryczna, wykorzystująca urządzenie RAPID FT (Górniak, 2006).

Jednym z nielicznych badaczy, którzy analizowali stopień uszkodzenia skrobi orkiszowego był Marconi (2002) (Tabela 13). W mące orkiszowej wartość tego parametru mieściła się w zakresie od 2,1 do 4,5%, podczas gdy w semolinie stopień uszkodzenia skrobi był na poziomie 4,0 – 4,2%. Z innych badań wynika, że najniższym stopniem uszkodzenia skrobi charakteryzowała się jasna mąka orkiszowa uzyskana z ziarna orkiszu czystego gatunkowo, następnie otrzymana z ziarna hybryd orkisu i z ziarna pszenicy zwyczajnej (Krawczyk i in., 2008b). Jak stwierdzono, najwyższym stopniem uszkodzenia skrobi cechowała się mąka uzyskana z najtwardszego ziarna.

pieczywa o dobrej jakości, powinien mieścić się od 200 do 400 s. Natomiast wg PN – A – 74022 wartość liczby opadania mieści się w przedziale od 150 do 220 s w zależności od typu mąki.

Tabela 13. Wybrane wyróżniki wartości wypiekowej mąki z ziarna orkiszu i pszenicy zwyczajnej – właściwości skrobi.

(opracowanie własne na podstawie literatury: Abdel – Aal i in., 1995; Capouchová 2001; Majewska, 2004; Kovalčíková, Koravičová; 2007; Majewska i in., 2007a; Majewska i in., 2007b; Radomski i in., 2007; Dąbkowska i in., 2008; Krawczyk i in., 2008a; Krawczyk i in., 2008b; Zieliński i in., 2008).

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mąka jasna</td>
<td>Mąka ciemna</td>
</tr>
<tr>
<td>Stopień uszkodzenia skrobi [%]</td>
<td>2,1 – 4,5</td>
<td>-</td>
</tr>
<tr>
<td>[UCD]</td>
<td>13,9 – 17,7</td>
<td></td>
</tr>
<tr>
<td>Ocena amylograficzna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Początkowa temperatura kleikowania [°C]</td>
<td>50,1 – 60,6*</td>
<td>-</td>
</tr>
<tr>
<td>Końcowa temperatura kleikowania [°C]</td>
<td>65,9 – 90,8*</td>
<td>-</td>
</tr>
</tbody>
</table>

Z przeanalizowanych danych literaturowych wynika, że wartość liczby opadania w jasnych mąkach orkiszowych mieściła się w zakresie od 215 do 445 s, a w mąkach ciemnych była na poziomie od 228 do 381 s ([Tabela 13]). Z kolei, w jasnych mąkach otrzymanych z ziarna pszenicy zwyczajnej, wartość tego parametru była w granicach od 252 do 374 s. W większości przypadków wartość liczby opadania wahały się w optymalnym zakresie (Capouchová, 2001; Bojňanská, Frančáková, 2002; Marconi i in., 2002; Majewska i in., 2007b; Dąbkowska i in., 2008; Zieliński i in., 2008).

Inną metodą wykorzystywaną do oceny aktywności enzymów amylolitycznych zawartych w mące oraz określenia zdolności kleikowania skrobi jest analiza amylograficzna mąki. Na uzyskanym amylogramie rejestrowane są zmiany lepkości zawiesiny mąki w wodzie, zachodzące w wyniku pęcznienia i kleikowania skrobi pod wpływem wysokiej temperatury (Konopka i in., 2000; Rothkaehl, 2003). Jak wynika z danych literaturowych, początkowe i końcowe temperatury kleikowania skrobi w mąkach orkiszowych i z ziarna pszenicy zwyczajnej uzyskały podobne zakresy wartości, choć końcowa temperatura kleikowania skrobi dla mąk orkiszowych mieściła się w szerszym zakresie ([Tabela 13]). Z kolei maksymalna lepkość kleiku skrobiowego mąk orkiszowych była na znacznie wyższym poziomie (295 – 1080 j.B) niż w mące z ziarna pszenicy zwyczajnej (166 – 498 j.B) (Majewska i in., 2007a; Zieliński i in., 2008).

Właściwości białka

Składnikami mąki, które bardzo istotnie decydują o jej wartości wypiekowej są: zawartość białka ogółem i wydajność glutenu mokrego (Bojňanská, Frančáková, 2002). We wcześniejszej części pracy omówiono zawartość białka ogółem, stąd też parametr ten zostanie w tym miejscu pominięty. Warto jednak dodać, że optymalny poziom białka dla mąki z ziarna pszenicy zwyczajnej, wykorzystywanej do wypieku pieczywa, powinien mieścić się w granicach 11,0 – 14,4% s.m. (Gąsiorowski, 2004a).
Wydajność glutenu mokrego jest parametrem pośrednio związanym z wartością wypiekową mąki pszennej, tym bardziej, że jego rozciągliwość, sprężystość i odporność na rozpylanie warunekują jakość ciasta pszennego. Ocena wydajności i jakości glutenu mokrego stanowi podstawową i wstępną czynność w badaniu wartości wypiekowej mąki, tym bardziej, że ilość zatrzymanych gazów i ich rozmieszczenie zależą właśnie od jakości glutenu (Jurga, 1994).

Jak wynika z przeanalizowanych danych literaturowych, ziarno orkiszu i uzyskana z niego mąka charakteryzuje się wyższą wydajnością glutenu mokrego w porównaniu do mąki otrzymanej z ziarna z pszenic zwyczajnych. Wartość tego parametru decyduje o jakości ziarna i o jego późniejszym wykorzystaniu na mąkę chlebową. Spotykana w literaturze wydajność glutenu mokrego dla mąki z ziarna orkiszu mieściła się w granicach od 11,2 do 57,1%, podczas gdy dla mąki z ziarna pszenicy zwyczajnej była na poziomie od 27,4 do 36,0% (Abdel–Aal i in., 1996; Jurga, 1996a; Chrenková i in., 2000; Capouchové a 2001; Gálóa, Knoblochová, 2001; Skrabania i in., 2001; Bojahnas, Frančáková, 2002; Ceglińska, 2003; Tyburcy, 2005; Lacko – Bartošová, Rédlová, 2007; Majewska i in., 2007b; Marques i in., 2007; Dąbkowska i in., 2008; Krawczyk i in., 2008b; Zieliński i in., 2008) (Tabela 14).

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Właściwości białka</td>
<td>Małta jasna</td>
<td>Małta ciemna</td>
</tr>
<tr>
<td>Wydajność glutenu mokrego [%]</td>
<td>21,4 – 57,1</td>
<td>11,2 – 48,3</td>
</tr>
<tr>
<td>Rozpływialność glutenu [mm]</td>
<td>3 – 9,8</td>
<td>-</td>
</tr>
<tr>
<td>Indeks glutenoowy</td>
<td>3 – 90</td>
<td>14 – 50</td>
</tr>
<tr>
<td>Liczba sedimentacji</td>
<td>Wg Zeleny'ego</td>
<td>18 – 56*</td>
</tr>
<tr>
<td>Gladiyny [%]</td>
<td>35,5 – 40,3</td>
<td>-</td>
</tr>
<tr>
<td>Gluteniny [%]</td>
<td>24,4 – 32,3</td>
<td>-</td>
</tr>
<tr>
<td>Proporcje gladiyn do glutenin</td>
<td>1,1 – 1,4</td>
<td>-</td>
</tr>
</tbody>
</table>

*Analiza wykonana w hybrydach orkiszu

Należy sobie jednak uświadomić, że glut en orkiszowy stwarza pewne problemy w przetwórstwie. Jest wrażliwy na zbyt intensywne mieszanie podczas zagniatania, przez co ciasto staje się bardzo lepkie (Ranhotra i in., 1995; Abdel Aal i in., 1997; Marconi i in., 1999, 2000; Capouchové, 2001; Tyburcy, 2005; Schober i in., 2006, Pruska – Kędzior i in., 2008). Stąd też, ważną cechą glutenu jest w tym przypadku jego rozpływialność. Warto dodać, że lepszymi parametrami jakościowymi i wyższą wydajnością cechuje się mąka o niższej zawartości glutenu (21%) i mniejszej rozpływialności (6 mm), niż mąka o wysokiej wydajności glutenu (powyżej 39%) i wysokiej rozpływialności (10 mm) (Jurga, 1994). Jurga (1994) podaje, że dla pszenic chlebowych rozpływialność glutenu nie powinna być wyższa niż 9 mm, przy wydajności glutenu 25%. Natomiast Ambroziak
(1998) sugeruje, że rozpływalność glutenu dla pszenic konsumpcyjnych powinna zawierać się w przedziale od 1 do 9 mm (mąka mocna – poniżej 6 mm, mąka średnia 6 – 12 mm).

Po przeanalizowaniu danych literaturowych okazało się, że rozpływalność glutenu mokrego w jasnej mące orkiszowej była na poziomie 3 mm (wydajność glutenu mokrego – 27,5%), podczas gdy badana mąka z ziarna pszenicy zwyczajnej cechowała się wyższą wartością tego parametru (7 mm przy wydajności glutenu mokrego na poziomie 31,9%) (Radomski i in., 2007) *(Tabela 14)*.

Liczba glutenowa (indeks glutenowy) jest kolejnym parametrem charakteryzującym przydatność mąki do wypieku. Określa ona zależność pomiędzy jakością i ilością glutenu oraz umożliwia przewidzenie zdolności ciasta do zatrzymywania gazów oraz jego odporność na obróbkę mechaniczną. Wartości liczbowe tego parametru mogą ważyć się w granicach od 0 do 100, a jej zalecana wartość powinna być wyższa niż 40 (Jakubczyk, Haber, 1981; Ambroziak, 1988; Skierkowski, 1990). Zgodnie z powyższym, im liczba glutenowa jest bliższa 0, tym gluten jest gorszej jakości.

Z dostępnych danych literaturowych wynika, że indeks glutenowy w przypadku jasnych mąk orkiszowych mieścił się w granicach od 3 do 90, a w mące z ziarna pszenicy zwyczajnej był na poziomie od 2 do 95 *(Tabela 14)*. Niektórzy badacze zauważyli, że wartość tego parametru dla mąki orkiszowej jest zależna od typu mąki i odmiany ziarna, z której ta mąka została uzyskana (Marconi i in., 1999; Ceglińska, 2003). W większości przypadków jednak gluten orkiszowy cechował się gorszą jakością niż gluten mąki z pszenicy zwyczajnych (Capouchová, 2001; Krawczyk i in., 2008a, 2008b).

Analizą, która jest miernikiem jakości i ilości substancji strukturotwórczych pieczywa jest oznaczenie liczby sedymentacji. Istota tej metody polega na określeniu objętości osadu sedymentacyjnego mącznej zawiesiny w roztworze kwasu mlekowego i izopropanolu w określonym czasie (Gąsiorowski, 2004a). Wynik analizy jest tym wyższy, im wyższa jest zawartość białek glutenowych w mące, szczególnie wysokocząsteczkowej gluteniny, odznaczającej się dobrą zdolnością pęcznienia i warunkującej dobrą wartość wypiekwą mąki (Jurga, 1994; Janiak, Laskowski, 1994). Przyjmuje się, że jeśli wartość liczby sedymentacji w mące będzie niższa niż 20 cm³, mąka taka powinna być przeznaczona na pieczywo razowe z różnymi dodatkami (Jurga, 1994; Gąsiorowki, 2004a). Obecnie w literaturze spotykanie są dwa testy mierzące wartość liczby sedymentacji. Test SDS, obok liczby sedymentacji wg Zeleny’ego jest szybkim wskaźnikiem wartości wypiekowej mąki. Jak podają Bojňanská i Frančáková (2002) na jego wartość mogą mieć wpływ warunki agrotechniczne w danym roku uprawy. Bezdeszczowy rok lub o małej ilości opadów, może spowodować wzrost wartości liczby SDS, co z technologicznego punktu widzenia jest efektem korzystnym (Bojňanská, Frančáková, 2002).

Spotykane w literaturze wartości liczby sedymentacji SDS i wg Zeleny’ego w mące orkiszowej wskazują, że w większości przypadków mąka ta, pomimo większej zawartości białka i wyższej wydajności glutenu mokrego w porównaniu z mąką z ziarna pszenicy zwyczajnej, cechowała się gorszą wartością wypiekową. Zdolność pęcznienia układu białkowego, wyrażona liczbą sedymentacji (SDS i wg Zeleny’ego), w większości mąk orkiszowych była niższa niż w mące z ziarna pszenicy zwyczajnej (Piergiovanni i in., 1996; Capouchová, 2001; Bojňanská, Frančáková, 2002;
Ceglińska, 2003; Lacko – Bartošová, Rédllová, 2007; Majewska i in., 2007b; Dąbkowska i in., 2008; Pruska – Kędzior i in., 2008; Krawczyk i in., 2008b) (Tabela 14).

Z przeanalizowanych danych literaturowych wynika, że na jakość białka, a szczególnie na wydajność glutenu istotny wpływ ma nie tylko jego zawartość, ale również ilość i wzajemne proporcje gliadyn do glutenin. Są one uznane za główne białka zapasowe ziarna zbóż i stanowią ok. 80 – 85% zawartości białka w ziarnie, występując we wzajemnej proporcji 1:1 (Abdel – Aal i in., 1996).

Cechy reologiczne ciasta

* farinograf służący do oceny wodochłonności mąki i jej właściwości reologicznych,
* ekstensograf wykorzystywany do określenia odporności wałeczka ciasto na rozciąganie,
* alweograf służący do oceny odporności cienkiej błony ciasta na rozciąganie pod wpływem rozdarcia w pęcherzu,
* fermentograf, za pomocą którego bada się zdolności fermentacyjne ciasta,
* mikroskop, którego zasada działania podobna jest do farinografu,
* Uniwersalna Maszyna Testująca Instron 4301 z zainstalowaną komorą ekstruzyjną OTMS (Ottawa Texture Measuring System), w której określa się siłę i energię z jaką deformowane jest ciasto po wpływie wytłaczania w komorze (Walker, Hazelton; 1996; Konopka i in., 2000;
Ciasto z mąki orkiszowej uważane jest za mniej stabilne, mniej elastyczne i o dużej rozpływalności w porównaniu do ciasta z mąki z ziarna pszenicy zwyczajnej, a więc wykazuje inne cechy reologiczne niż mąka pszenna (Schober i in., 2002). Ciasto to po miesieniu jest bardzo miękkie i lepkie, co stwarza problemy podczas obróbki i jednocześnie jest przyczyną mniejszej objętości pieczywa orkiszowego (Abdel–Aal i in., 1997; Schober i in., 2002; Bonafaccia i in., 2000; Schober i in., 2006; Kohajdová, Korovičová; 2007; Majewska i in., 2007b; Pruska–Kędzior i in., 2008).

Ocena farinograficzna ciasta jest jedną z najczęściej wykorzystywanych metod służących do oceny zachowania ciasta. Powszechnie wiadomo, że im lepsza jakość białka, tym wyższa wodochłonność mąki, dłuższy czas rozwoju ciasta i stałość ciasta oraz mniejszy stopień rozmiękczenia (Capouchová, 2001; Gąsiorowski, 2004a). Nie zawsze jednak wodochłonność mąki rośnie proporcjonalnie ze wzrostem wydajności glutenu mokrego (Krawczyk i in., 2008b).

Z przeanalizowanych danych literaturowych wynika, że jasna mąka orkiszowa w większości przypadków cechowała się nieco mniejszą zdolnością chłonięcia wody i zbliżonym czasem rozwoju ciasta w porównaniu do mąki z ziarna pszenicy zwyczajnej. Z kolei, cechą charakterystyczną ciasta z mąki orkiszowej (szczególnie tej wysokowyciągowej) był znacznie wyższy stopień jego rozmiękczenia (Achremowicz i in., 1999; Marconi i in., 2002; Ceglińska, 2003; Kohajdová, Korovičová; 2007; Pruska–Kędzior i in., 2008; Zieliński i in., 2008) (Tabela 15).

Tabela 15. Wartość wypiekowa mąki z ziarna orkiszu i pszenicy zwyczajnej – cechy reologiczne ciasta.

(opracowanie własne na podstawie literatury: Achremowicz i in., 1999; Capouchová, 2001; Skrabajna i in., 2001; Marconi i in., 2002; Ceglińska, 2003; Kohajdová, Korovičová; 2007; Majewska i in., 2007a; Radomski i in., 2007; Pruska–Kędzior i in., 2008; Krawczyk i in., 2008a; Krawczyk i in., 2008b; Zieliński i in., 2008).

<table>
<thead>
<tr>
<th>Wyróżnik</th>
<th>Pszenica orkisz</th>
<th>Pszenica zwyczajna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zdolność chłonięcia wody [%]</td>
<td>51,5 – 62,2</td>
<td>59,2 – 65,1</td>
</tr>
<tr>
<td>Czas rozwoju ciasta [min]</td>
<td>1,0 – 3,5</td>
<td>3,5 – 4,3</td>
</tr>
<tr>
<td>Stalność ciasta [min]</td>
<td>1,0 – 5,5</td>
<td>4,0 – 5,0</td>
</tr>
<tr>
<td>Stopień rozmiękczenia ciasta</td>
<td>50 – 160</td>
<td>175 – 25 – 80</td>
</tr>
<tr>
<td>Objętość CO₂ zatrzymana w cieście [cm³]</td>
<td>420</td>
<td>- 294</td>
</tr>
<tr>
<td>Objętość CO₂ całkowita [cm³]</td>
<td>798</td>
<td>- 546</td>
</tr>
<tr>
<td>Czas fermentacji końcowej T₉₀ [min]</td>
<td>92,5</td>
<td>- 60,0</td>
</tr>
<tr>
<td>Siła mąki W [J]</td>
<td>14 – 160</td>
<td>280</td>
</tr>
<tr>
<td>Rozciągliwość ciasta P/L</td>
<td>0,2 – 0,8</td>
<td>0,2 – 0,7</td>
</tr>
<tr>
<td>Wytrzymałość ciasta na ściskanie Fₑ [N]</td>
<td>120,4 – 173,7</td>
<td>243,9</td>
</tr>
<tr>
<td>Zwięzłość ciasta Fₑ/d [N/mm]</td>
<td>4,7 – 8,0</td>
<td>11</td>
</tr>
<tr>
<td>Maksymalna siła wytłaczania ciasta Fₑₘₐₓ [N]</td>
<td>175,0 – 245,0</td>
<td>349,0</td>
</tr>
<tr>
<td>Energia wytłaczania ciasta Eₑₘₐₓ [J]</td>
<td>4,4 – 6,3</td>
<td>- 9,3</td>
</tr>
</tbody>
</table>

Analiza wykonana na hybrydach orkisz

Kohajdová i Korovičová (2007) określiły zakres zmian, jakie zachodzą podczas oceny farinograficznej w sytuacji dodawania ciemnej mąki orkiszowej do jasnej mąki z ziarna pszenicy.
zwyczajnej. Na podstawie uzyskanych wyników stwierdzono, że wraz ze wzrostem udziału ciemnej mąki orkiszowej zwiększała się absorpcja wody, czas rozwoju ciasta i stopień rozmiękczenia, natomiast zmniejszały się wskaźnik tolerancji mieszania i stabilność ciasta.

Następną metodą oceny cech reologicznych ciasta jest analiza z wykorzystaniem fermentografu. Analiza ta nie pozwala jednak określić właściwości wypiekowych mąki pszennej, a jedynie jej właściwości strukturotwórcze, odnoszące się do zdolności zatrzymywania dwutlenku węgla przez ciasto. Wiadomo jednak, że im więcej zatrzymanego gazu, tym ciasto jest bardziej spulchnione. Z przeprowadzonej przez Rodamskiego i in. (2007) analizy wynika, że lepszymi właściwościami strukturotwórczymi i jednocześnie dłuższym czasem fermentacji końcowej cechowała się mąka orkiszowa w porównaniu z mąką z pszenicy zwyczajnej (Tabela 15).

Alweograf jest kolejnym aparatem wykorzystywanym do badania cech reologicznych ciasta. Podczas oceny cech reologicznych wykorzystuje się dwie wielkości tj., stosunek sprężystości do rozciągłości ciasta P/L oraz W – pracę potrzebną do odkształcenia 1g ciasta w warunkach stosowanej metody, która wyraża siłę mąki i jakość siatki białkowej (Jurga, 2003a; Gąsiorowski, 2004a). Przyjmuje się, że optymalna wartość pracy W powinna mieścić się w granicach 280 – 400 J, a im wyższa wartość W, tym bardziej wartościowa mąka. Jeśli wartość pracy W jest w granicach 160 – 280 J, zakłada się, że mąka ma względnie dobre właściwości wypiekowe, natomiast jeśli wynik jest niższy mąka zaliczana jest do grupy o niskiej wartości wypiekowej (Gąsiorowski, 2004a). Z kolei, w przypadku pszenicy o dobrych i bardzo dobrych cechach wypiekowych stosunek P/L powinien być wyższy niż 0,7. Z nielicznych danych literaturowych wynika, że wartość siły mąki W i stosunek P/L, uzyskany dla mąki orkiszowej był niższy (odpowiednio W = 14 – 160; P/L = 0,2 – 0,8) niż wartości tych parametrów uzyskane dla jasnej mąki otrzymanej z ziarna pszenicy zwyczajnej (W = 280; P/L = 0,7) (Tabela 15). Na tej podstawie można stwierdzić, że badana mąka orkiszowa cechowała się niską wartością wypiekową (Skrabanja i in., 2001; Marconi i in., 2002).

Próbny wypiek laboratoryjny

Próbny wypiek laboratoryjny, który jest wykonywany w ściśle określonych warunkach, przy użyciu niewielkiej ilości mąki, jest bezpośrednim wyznacznikiem jej wartości wypiekowej (Gąsiorowski, 2004a). Obecnie istnieje kilka metod przeprowadzania próbnych wypieków, które różnią się między sobą nawaźkami mąki, soli i drożdży, jak również wykorzystaniem takich dodatków jak: cukier i ekstrakt słodowy, itp. (Gąsiorowski, 2004a).

Choc orkisz jest zbożem, które jest badane w wielu płaszczyznach, to ilość dostępnych danych literaturowych, z których wynika, że został przeprowadzony wypiek laboratoryjny (szczególnie z wykorzystaniem wysokowyciągowej mąki orkiszowej) oraz szczegółowa ocena organoleptyczna i fizykochemiczna takiego pieczywa, jest niewielka. Co więcej, problem stanowi różnorodność dostępnych metod, co umożliwia jedynie stwierdzenie pewnych ogólnych prawidłowości i zależności.

Niektróre badacze analizowali chleby mieszane, wypiekane z mąki orkiszowej połączonej z mąką z ziarna pszenicy zwyczajnej (Kohajdová, Korovičová, 2007; Radomski i in., 2007). Mieszane chleby orkiszowo – pszenne cechowały się wyższą objętością, lepszą elastycznością miększu, a ich skórka miała ładną barwę, ponadto charakteryzowały się lepszym smakiem i zapachem niż chleby ze 100% mąki pszennej. Jest to o tyle ważne, że niektórzy badacze zauważyli, że chleby ze 100% udziałem mąki orkiszowej charakteryzowały się lekko orzechowym smakiem i zapachem (Bojňanská i Frančáková, 2002; Ceglińska, 2003; Majewska i in., 2007b).
Wyróżnik	Badacz/Rodzaj użytej mąki	Wydajność ciasta [%]	Objętość pieczywa [cm³]	Objętość pieczywa w przeliczeniu na 100 g mąki [%]	Wydajność pieczywa [%]	Strata piecowa [%]
Achremowicz i in., 1999	Mąka orkiszowa jasna	156 – 159	-	380 – 420	136 – 144	6,7 – 10,3
Mąka jasna z ziarna pszenicy zwyczajnej	158	-	450	136	-	-
Bojňanská i Frančáková, 2002	Mąka orkiszowa jasna	265 – 340	-	199,2 – 246,2	133,0 – 141,0	16,6 – 17,1
Mąka jasna z ziarna pszenicy zwyczajnej	-	-	-	-	-	-
Ceglińska, 2003	Mąka orkiszowa jasna	-	-	220	130	18,1
Mąka jasna z ziarna pszenicy zwyczajnej	-	-	283 – 292	125 – 131	20,5 – 22,2	-
Kohajdová, Korovičová, 2007	Mąka orkiszowa jasna	-	278,3*	317,3*	-	12,4*
Mąka jasna z ziarna pszenicy zwyczajnej	-	328,3	369,8	-	12,5	-
Radomski i in., 2007	Mąka orkiszowa jasna	155,0	265	-	136,9	-
Mąka jasna z ziarna pszenicy zwyczajnej	159,8	320	-	137,6	-	-
Majewska i in., 2007b	Mąka orkiszowa jasna	151,0 – 154,0	551,3 – 629,5	334,2 – 426,3	129,1 – 130,8	-
Mąka jasna z ziarna pszenicy zwyczajnej	151,7	707,5	418,9	126,9	-	-
Dąbkowska i in., 2008	Mąka orkiszowa ciemna	167,3 – 172,1	528 – 625	353 – 408	139,1 – 147,9	-
Mąka ciemna z ziarna pszenicy zwyczajnej	169,2	705	476	146,6	-	-
Krawczyk i in., 2009b	Mąka orkiszowa jasna	-	270	-	132	11,9
Mąka jasna z ziarna pszenicy zwyczajnej	-	315	-	132	11,4	-

*Chleb mieszany wykonany z mąki orkiszowej i z mąki z ziarna pszenicy zwyczajnej w proporcji 1:1.

Przytoczone badania potwierdzają walory żywieniowe i smakowe ziarna orkiszu oraz możliwość wykorzystanie otrzymanej z niego mąki m.in. w piekarstwie. Choć na przetreni ostatnich kilku lat, liczba publikacji dotyczących orkiszu sukcesywnie się zwiększa, to w Polsce wiedza na temat nadal jest niewielka. Istnieje zatem konieczność prowadzenia badań naukowych w celu poszerzenia wiedzy z zakresu m.in. wartości technologicznej orkiszu.
3. Cel i hipoteza badawcza pracy

3.1. Cel pracy

Szeroki przegląd literatury wykazał, że jak dotąd nie prowadzono w naszym kraju badań z wykorzystaniem dużej liczby odmian ziarna orkiszu. Niewiele jest również informacji na temat jakości i przydatności technologicznej wysokowyciągowej mąki orkiszowej, szczególnie tej pochodzącej z polskich przetworni ekologicznych.

Stąd też, mając powyższe na uwadze, celem pracy było określenie wpływu czynnika odmianowego (odmiany, formy odmianowej) na wybrane parametry jakości wysokowyciągowej mąki z orkiszu, uprawianego w krajowych warunkach wegetacyjnych.

Powyższy cel główny zrealizowano przez wyodrębnienie celów cząstkowych:
- określenie wartości przemiałowej ziarna badanych dziewięciu odmian orkiszu w porównaniu ze wzorcem – ziarnem dwóch odmian pszenicy zwyczajnej.
- określenie zawartości wybranych składników chemicznych oraz ocenę wartości wypiekowej mąk uzyskanych z ziarna badanych pszenic.

3.2. Hipoteza badawcza

Ponadto, w pracy podjęto próbę zweryfikowania następującej hipotezy badawczej:

1. Dla ziarna ozymego orkiszu i pszenicy zwyczajnej oraz wysokowyciągowej mąki z niego otrzymanej przyjęto następującą hipotezę zerową:

„Średnie (wartości) poszczególnych parametrów jakości dla badanych odmian są jednorodne”,

Powyższą hipotezę zapisano w następującej postaci:

\[H_0: \mu_{\text{Korweta}} = \mu_{\text{Ceralio}} = \mu_{\text{Schwabenkorn}} = \mu_{\text{Frankenkorn}} = \mu_{\text{Holstenkorn}} = \mu_{\text{Schwabenspelz}} = \mu_{\text{Ostro}} = \mu_{\text{Oberkulmer Rotkorn}} \]

wobec hipotezy alternatywnej:

\[H_1: \text{co najmniej dwie średnie różnią się między sobą} \]

2. Dla ziarna jarego orkiszu i pszenicy zwyczajnej oraz wysokowyciągowej mąki z niego otrzymanej przyjęto następującą hipotezę zerową:

„Średnie (wartości) poszczególnych parametrów jakości dla badanych odmian są jednorodne”,

Powyższą hipotezę zapisano w następującej postaci:

\[H_0: \mu_{\text{Torka}} = \mu_{\text{UWM - 10}} = \mu_{\text{UWM - 11}} = \mu_{\text{UWM - 12}} \]

wobec hipotezy alternatywnej:

\[H_1: \text{co najmniej dwie średnie różnią się między sobą} \]
4. Część doświadczalna – zakres i metodyka badań

4.1. Materiał badań

Ziarno badanych odmian pszenic oraz otrzymywana z niego mąka pochodziły z produkcji ekologicznej. Ziarno orkiszu przed przemiałem zostało poddane odpiewaniu z plew i plewek za pomocą bukownika (typ BK 1100). Wysokowyciągowa mąka uzyskiwana była z przemiału w młynie gospodarczym typu żarnowego (Denmark – typ FP – 950, w którego skład wchodził: panel kontrolny, wialnia, silos, młyn właściwy i odsiewacz). Zarówno proces odpiewania ziarna jak i jego przemiał były przeprowadzone w Wytwórni Makaronu BIO przy atestowanym gospodarstwie ekologicznym w Pokrzydowie, w pow. brodnickim (certyfikat AGRO BIO TESTU 90001 04194 – B).

Poniższe zdjęcia (Fot. 8 – 19) prezentują ziarno orkiszu i pszenicy zwyczajnej (oplewione i odplewione), z którego otrzymano mąkę (Fot. 20) do badań (kolekcja z 2006 roku).

Fot 11. Ziarno pszenicy orkisz odmiany *Frankenkorn*.

Fot 12. Ziarno pszenicy orkisz odmiany *Holstenkorn*.

Fot 13. Ziarno pszenicy orkisz odmiany *Schwabenspelz*.

Fot 14. Ziarno pszenicy orkisz odmiany *Ostro*.

Fot 15. Ziarno pszenicy orkisz odmiany *Oberkulmer Rotkorn*.

Fot 16. Ziarno pszenicy zwyczajnej odmiany *Torka*.

Fot 17. Ziarno pszenicy orkisz rodu hodowanego *UWM - 10*.

Fot 18. Ziarno pszenicy orkisz rodu hodowanego *UWM - 11*.

Fot 19. Ziarno pszenicy orkisz rodu hodowanego *UWM - 12*.
Pierwotny kraj pochodzenia poszczególnych odmian orkiszu ozimego prezentuje poniższa tabela.

Tabela 17. Kraj pochodzenia badanych odmian orkiszu ozimego (Moudrý, Dvořáček, 1999; Schober i in., 2002).

<table>
<thead>
<tr>
<th>Pszenica</th>
<th>Krajer pochodzenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceralio</td>
<td>Niemcy</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>Niemcy</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>Niemcy</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>Niemcy</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>Niemcy</td>
</tr>
<tr>
<td>Ostro</td>
<td>Szwajcaria</td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>Szwajcaria</td>
</tr>
</tbody>
</table>

Z kolei, badane rody hodowlane orkiszu zostały wyselekcjonowane przez zespół badawczy prof. Mariana Wiwarta z Katedry Hodowli Roślin i Nasiennictwa Wydziału Kształtowania Środowiska i Rolnictwa Uniwersytetu Warmińsko – Mazurskiego w Olsztynie. Następnie zostały przekazane Mieczysławowi Babalskiemu (gospodarstwo ekologiczne w Pokrzydowie), w celu rozpowszechnienia ich w uprawie i zwiększenia ilości materiału nasiennego.
4.2. Metodyka badań ziarna i mąki orkiszowej

4.2.1. Określenie wydajności ziarna orkiszu z omlotu materiału oplewionego

Do analizy wykorzystano oplewione ziarno orkiszu. Minimalna masa próbki niezbędna do wykonania oznaczenia wynosiła 600 g dla każdej odmiany orkiszu. Próbki oplewionego ziarna orkiszu (3 x 200 g) zostały poddane ręcznemu odplewianiu. Następnie w badanym materiale określono procentowy udział ziarna, plew i plewek. Oznaczenie wykonano w trzech równoległych próbach.

4.2.2. Oznaczenie wilgotności ziarna i mąki

4.2.3. Oznaczenie masy 1000 ziaren

Oznaczenie masy 1000 ziaren wykonano metodą opisaną przez Habera i Horubałową (1992). Próbkę ziarna o masie 100 g rozsypano na wibrującą powierzchnię roboczą licznika nasion typ: LN – S – 50 (Sadkiewicz® Instruments). Odliczone przez licznik 250 ziaren zważono na wadze z dokładnością do ± 0,01 g. Uzyskany wynik przemnożono przez 4, aby uzyskać masę 1000 ziaren. Oznaczenie wykonano w pięciu równoległych próbach, a wyniki wyrażono g s.m. (Sadkiewicz i in., 2004).

4.2.4. Oznaczenie gęstości ziarna w stanie zsypnym

Oznaczenie wykonano wg PN – ISO 7971 – 2. Ziarno zbóż. Oznaczenie gęstości w stanie zsypnym, zwanej masą hektolitra. Oznaczenie wykonano w pięciu równoległych próbach, a wyniki wyrażono w kg s.m./hl.

4.2.5. Oznaczenie wyrównania ziarna

Wyrównanie ziarna oznaczono wg metody opisanej przez Habera i Horubałową (1992). Do oznaczenia odważono po 100 g ziarna z dokładnością do 0,01g i przesiano przy pomocy sit Vogla o określonych wymiarach oczek:

- 2,8 mm x 25 mm,
- 2,5 mm x 25 mm,
- 2,2 mm x 25 mm.

Następnie obliczono procentowy udział każdej frakcji ziarna uzyskanej po rozsortowaniu na sitach. Oznaczenie wykonano w pięciu równoległych próbach. Do późniejszej analizy statystycznej wykorzystano wyniki dotyczące udziału frakcji ziarna stanowiącej zlot z sita 2,5 x 2,5 mm.

4.2.6. Oznaczenie twardeści ziarna

W celu określenia twardości ziarna przeprowadzono test jednoosiowego pojedynczego ściskania ziarniaków przy użyciu Uniwersalnej Maszyny Testującej Instron 4301 (USA) wg metodyki opisanej przez Majewską i Filipowicz (2002). Przed przystąpieniem do wykonania analizy przeprowadzono
pomiar grubości 20 losowo wybranych ziarniaków z każdej badanej próbki, w celu dobrania odpowiednich parametrów testu, pozwalających na uzyskanie 50% odkształcenia ziarniaka. Pomiar grubości ziarniaków wykonano za pomocą suwmiarki elektronicznej.

Parametry testu ściskania ziarniaków były następujące:

- próbka – ziarno ułożone bruzką do dołu,
- zakres obciążeń głowicy 0 ÷ 1000 N,
- element ściskający – trzpień cylindryczny płasko ścięty, o średnicy 9,5 mm,
- prędkość ściskania: 5 mm/min,
- odkształcenie: 50% (prowadzenie pomiaru do momentu osiągnięcia zakładanej deformacji ziarna).

4.2.7. Przemiał ziarna na mąkę wysokowyciągową

Jak już wcześniej wspomniano, ziarno orkiszu po zbiorze odplewano za pomocą bukownika (typ BK 1100), a następnie poddano przemiałowi. Przemiał ciągły ziarna prowadzony był w młynie gospodarczym typu żarnowego (Denmark – typ FP-950).

Młyn zasypywano ok. 20 kg oczyszczonego (na wialni) ziarna. Do późniejszych analiz, w celu zachowania czystości odmianowej, wykorzystywano ok. 3 kg wysokowyciągowej mąki, która została odsiana na sitach młyna, jako ostatnia (partia). Następnie obliczono wskaźniki efektywności przemiału.

4.2.8. Oznaczenie popiołu całkowitego w ziarnie i mące

4.2.9. Obliczenie współczynników efektywności przemiału ziarna

W celu określenia wskaźników efektywności przemiału oznaczono popiołowość mąki i na podstawie uzyskanych wyników, wykorzystując krzywą Mosha, określono wyciąg otrzymanej mąki (Jurga, 2006b).

Na tej podstawie obliczono następujące współczynniki przemiału (Jurga, 2006b):

- Współczynnik efektywności przemiałowej \(K \) obliczono wg wzoru:

\[
K = \frac{W}{P},
\]
gdzie:
W – wyciąg mąki (%),
P – zawartość popiołu w uzyskanej mące [% s.m.].

✓ Wskaźnik efektywności przemiału wg Brabanda:
 \[X = 0,5 \text{ (wydajność mąki w %) / 82 (popiołowość mąki w % s.m.)} \]

✓ Kryterium efektywności przemiału wg Jegorowa:
 \[E = I\Delta \]
 gdzie: I – wyciąg mąki,
 \(\Delta \) – względne obniżenie zawartości popiołu mąki \(Z_1 \), w porównaniu z zawartością popiołu w ziarnie \(Z_0 \)
 gdzie:
 \[\Delta = (Z_0 - Z_1)/Z_0 \]
 gdzie: \(Z_0 \) – zawartość popiołu w mące [% s.m.]
 \(Z_1 \) – zawartość popiołu w ziarnie [% s.m.]

✓ Kompleksowe kryterium efektywności przemiału \(E\% \):
 \[E\% = -1,48 + 81,0\Delta \]

Po wstępnym przeanalizowaniu wyników (Dąbkowska, 2009) do dalszej analizy statystycznej w pracy doktorskiej wykorzystano jedynie kompleksowe kryterium efektywności przemiału \(E\% \), jako najbardziej różnicujące właściwości przemiałowe ziarna badanych odmian pszenicy.

4.2.10. Określenie barwy mąki

Pomiar barwy mąki wykonano metodą odbiciową przy pomocy spektrofotometru Mini Scan™ XE Plus firmy Hunter Lab sprzężonego z komputerem i wyposażonego w przystawkę do badania materiałów sypkich. Pomiary zostały wykonane wg procedury opisanej w opracowaniu metodycznym (MiniScan™…, 1999) natomiast do analizy wyników wykorzystano oprogramowanie Universal Software ver. 3.80. Pomiary wykonano w świetle odbitym. Parametry określono w układzie przestrzennym barw \(L^*a^*b^* \) (system oceny CIE) dla obserwatora 10° i dla światła znormalizowanego o luminescencji D 65, gdzie:

✓ \(L^* \) – funkcja udziału zielonego światła spektralnego i miara jasności barwy [może przybierać wartości od 0 (ciało czarne) do 100 (ciało białe)],

✓ \(a^* \) – funkcja różnicy barwy czerwonej i zielonej, dodatnia wartość „\(a^* \)” wskazuje na stopień czerwieni, ujemna wartość na stopień zieleni,

✓ \(b^* \) – funkcja różnicy barwy zielonej i niebieskiej, dodatnia wartość „\(b^* \)” wskazuje na stopień żółci, ujemna wartość na stopień błękitu.
Dodatkowo obliczono całkowitą różnicę barwy ΔE, korzystając ze wzoru:

$$\Delta E^* = \sqrt{\Delta L^*^2 + \Delta a^*^2 + \Delta b^*^2}$$

gdzie:

- $$\Delta L^* = L^*_{próbki} - L^*_{próbki kontrolnej}$$
- $$\Delta a^* = a^*_{próbki} - a^*_{próbki kontrolnej}$$
- $$\Delta b^* = b^*_{próbki} - b^*_{próbki kontrolnej}$$

Dla barwy mąki na podstawie układu barw L*a*b* zostały wyliczone indeksy:

- Whiteness Index ASTM Method E313 – 98 (Indeks bieli),
- Yellowness Index ASTM Method E313 – 98 (Indeks żółtości),
- Paper Brightness Z% (Indeks jasności).

Pomiary wykonano w dwudziestu równoległych próbach.

4.2.11. Oznaczenie granulacji mąki (analiza sitowa)

Oznaczenie wykonano wg metodyki opisanej przez Horubałową i Habera (1994). Do oznaczenia odwazono po 100 g mąki z dokładnością do 0,1g i przesiano przy pomocy odsiewacza (Sadkiewicz® Instruments), w którego zestawie są sita jedwabne o następujących wymiarach oczek:

- $x > 256$ μm,
- $150 – 256$ μm,
- $120 – 150$ μm,
- $104 – 120$ μm,
- $95 – 104$ μm,
- $0 – 95$ μm.

Następnie obliczono procentowy udział poszczególnych frakcji. Oznaczenie wykonano w dwóch równoległych próbach.

4.2.12. Oznaczenie kwasowości mąki

4.2.13. Oznaczenie zawartości tłuszczu ogółem w mące

Zawartość tłuszczu ogółem oznaczono metodą Soxhleta wg metodyki opisanej przez Krełowską – Kułas (1993). Analizę wykonano w trzech równoległych próbach, a wyniki wyrażono w g s.m.

4.2.14. Oznaczenie składu kwasów tłuszczowych w mące

W uzyskanym tłuszczu oznaczono skład kwasów tłuszczowych techniką chromatografii gazowej w oparciu o metodykę opisaną przez Zadernowskiego i Sosulskiego (1979) oraz normę PN – EN – ISO – 5508. Próbkę do oznaczenia kwasów tłuszczowych (ok. 10 μg) umieszczono w ampulce
i dodawano 2 cm³ mieszaniny metylującej (chloroform – metanol – kwas siarkowy w stosunku 100:100:1 v/v/v). Metylację przeprowadzono ogrzewając zatopione ampulki w suszarce w temperaturze 70ºC przez 2 godziny. Po zakończeniu metylacji i otwarciu ampulek, dodawano niewielkiej ilości pyłu cynkowego (w celu neutralizacji kwasu siarkowego), odparowano rozpuszczalnik, a estry metylowe kwasów tłuszczowych (EMKT) rozpuszczono w heksanie. Tak przygotowany roztwór analizowano z zastosowaniem techniki chromatografii gazowej (GC) na kolumnie DB-225 (20 m x 0,25 mm x 0,15 μm) firmy J&W Scientific (USA) stosując hel jako gaz nośny. Parametry pracy chromatografu: temperatura injekcji: 250ºC, kolumny: 200ºC, detektora: 300ºC. Analizy dokonano przy użyciu chromatografu gazowego Fisons 800 firmy Carlo Erba (Włochy) sprzężonego z komputerem wyposażonym w oprogramowanie HP ChemStation. Oznaczenie wykonano w dwóch równoległych próbach.

4.2.15. Oznaczenie zawartości skrobi ogółem w mące

Oznaczenie wykonano metodą polarymetryczną – AOAC (1975) z własnymi modyfikacjami (Krełowska – Kułas, 1993).

Wykonanie oznaczenia:

2,5 g próbki mąki połączono z 10 cm³ wody i 20 cm³ stężonego HCl (c.wł 1,19), dokładnie wymieszano i pozostawiono na pół godziny. Po tym czasie mieszaninę przeniesiono do kolby i popłukano 20 cm³ kwasu solnego (c.wł. 1,125). Następnie dodano 25 cm³ 4% roztworu fosforowolframianu sodowego (HNa₂O₁₀PW₁₂) (Fluka Chemika, cz.d.a), uzupełniono wodą do kreski, wymieszano i przesączono przez twardy sączeck. Otrzymany przesącz oznaczono polarymetrycznie w rurce o długości 190,1 mm, w polarymetrze (PGH Rundfunk – Fernsehen, Stollberg/Erzgeb., Typ G).

Wynik obliczono wg wzoru:

\[Z_s = \frac{10^6 \alpha}{a D L E (100 - w)} \]

gdzie:

- \(\alpha \) – skręcalność właściwa: 203º dla skrobi,
- \(L \) – długość rurki polarymetrycznej [mm],
- \(E \) – naważka [g],
- \(w \) – wilgotność [%],
- \(\alpha \) – skręcalność [º].

Oznaczenie wykonano w dwóch równoległych próbach.

4.2.16. Oznaczenie zawartości skrobi amylazoopornej w mące

Oznaczenie zawartości skrobi amylazoopornej wykonano wg metodyki opisanej przez Champ i in. (1999).

Skrobia amylazooporna jest frakcją skrobi, która ulega hydrolizie α – amylazą trzustkową. Powstałe po hydrolizie produkty, które są rozpuszczalne w 80% alkoholu etylowym, zostają odrzucone. Natomiast obecną w osadzie skrobię amylazooporną
rozpuszcza się w 2M KOH, a poddaje się hydrolizie do glukozy przy użyciu amyloglukozydazy. Powstałą glukozę oznacza się przy użyciu testu CORMAY GLUCOSE 120LTS (PZ CORMAY S.A.). Oznaczenie wykonano w czterech równoległych próbach.

4.2.17. Oznaczenie zawartości błonnika ogółem i jego frakcji w mące

Do oznaczenia błonnika ogółem i jego frakcji wykorzystano metodykę Asp’a i in. (1983) z własnymi modyfikacjami.

Wykonanie oznaczenia:

Do kolby stożkowej ze szlifem o pojemności 100 cm³ odważono 1 g próbki z dokładnością do 0,001 g i dodawano 25 cm³ 0,1 m buforu fosforanowego o pH = 6,0. Następnie dodawano 100 µl preparatu enzymatycznego α – Amylase solution type XII – A (Sigma). Zamkniętą próbkę przetrzymywano przez 15 minut we wrzącej łaźni wodnej, co pewien czas wstrząsając, a następnie schłodzono do temperatury pokojowej. Potem dodano 20 cm³ wody destylowanej i doprowadzono do pH 1,5 używając 4 M roztworu HCl. Następnie dodano 100 mg pepsyny (BLT Spółka z.o.o Zakład Enzymów i Peptonów) i zamkniętą kolbę inkubowano w temperaturze 40°C przez 60 minut w łaźni wodnej (ELPAN, typ 357). Po tym czasie dodawano 20 cm³ wody destylowanej i doprowadzono pH do 6,8 za pomocą 4 M roztworu NaOH. Następnie dodawano 100 mg pankreatyny (Pancreatin from hog pancreas – Sigma) i zamkniętą kolbę inkubowano w temperaturze 40°C przez kolejne 60 minut. Po wyjęciu z łaźni wodnej, odczyn próbki doprowadzono do pH 4,5 za pomocą 4 M roztworu HCl.

Uprednio przygotowane lejki (lejki Schota – porowatość G4) napełniono 0,5 g suchego HCl. Zawartość kolby przenoszono na lejki i przemywano 20 cm³ wody. Uzyskany przesącz przenoszono do kolby mierowej o pojemności 100 cm³ i dopełniano wodą destylowaną do kreski. Lejki przemywano dodatkowo 20 cm³ 95% etanolu i 20 cm³ acetonu (stężony). Następnie lejki suszono w temperaturze 105°C do stałej masy (komora do badań cieplnych KBC – 125W) i wyprażano w 550°C przez 5 godzin (piec muflowy Snol 8,2/1100).

Z kolei, przesącz z kolby mierowej o pojemności 100 cm³ przenoszono do zlewki o pojemności 500 cm³. Do przesączu dodawano 400 cm³ gorącego 95% etanolu i pozostawiono na 60 minut w temperaturze pokojowej w celu wytworzenia osadu. Zawartość zlewki przenoszono na lejek z Celitem. Osad przemywano kolejno 20 cm³ 78% etanolu, 20 cm³ 95% etanolu i 20 cm³ acetonu (stężony), a następnie suszono w temperaturze 105°C do stałej masy, po czym wyprażano w temperaturze 550°C przez 5 godzin. Oznaczenie wykonano w trzech równoległych próbach.

Wynik obliczono wg wzoru (błonnik ogółem jest sumą dwóch poniższych składników):

\[
% \text{błonnika nierozpuszczalnego} = \frac{(D_i - I_i)}{W} \times 100%,
\]

gdzie: \(D_i\) – masa lejka po suszeniu [g],
\(I_i\) – masa lejka po wyprażeniu [g],
\(W\) – naważka [g],
% błonnika rozpuszczalnego = \frac{(D_2 - I_2)}{W} \times 100\%,

gdzie: \(D_2\) – masa lejka po suszeniu [g],
\(I_2\) – masa lejka po wyprażeniu [g],
\(W\) – naważka [g].

4.2.18. Oznaczenie liczby opadania w mące

4.2.19. Ocenę amylograficzną mąki

4.2.20. Oznaczenie stopnia uszkodzenia skrobi w mące

4.2.21. Oznaczenie zawartości białka ogółem w mące

4.2.22. Określenie wydajności glutenu mokrego w mące

4.2.23. Oznaczenie liczby sedymencji w mące

Badanie cech reologicznych ciasta

Badanie cech reologicznych ciasta przeprowadzono wykorzystując Uniwersalną Maszynę Testującą Instron 4301 (USA), wg metodyki opisanej przez Majewską i in. (2000). W analizie stosowano komorę ekstruzyjną OTMS (Ottawa Texture Measuring System) o powierzchni przekroju 50 cm² i dnie perforowanym (sitowym). Ciasto do badań (o wydajności 165%) przygotowano w miesiarce laboratoryjnej typ GM – 2 (Sadkiewicz Instruments) (Sadkiewicz i in., 2004). Temperatura ciasta, czas jego mieszenia (7 min) oraz prędkość obrotów miesideł były stałe. Z uzyskanego ciasta przygotowano dwie próbki, umieszczano je po kolei w komorze OTMS i przetłaczano przez dno sitowe. Temperatura pomiaru wynosiła 20°C, a wilgotność względna pomieszczenia, w którym znajdował się Instron wynosiła 60%.

Parametry testu były następujące:
- masa próbki: 250 g ciasta pszennego,
- komora ekstruzyjna OTMS (Ottawa Texture Measuring System),
- zakres obciążeń głowicy: 0 – 1000 N,
- prędkość wytłaczania ciasta: 50 mm / min.

Charakterystyczne parametry powstałych krzywych wytłaczania to:
- *wytrzymałość ciasta na ściśkanie* F_w [N] – siła niezbędna do osiągnięcia przez ciasto granicy plastycznego odkształcenia (spoistość),
- *odkształcenie* (przesunięcie) d_w [mm] – odpowiadające wytrzymałości ciasta na ściśkanie,
- *zwięzłość* (ściśliwość) ciasta F_z [N/mm] – iloraz siły F_w i odpowiadającego jej przesunięcia d_w,
- *maksymalna siła wytłaczania ciasta* F_{max} [N] – maksymalna siła potrzebna do wytłoczenia próbki ciasta,
- *energia wytłaczania ciasta* E_{max} [J] – praca wytłaczania ciasta.

Do późniejszej analizy w pracy wykorzystano jedynie wybrane mierzone parametry.

4.2.25. Próbnny wypiek laboratoryjny

Składniki ciasta pszennego:

- **Mąka** – naważkę mąki o oznaczonej wilgotności, odpowiadającą 350 g mąki o wilgotności 15% obliczono wg wzoru:

 \[x = \frac{(S \times 100)}{(100 - w)} \]

 gdzie:

 \(x \) – szukana naważka badanej mąki o oznaczonej wilgotności [g],

 \(s \) – zawartość suchej masy w 350 g mąki o wilgotności 15% (295 g) [g],

 \(w \) – wilgotność mąki [%].

- **Woda** – ilość wody potrzebnej do uzyskania ciasta o wydajności 165%, zwiększono lub zmniejszono o tyle cm³, o ile gramów mąki zużyto mniej lub więcej w stosunku do 350 g mąki o wilgotności 15%,

- **Drożdże prasowane**: 3% w stosunku do ilości mąki, przygotowane w postaci zawiesiny w ok. 50 cm³ wody (z ogólnej ilości wody),

- **Sól**: 1% w stosunku do ilości mąki, rozpuszczona w ok. 30 cm³ wody (z ogólnej ilości wody).

Warunki przeprowadzania wypieku:

- **Temperatura ciasta**: 31 ± 1°C – żądaną temperaturę ciasta uzyskano przez dodanie wody o odpowiedniej temperaturze, którą obliczono ze wzoru:

 \[t_w = t_c + n + \left((t_c - t_m) \times m \times 0.4 \right) / w \]

 gdzie:

 \(t_w \) – szukana temperatura wody [°C],

 \(t_c \) – żądana temperatura ciasta [°C],

 \(t_m \) – temperatura mąki [°C],

 \(m \) – ilość mąki [g],

 0,4 – ciepło właściwe mąki [kcal/kg],

 \(w \) – ilość wody [cm³],

 \(n \) – współczynnik korekty (w okresie lata \(n = 1 \), w okresie wiosny i jesieni \(n = 2 \), w okresie zimy \(n = 3 \)).

- **Temperatura fermentacji ciasta**: 32°C,

- **Wilgotność względna powietrza w komorze fermentacyjnej**: 75 – 80%,

- **Czas fermentacji ciasta**: 120 min z ręcznym przebiciem ciasta po 80 min (1 min),

- **Dzielenie i formowanie ciasta ręcznie**,

- **Masa uformowanego kęsa**: 250 g

- **Fermentacja końcowa ciasta i wypiek w foremkach**, **Temperatura fermentacji końcowej ciasta**: 35°C,

- **Czas rozrostu końcowego ciasta**: do uzyskania pełnej dojrzałości,

- **Temperatura wypieku**: 230°C,

- **Czas wypieku**: 30 min.
Wykonanie próbnego wypieku laboratoryjnego z mąki pszennej

Ciasto do wypieku sporządzono metodą jednofazową przygotowując próbki o wydajności 165% w miesiarce laboratoryjnej typu GM – 2 przy zachowaniu stałych warunków wyrabiania ciasta (temperatura, prędkość obrotów miesidel, czas miesienia). Sporządzone ciasto wstawiono do komory fermentacyjnej (na 120 min), a po 80 minutach przerwano fermentację w celu dokonania przebicia ciasta, po czym ponownie wstawiono do komory fermentacyjnej. Po zakończeniu fermentacji ciasto zważono, a z otrzymanej masy odwążyto dwa kęsy i uformowano z nich bochenki, które umieszczono w foremkach. Fermentację końcową kęsów w foremkach prowadzono do uzyskania pełnej dojrzałości ciasta. Następnie, wyrośnięte bochenki (uprzednio zwilżone wodą) wstawiono do nagrzanego pieca, a komorę wypiekową zaparowano. Po upieczęciu i wyjęciu chlebeków z pieca i zwilżeniu ich powierzchni, zważono je na wadze technicznej. Pieczywo pozostawiano do wystygnięcia w temperaturze pokojowej. Wypiek wykonano w dwóch równoległych próbach.

Pieczywo ostudzone ponownie zważono, następnie na podstawie danych uzyskanych podczas wypieku obliczono następujące parametry:

✓ Wydajność ciasta [%]:

\[Wydajność ciasta (w) = \frac{(a \times 100)}{m}, \]

gdzie:
\(a \) – masa ciasta po fermentacji [g],
\(m \) – masa użytej do wypieku mąki o wilgotności 15% [g],

✓ Stratę piecową (upiek) [%]:

\[Strata piecowa = \frac{(a - b) \times 100}{a}, \]

gdzie:
\(a \) – masa kęsa uformowanego do wypieku [g],
\(b \) – masa pieczywa gorącego [g],

✓ Stratę piecową całkowitą [%]:

\[Strata piecowa całkowita = \frac{(a - c) \times 100}{a}, \]

gdzie:
\(a \) – masa ciasta uformowanego do wypieku [g],
\(c \) – masa pieczywa ostudzonego [g]

✓ Wydajność pieczywa (przypiek) [%]:

\[Wydajność pieczywa = \frac{c \times w}{a}, \]

gdzie:
\(a \) – masa ciasta uformowanego do wypieku [g],
\(c \) – masa pieczywa ostudzonego [g],
\(w \) – wydajność ciasta [%].

Do późniejszej analizy w pracy wykorzystano jedynie wybrane mierzone parametry.
4.2.2. Ocena organoleptyczna oraz fizykochemiczna uzyskanego pieczywa

Otrzymany chleb został poddany komisyjnej ocenie organoleptycznej wg normy PN – A – 74108. Pieczywo. Metody badań. Wykwalifikowany zespół oceniający (15 osób) miał za zadanie przeprowadzić ocenę punktową pieczywa, badając również wyróżniki jakości pieczywa, takie jak: wygląd zewnętrznzy pieczywa, skórka (barwa, grubość oraz pozostałe cechy), miękisz (elastyczność, porowatość, porowatość wg Dallmana i pozostałe cechy) oraz smak i zapach. Poziomy jakości pieczywa zostały określone na podstawie naliczonej ilości punktów przyznanych zgodnie z właściwościami wyróżników jakości pieczywa. Sumaryczna liczba punktów (i odpowiadający jej poziom jakości pieczywa) została przedstawiona jako średnia arytmetyczna wyników poszczególnych (15) ocen.

Oznaczenie objętości pieczywa

Objętość pieczywa oznaczono za pomocą aparatu Sa – Wy wg PN – A – 74108. Pieczywo. Metody badań. Po wyzerowaniu aparatu umieszczono bochenek w pojemniku i po jego zamknięciu obrócono część pomiarową o 180°. Po zupełnym przesypaniu nasion, przy użyciu suwaka odczytano na skali objętość pieczywa w cm³. Objętość pieczywa w cm³ przeliczono na 100 g mąki wg wzoru:

\[V_{100} = \frac{(v \times w)}{a} , \]

gdzie:
\(V_{100} \) – objętość pieczywa ze 100 g mąki [cm³],
\(v \) – objętość pieczywa [cm³],
\(w \) – wydajność ciasta [%],
\(a \) – masa ciasta utworzonego do wypieku [g].

Oznaczenie wykonano w czterech równoległych próbach dla każdego bochenka.

Oznaczenie wilgotności miękiszu pieczywa

Określenie ściśliwości miękiszu pieczywa

Ściśliwość miękiszu określono, stosując test jednoosiowego pojedynczego ściskania między płytkami (kowadło ściskające typ 2830 – 011), z wykorzystaniem Uniwersalnej Maszyny Testującej Instron 4301 (USA) z oprogramowaniem INSTRON IX SERIES Automated Materials Testing System, version 8.04., wg metodyki opracowanej przez Skibniewską i in. (2003). Podczas testu kowadło ściskające przesuwało się z prędkością 50 mm/min, a założone odkształcenie próbki miękiszu wynosiło 50%. Próbki miękiszu (kostka o wymiarach 20 x 20 x 20 mm) wycinane były zawsze ze środka chleba, do każdego pomiaru używano nowego wycinka miękiszu. Pomiary wykonano w czterech próbach dla każdego bochenka. Rejestrowano wytrzymałość miękiszu na ściskanie \(F_s \) do założonego odkształcenia oraz maksymalną energię ściskania miękiszu chleba \(E_s \). Na podstawie danych określono ściśliwość miękiszu, będącą ilorazem wytrzymałości miękiszu na
ściskanie F, i przesunięcia d, tzn. drogi, jaką przebyło kowadło ściskające do momentu uzyskania przez próbkę 50% odkształcenia.

Do późniejszej analizy w pracy wykorzystano jedynie wybrane parametry charakteryzujące ściśliwość miękkiszu badanego pieczywa.

4.3. Analiza statystyczna wyników

Analiza statystyczna wyników obejmowała metody wykorzystywane do porównywania kilku populacji (analiza wariancji), określono korelacje pomiędzy wybranymi parametrami oraz przeprowadzono analizę skupień. Jednak w pierwszej kolejności dla wszystkich otrzymanych wyników wyznaczono średnią arytmetyczną i odchylenie standardowe.

ANOVA

W początkowym etapie analizy statystycznej danych zweryfikowano wcześniej zaprezentowane hipotezy zerowe. W tym celu przeprowadzono jednoczynnikową analizę wariancji (ANOVA) na poziomie istotności α = 0,05 dla wszystkich wartości cząstkowych mierzonych parametrów dla poszczególnych odmian pszenic (odrębnie w latach).

Podczas przeprowadzania analizy ANOVA oblicza się następujące parametry: sumę kwadratów pomiędzy grupami, liczbę stopni swobody pomiędzy grupami, średnią kwadraty pomiędzy grupami, sumę kwadratów wewnętrzgrupową, liczbę stopni swobody wewnętrz grup, średnią sumę kwadratów wewnętrz grup, wartość testu F (Fishera – Scendecora) oraz poziom prawdopodobieństwa p.

W przypadku nie stwierdzenia istotnych różnic pomiędzy średnimi (poziom prawdopodobieństwa p > 0,05), podjęto decyzję o nieodrzuceniu hipotezy zerowej. Z kolei, w sytuacji, kiedy stwierdzono istotne różnice pomiędzy średnimi mierzonymi parametrami (poziom prawdopodobieństwa p < 0,05), podjęto decyzję o odrzuceniu hipotezy zerowej i przyjęciu hipotezy alternatywnej. Następnie w celu określenia, która z porównywanych odmian (populacji) była odpowiedzialna za odrzucenie hipotezy zerowej, przeprowadzono dokładniejszą analizę różnic między poszczególnymi grupami, wykorzystując test post – hoc (test wielokrotnych porównań), tj. test oparty na studentyzowanym rozstępie, umożliwiający grupowanie średnich – test Tukey’a. Test Tukey’a został wybrany (spośród pozostałych podobnych testów) ze względu na optymalną czułość, dużą konserwatywność i niskie prawdopodobieństwo popełnienia błędu I rodzaju (Stanisz, 2006, 2007a).

Korelacje

Przeprowadzono również analizę związków korelacyjnych (korelacja cząstkowa) pomiędzy poszczególnymi wartościami średniymi badanych parametrów (scalono dane z dwóch lat dla poszczególnych odmian i rodów hodowlanych – formy ozime 2005 i 2006 oraz formy jare 2006 i 2007), dokonując wcześniej podziału na dwie grupy (parametry charakteryzujące wartość przemiłową i wartość wypiekową). Analizę wykonano dla parametrów ziarna pszenicy zwyczajnej i pszenicy orkisz oraz otrzymanej z niego mąki. Jednak, jak okazało się, niektóre wartości parametrów jakości dwóch pszenic zwyczajnych spowodowały zaburzenia w korelacji parametrów jakości orkisz. Tym samym, w celu otrzymania rzetelnych wyników, zdecydowano się na przeprowadzenie
tej analizy jedynie dla ziarna orkisz i mąki orkiszowej, z wyłączeniem wyników otrzymanych dla pszenic zwyczajnych. W analizie pominięto parametry określające wartość żywieniową mąki orkiszowej oraz jej kwasowość.

W pracy umieszczono jedynie wybrane, istotne współczynniki korelacji, które zdaniem autorki wnosły do pracy ważne informacje.

Ponadto, przy interpretacji wyników wykorzystano następujące kryteria wartości współczynnika korelacji r:

- $r_{xy} = 0$ zmienne nie są skorelowane,
- $0 < r_{xy} < 0,1$ korelacja nikła,
- $0,1 \leq r_{xy} < 0,3$ korelacja słaba,
- $0,3 \leq r_{xy} < 0,5$ korelacja przeciętna,
- $0,5 \leq r_{xy} < 0,7$ korelacja wysoka,
- $0,7 \leq r_{xy} < 0,9$ korelacja bardzo wysoka,
- $0,9 \leq r_{xy} < 1$ korelacja prawie pełna (Stanisz, 2006; Wątroba, 2008).

Analiza skupień

W ostatnim etapie analizy statystycznej przeprowadzono analizę skupień. Celem tej analizy jest podział obiektów na pewną liczbę grup (skupień), tak aby obiekty należące do jednej z grup były jak najbardziej podobne do siebie, pod względem przyjętych do opisu badanych zjawisk.

Podział przeprowadzono na podstawie podobieństwa obiektów. Przedmiotem klasyfikacji był zbiór obiektów, który można zapisać w sposób następujący:

$$\Omega = \{O_1, O_2, \ldots, O_n\},$$

gdzie poszczególnymi elementami zbioru były wybrane parametry jakości.

Zbiór cech przejętych do opisu klasyfikowanych obiektów, został określony po przeanalizowaniu następujących kryteriów analizy skupień:

- przydatność badanych cech,
- zmienność – badane cechy powinny dostatecznie zróżnicować badane elementy,
- korelacja – zbyt silne powiązanie analizowanych cech, powoduje, że są one nośnikiem podobnych informacji, stąd przyjmuje się, że przy wartości współczynnika korelacji $r > 0,7$, dokonuje się wyboru reprezentanta.

Z tego powodu w pierwszej kolejności przeprowadzono analizę korelacji i wybrano cechy (do przeprowadzenia analizy skupień), które istotnie wpływały na badane zjawisko i nie były ze sobą silnie skorelowane. Na tej podstawie do analizy wybrano wartości średnie parametrów badanych pszenic ze zbiorów 2005 roku (formy ozime) i 2007 roku (formy jare) tworząc jeden zbiór danych (celowo pominięto zbiory z 2006 roku ze względu na niektóre próbki ziarna i mąki wykazujące cechy tzw. ukrytego porośnięcia). Poszczególne parametry sklasyfikowano do czterech zbiorów:

- zbiór I – wybrane cechy ziarna decydujące o wartości przemiałowej: masa 1000 ziaren, wyciąg mąki, kompleksowe kryterium efektywności przemiału E%,
- zbiór II – wybrane parametry barwy mąki: a^*, b^*, WI, Z%,
- zbiór III – wybrane pośrednie wyróżniki wartości wypiekowej: zawartość skrobi ogółem, stopień uszkodzenia skrobi, liczba opadania, początkowa temperatura kleikowania skrobi
T_p, zawartość białka ogółem, wydajność glutenu mokrego, liczba sedymentacji wg Zeleny’ego,

- zbiór IV – wybrane cechy reologiczne ciasta oraz parametry wypieku laboratoryjnego:
 - zwięzłość ciasta, wydajność ciasta, czas rozrostu końcowego ciasta, całkowita strata piecowa, wydajność pieczywa, objętość pieczywa ze 100 g mąki, wilgotność miękiszu chleba, wytrzymałość miękiszu na ściskanie, maksymalna energia ściskania miękiszu chleba.

- zbiór V – łączył wszystkie wyżej wymienione parametry.

Zgromadzone powyższe dane wejściowe wyrażone były w różnych jednostkach i miały różną zmienność. W celu ich ujednolicenia (w pierwszej kolejności) przeprowadzono normalizację analizowanych zmiennych. Standaryzacja danych powoduje wyrównanie dyspersji i poziomu wartości cechy. Tym samym, wariancje zmiennych są równe 1, a średnie arytmetyczne 0, co powoduje, że każda zmienna wpływa jednakowo na ostateczny wynik analizy.

Podczas przeprowadzania analizy skupień wykorzystano hierarchiczną technikę aglomeracji, korzystając z metody średnich połączeń. W metodzie tej odległość pomiędzy dwoma skupieniami oblicza się za pomocą średniej arytmetycznej wyznaczonej ze wszystkich odległości obiektów należących do dwóch różnych skupień. Metoda ta jest efektywna, gdy obiekty formują naturalne skupienia, jak również mają charakter „łańcucha”. Wykorzystaną w analizie funkcją odległości była odległość euklidesowa (Kunasz, 2006; Stanisz, 2006, 2007a,b; Wojnar, Cichocka, 2008; Chorkowy, Drymluch, 2008; Wątroba, 2008; Żemojtel, Boguszewski, 2009).

Analiza statystyczna danych została przeprowadzona przy użyciu programu STATISTICA 7.1.
5. Omówienie i dyskusja wyników badań

5.1. Warunki pogodowe podczas uprawy ziarna badanych odmian orkiszu

Analiza porównawcza wyników uzyskanych podczas prac laboratoryjnych wykazała, że wartości (szczególnie niektórych parametrów) otrzymane w 2006 roku, są znacznie różne od danych uzyskanych w 2005 i 2007 roku. Z tego względu podjęto decyzję o przeanalizowaniu warunków pogodowych w latach, w których były uprawiane badane pszenice (w rejonie ich uprawy).

Powszechnie wiadomo, że warunki pogodowe mają istotny wpływ na wzrost i ostateczny wygląd roślin. Okazuje się, że przy wyższej temperaturze powietrza wzrost roślin jest wzmożony, natomiast obniżenie temperatury powoduje spowolnienie wzrostu. Z kolei, woda potrzeba jest roślinie przez cały okres wegetacji, a głównym jej źródłem są opady atmosferyczne.

Jednak w pewnych fazach rozwojowych, do wzrostu potrzebne są większe ilości wody, a w innych, nadmierne opady są niewskazane. Niedobór wody w tzw. okresach krytycznych może istotnie wpływać na produkcję. W polskich warunkach na brak wody w maju najbardziej wrażliwe są zboża oziomne (szczególnie w fazach rozwoju rośliny: strzelenie w źdźbło do kwitnienia). Z kolei, zboża jare są najmniej odporne od połowy maja do połowy czerwca. Nadmiar wody również jest niekorzystny, tj., może zaburzać procesy fizjologiczne, być przyczyną chorób i utrudniać zbiory (Grzebisz, 2008).

Wśród pszenic wyróżnia się formę oziomą i jąrą. Jak wiadomo, okres wegetacyjny pszenicy jarej odbywa się w jednym sezonie wegetacyjnym, natomiast pszenice oziome początkowe fazy rozwojowe przechodzą na jesieni, wchodząc w okres zimowy jeszcze przed rozkrzewieniem, w trakcie lub po rozkrzewieniu. W przypadku pszenic oziomych wysoka temperatura w okresie krzewienia powoduje nadmierny rozwój, ograniczając tworzenie nowych źdźbł i obniżając plony. Wysoka temperatura w czasie strzelenia w źdźbło i kwitnienia powoduje, że roślina nie wyrasta za wysoko, natomiast nadmiar wody powoduje intensywny wzrost i w konsekwencji wyleganie. Gorący początek lata może powodować pogorszenie jakości ziarna. Dla korzystnego rozwoju i wzrostu ziarniaka czerwiec powinien dość wilgotny i chłodny. Tym samym suchy, gorący czerwiec i lipiec może powodować pogorszenie plonów, szczególnie pszenicy oziemnej. Dochodzi wtedy do przedwczesnego żółknienia źdźbł, zasychania ziarna, co utrudnia zbór ze względu na małe wymiary ziarniaków. Natomiast w czasie kłoszenia i dojrzewania ziarniaków nadmiar wody jest wskazany, niestety jednocześnie może powodować wyleganie.

W przypadku pszenic jarych niebezpieczeństwo pogorszenia się jakości ziarna to nadmiar wody w czasie strzelenia w źdźbło i kłoszenia, choć okazuje się, że w latach mokrych pszenice te dają wysokie plony. Natomiast w okresie dojrzewania ziarniaków długotrwałe i wysokie temperatury powodują gorszy rozwój ziarniaka i ograniczają plonowanie (Gąsiorowski, 2004a).

Powyższy wstęp był niezbędny, w celu wyjaśnienia zależności, jakie zauważono w czasie analizowania danych uzyskanych podczas realizacji pracy badawczej.

Jak wynika z poniższej tabeli (Tabela 18), najbardziej niekorzystnymi warunkami pogodowymi cechował się rok 2006. Wiadomo, że dla pszenicy korzystny jest wilgotny maj, czerwiec
i lipiec (fazy: strzelenie w źdźbło, kłoszenie, kwitnienie), choć nadmiar opadów powoduje pogorszenie plonów.

Tabela 18. Dane agrometeorologiczne (Rolnictwo w 2006; 2007; 2008 roku; Rocznik statystyczny rolnictwa..., 2007; 2008).

<table>
<thead>
<tr>
<th>Miasto</th>
<th>Parametr</th>
<th>Rok</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperatura powietrza [°C]</td>
<td>2004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13,1</td>
<td>9,2</td>
<td>2,9</td>
<td>1,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suma opadów [mm]</td>
<td>2004</td>
<td>43</td>
<td>31</td>
<td>40</td>
<td>21</td>
<td>30</td>
<td>26</td>
<td>90</td>
<td>42</td>
<td>61</td>
<td>26</td>
<td>37</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Temperatura powietrza [°C]</td>
<td>2005</td>
<td>1,4</td>
<td>-2,0</td>
<td>0,3</td>
<td>8,1</td>
<td>13,1</td>
<td>15,7</td>
<td>20,4</td>
<td>17,3</td>
<td>15,8</td>
<td>9,5</td>
<td>3,4</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>Suma opadów [mm]</td>
<td>2005</td>
<td>28</td>
<td>27</td>
<td>29</td>
<td>51</td>
<td>73</td>
<td>22</td>
<td>51</td>
<td>34</td>
<td>17</td>
<td>9</td>
<td>27</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Temperatura powietrza [°C]</td>
<td>2006</td>
<td>3,9</td>
<td>-0,6</td>
<td>6,2</td>
<td>9,0</td>
<td>14,8</td>
<td>18,8</td>
<td>18,4</td>
<td>18,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Suma opadów [mm]</td>
<td>2006</td>
<td>13</td>
<td>32</td>
<td>13</td>
<td>40</td>
<td>52</td>
<td>31</td>
<td>13</td>
<td>156</td>
<td>62</td>
<td>18</td>
<td>43</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Temperatura powietrza [°C]</td>
<td>2007</td>
<td>83</td>
<td>36</td>
<td>43</td>
<td>19</td>
<td>67</td>
<td>57</td>
<td>165</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Temperatury powietrza dla większości miesięcy w poszczególnych latach były na podobnym poziomie. Jak okazało się lipiec w Toruniu w 2006 roku był bardzo suchy, w przeciwieństwie do bardzo mokrego sierpnia. Jak wcześniej wspomniano, gorący i suchy początek lata (czerwiec i lipiec) powoduje przedwczesne zasychanie pędów i ziarniaków i w konsekwencji zmniejszenie plonów, a szczególnie wraźliwe na to są pszenice ozime.

Z kolei, pszenice jare, w związku z tym, że nieco później zaczynają vegetację (z racji terminu siewu), nieco później wchodzą w fazę kwitnienia. Z tego powodu w badanym ziarnie mniejszy wpływ (na jego jakość) miał suchy lipiec 2006 roku.

W obydwu przypadkach zbior w sierpniu był utrudniony (ze względu na deszczowy sierpień), co również wpłynęło na jakość ziarna i otrzymanej z niego mąki, szczególnie formy ozimej.

Ostatecznie, skrajne warunki pogodowe 2006 roku spowodowały pogarszenie niektórych parametrów fizycznych ziarna oraz wpłynęły (w wielu przypadkach) na koncentrację poszczególnych składników chemicznych w ziarnie i mące oraz jej przydatność technologiczną, co zostanie dokładnie omówione w dalszej części pracy.

5.2. Wybrane składniki chemiczne i wartość odżywcza wysokowyciągowej mąki orkiszowej

Tłuszcz i skład kwasów tłuszczowych

Szeroką grupę związków chemicznych, które występują w niewielkiej ilości w ziarnie i mące, stanowią lipidy. W ostatnich latach coraz więcej uwagi poświęca się prawidłowemu żywieniu. Jak wiadomo, spożycie tłuszczów nasyconych zwiększa ryzyko zachorowalności na choroby serca, a włączenie do diety tłuszczów polinienasyconych, szczególnie kwasu linolowego oraz linolenowego obniża to ryzyko. Z tego też względu w materiale badawczym oznaczono zawartość tłuszczu ogółem oraz skład kwasów tłuszczowych.

Jak wynika z przeanalizowanych danych, średnia zawartość tłuszczu ogółem w mąkach z ziarna formy ozimej z roku 2005 wahała się w granicach od 1,42 do 2,04% s.m., a w roku 2006 od 1,37 do 2,11% s.m. (Tabela 19). Z kolei, w mąkach otrzymanych z ziarna jarego, zawartość tego składnika mieściła się w zakresie od 1,60 do 1,92% s.m. (zbiory 2006) oraz od 1,45 do 1,56% s.m. (zbiory 2007) (Tabela 20). Jak okazało się, w większości przypadków, mąka orkiszowa cechowała się wyższą zawartością tłuszczu w porównaniu do mąki otrzymanej z ziarna pszenicy zwyczajnej odmian Korweta i Torka. Najbardziej stabilną pod względem zawartości omawianego składnika okazała się odmiana orkisu Ostro. Z kolei, mąka z ziarna orkisu odmiany Holstenkorn, charakteryzowała się najwyższą (spośród wszystkich badanych mąk) zawartością tłuszczu, co mogło być związane z najwyższą popiołowością tej mąki.

W przypadku mąk z ziarna jarego widać wyraźny wpływ warunków uprawy na wartość omawianego parametru, tj. w 2007 roku zawartość tłuszczu ogółem w mąkach z ziarna jarego była znacznie niższa niż w roku poprzednim (2006). Jednak porównując wszystkie uzyskane wyniki dla mąki z ziarna form ozimych i jarych nie można jednoznacznie stwierdzić, że zawartość tłuszczu zwiększa się lub zmniejsza w zależności od warunków wegetacyjnych. Wydaje się raczej, że wartość tego parametru jest zależna od formy odmianowej, w przeciwieństwie do składu kwasów tłuszczowych.

Literatura podaje, że zawartość lipidów jest związana z twardością ziarna, tzn. z reguły pszenice twarde charakteryzują się wyższą zawartością tłuszczu ogółem w porównaniu do pszenic miękkich, niezależnie od użytego do przemiału młyna (Konopka, Rotkiewicz, 2000; Prabhasankar, Rao, 2001; Gąsorowski, 2004a). Jednak w przypadku badanych odmian ziarna orkisu i pszenicy zwyczajnej nie zauważono powyższej zależności.

Nienasycone kwasy tłuszczowe obecne w ziarnie i mące, należą do związków chemicznych, które zawierają w łańcuchu węglowym przynajmniej jedno wiązanie podwójne. Analiza składu kwasów tłuszczowych w badanych mąkach wykazała, że dominującym kwasem tłuszczowym był kwas linolowy. Jednak w wszystkich badanych mąkach orkiszowych było go istotnie mniej (55,6 – 59,6% – zbiory 2005 – 2007) niż w mąkach uzyskanych ziarna pszenicy zwyczajnej odmian Korweta i Torka (60,7 – 61,9%). Zawartość tego kwasu w mąkach wzorcowych (Korweta i Torka) oraz w mąkach orkiszowych otrzymanych z ziarna formy jarej była stabilna w dwóch latach zbiorów, w przeciwieństwie do mąki z ziarna ozimego (w drugim roku zbiorów, 2006), która charakteryzowała się niższą zawartością kwasu linolowego w porównaniu z rokiem poprzednim (zbiory 2005).
Tabela 19. Zawartość tłuszczu i skład kwasów tłuszczowych wysokowyciogowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Zawartość tłuszczu ogółem</th>
<th>Zawartość kwasu palmitynowego C_{16:0}</th>
<th>Zawartość kwasu stearynowego C_{18:0}</th>
<th>Zawartość kwasu oleinowego C_{18:1}</th>
<th>Zawartość kwasu linolowego C_{18:2}</th>
<th>Zawartość kwasu linolenowego C_{18:3}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% s.m.</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
</tbody>
</table>
| *Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).*

Tabela 20. Zawartość tłuszczu i skład kwasów tłuszczowych wysokowyciogowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ród hodowlany</th>
<th>Zawartość tłuszczu ogółem</th>
<th>Zawartość kwasu palmitynowego C_{16:0}</th>
<th>Zawartość kwasu stearynowego C_{18:0}</th>
<th>Zawartość kwasu oleinowego C_{18:1}</th>
<th>Zawartość kwasu linolowego C_{18:2}</th>
<th>Zawartość kwasu linolenowego C_{18:3}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% s.m.</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
</tbody>
</table>
| *Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).*
Natomiast zawartość kwasu palmitynowego w badanych mąkach orkiszowych otrzymanych z ziarna ozimego była na poziomie od 17,1% do 20,8% (zbiory 2005), a w roku 2006 wartość tego parametu wahała się w granicach od 13,6% do 17,3% i była wyraźnie niższa w porównaniu do poprzedniego roku zbiorów. Z kolei, w przypadku mąki z ziarna form jarych zawartość kwasu palmitynowego była na poziomie od 15,5% do 16,7% (zbiory 2006) oraz od 17,6% do 20,3% (zbiory 2007) i w drugim roku zbiorów była wyraźnie wyższa. Mogło to być związane z warunkami pogodowymi w 2006 roku. W przypadku koncentracji kwasu palmitynowego widać wyraźny wpływ warunków wegetacyjnych na wartość tego parametru, tzn. stresy pogodowe spowodowały obniżenie zawartości tego składnika.

Z punktu żywieniowego istotna jest jak najwyższa zawartość kwasu oleinowego w mące. Jak okazało się badane mąki orkiszowe (w większości przypadków) charakteryzowały się istotnie wyższą (17,5 – 23,1%) zawartością kwasu oleinowego w porównaniu do mąki z ziarna odmian Korweta i Torka (14,2 – 16,5%) – zbiory 2005 – 2007. Trudne warunki pogodowe w 2006 roku, korzystnie wpłynęły na zawartość tego kwasu w mące, co najprawdopodobniej było związane ze stresami środowiskowymi.

Zawartość kwasu linolenowego w mąkach orkiszowych była (w większości przypadków) istotnie niższa w porównaniu do mąki otrzymanej z ziarna pszenicy zwyczajnej odmian Korweta i Torka. Dodatkowo, zauważono wyraźny wpływ warunków podczas wegetacji na koncentrację tego składnika w mąkach orkiszu ozimego i ozimej pszenicy zwyczajnej, w przeciwieństwie do form jarych orkiszu i pszenicy zwyczajnej.

W najmniejszej ilości w badanych mąkach występował kwas stearynowy. Nie mniej jednak, mąka uzyskana z ziarna ozimego ze zbiorów 2006 zawierała prawie trzykrotnie więcej tego kwasu (1,0 – 1,3%) w porównaniu do jego zawartości w mące z poprzedniego roku zbiorów (0,3 – 0,4%). W przypadku mąk z ziarna jarego zawartość kwasu stearynowego w roku 2006 również była na wyższym poziomie w porównaniu do koncentracji tego składnika w kolejnym roku zbiorów (2007), choć różnica w zawartości nie była tak duża, jak w przypadku badanych mąk z ziarna ozimego.

Na podstawie tych wyników stwierdzono, że warunki wegetacyjne w roku 2006 miały istotny wpływ na skład kwasów tłuszczowych mąki, ale dotyczy to szczególnie mąki z ziarna orkiszu ozimego, a w mniejszym stopniu mąki z pszenicy wzorcowej odmiany Korweta. Niekorzystne warunki pogodowe spowodowały obniżenie zawartości kwasu linolowego i palmitynowego, a zwiększenie zawartości kwasu oleinowego, linolenowego oraz stearynowego. Podobne zależności można zauważyć w przypadku mąki z ziarna jarego, przyjmując założenie, że rok 2007 charakteryzował się lepszymi warunkami pogodowymi. Należy jednak dodać, że różnice te są znacznie mniejsze, stąd można stwierdzić, że pszenice jare są mniej podatne na warunki pogodowe (podczas wegetacji) w porównaniu do pszenic ozimych, co w konsekwencji rzutuje na poziom zawartości kwasów tłuszczowych.

Niekorzystne warunki podają, że zawartość tłuszczu w ziarnie oraz skład kwasów tłuszczowych w dużym stopniu zależy od gatunku i odmiany zboża, jak również od warunków klimatycznych i uprawowych, co potwierdzają wyniki niniejszej pracy. Wysoka temperatura i mała ilość opadów wpływa na obniżenie zawartości tłuszczu i stopnia nasycenia kwasów tłuszczowych w ziarnie

89
pszenicy zwyczajnej (Konopka, Rotkiewicz, 2000; Prabhasankar, Rao, 2001; Gąsiorowski, 2004a), co nie jest regułą w przypadku orkiszu.

Prabhasankar i Rao (1999; 2001) stwierdzili, że zawartość tłuszczu w mące, skład kwasów tłuszczowych oraz ich wzajemne proporcje w dużym stopniu są zależne od twardości ziarna, sposobu przemiany (rodzaj użytego młyna) oraz typu uzyskiwanej mąki. Z reguły miękkie pszenice zwyczajne (i otrzymana z nich mąka) cechują się niższą zawartością kwasu palmitynowego, oleinowego i linolenu, a wyższą linolowego, co nie jest prawdą w przypadku badanych mąk orkiszowych.

Jak wynika z danych literaturowych, w większości przypadków jasna i ciemna mąka orkiszowa cechowały się wyższą zawartością tłuszczu w porównaniu do analogicznych mąk otrzymanych z ziarna pszenicy zwyczajnej. Może to wynikać z wyższego udziału zarodka lub/otrzymanej w ziarnie orkisz (Abdel – Aal i in., 1995; Marconi i in., 1999; Moudrý, Dvořáček, 1999; Ruibal – Mendieta i in., 2002; Ruibal – Mendieta i in., 2005 Čertík i in., 2006; Lacko – Bartošová, Rédlová, 2007). Otrzymane w niniejszej pracy wyniki, w porównaniu z danymi literaturowymi, są na podobnym poziomie.

Skład kwasów tłuszczowych w analizowanych mąkach jest również porównywalny z danymi podawanymi w literaturze (Grela, 1996; Ranhotra i in., 1996; Piergiovanni i in., 1996; Moudrý i Dvořáček, 1999; Gąsiorowski, 2004a; Ruibal – Mendieta i in., 2004a, 2004b, 2005; Čertík i in., 2006; Lacko – Bartošová, Rédlová, 2007).

Błonnik pokarmowy i skrobia oporna

Zboża i otrzymana z ziarna mąka stanowiąc podstawę jadłospisu przeciętnego konsumenta, są cennym źródłem błonnika pokarmowego. Literatura jednak podaje różne zakresy tego składnika w mące orkiszowej, stąd w niniejszej pracy oznaczono również zawartość błonnika ogółem oraz jego frakcje.

Analiza porównawcza badanej mąki wykazała, że zawartość błonnika ogółem w mąkach otrzymanych z ziarna ozimego mieściła się w zakresie od 9,1 do 11,8% s.m. (zbiory 2005) oraz od 7,0 do 8,7% s.m. (zbiory 2006) (Tabele 21 i 22). Z kolei, w mąkach uzyskanych z ziarna jarego zawartość tego składnika była na poziomie od 8,1 do 9,1% s.m. (zbiory 2006), a w 2007 roku było go więcej (10,1 – 12,0% s.m.).

Badane mąki otrzymane z ziarna ozimego ze zbiorów 2005 i 2006 cechowały się w większości przypadków wyższą zawartością frakcji rozpuszczalnej (blonnik pokarmowego) w porównaniu do mąki otrzymanej z ziarna pszenicy zwyczajnej odmiany Korweta. Z kolei, zawartości frakcji rozpuszczalnej i nierozpuszczalnej w mące otrzymanej z jarego ziarna orkisu i pszenicy zwyczajnej odmiany Torka były na zbliżonym poziomie. Warto dodać, że mąki otrzymane z ziarna form jarych w porównaniu do mąk otrzymanych z ziarna ozimego charakteryzowały się niższą zawartością błonnika ogółem, ale jednocześnie wyższym udziałem frakcji rozpuszczalnej.
Tabela 21. Zawartość błonnika ogółem i jego frakcji (rozpuszczalnej i nierozpuszczalnej) oraz skrobi amylazoopornej w wysokowyciągowej mące otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Blonnik</th>
<th>Skrobia amylazooporna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ogółem</td>
<td>Rozpuszczalny</td>
</tr>
<tr>
<td></td>
<td>% s.m.</td>
<td>% s.m.</td>
</tr>
<tr>
<td>Korweta</td>
<td>10,2 ± 0,1</td>
<td>8,3 ± 0,1</td>
</tr>
<tr>
<td>Ceralio</td>
<td>10,5 ± 0,1</td>
<td>7,0 ± 0,0</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>10,1 ± 0,0</td>
<td>7,2 ± 0,0</td>
</tr>
<tr>
<td>Frankenkor</td>
<td>9,1 ± 0,1</td>
<td>7,3 ± 0,1</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>10,7 ± 0,1</td>
<td>8,4 ± 0,0</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>11,8 ± 0,1</td>
<td>7,5 ± 0,0</td>
</tr>
<tr>
<td>Ostro</td>
<td>11,8 ± 0,2</td>
<td>8,4 ± 0,0</td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>11,0 ± 0,1</td>
<td>8,7 ± 0,2</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystcznie istotnie (p<0,05).

Tabela 22. Zawartość błonnika ogółem i jego frakcji (rozpuszczalnej i nierozpuszczalnej) oraz skrobi amylazoopornej w wysokowyciągowej mące otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ród hodowlany</th>
<th>Blonnik</th>
<th>Skrobia amylazooporna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ogółem</td>
<td>Rozpuszczalny</td>
</tr>
<tr>
<td></td>
<td>% s.m.</td>
<td>% s.m.</td>
</tr>
<tr>
<td>Torka</td>
<td>9,1 ± 0,1</td>
<td>11,9 ± 0,0</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>8,5 ± 0,1</td>
<td>11,1 ± 0,0</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>9,1 ± 0,1</td>
<td>10,1 ± 0,1</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>8,1 ± 0,2</td>
<td>12,0 ± 0,0</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystcznie istotnie (p<0,05).
Analizując wyniki zauważono również, że niekorzystne warunki pogodowe panujące w roku 2006 spowodowały obniżenie zawartości błonnika ogółem i frakcji nierozpuszczalnej w badanych mąkach. Natomiast obniżenie zawartości frakcji rozpuszczalnej wykazano jedynie w mąkach otrzymanych z ziarna jarego (zbiory 2006).

Do błonnika pokarmowego w niniejszej pracy zaliczono również skrobię oporną. Powstaje ona przy braku odpowiedniej ilości wody podczas ogrzewania mąki. Skrobia taka w związku z tym, że nie jest trawiona, pełni taką samą funkcję jak błonnik pokarmowy.

Zawartość tego składnika w mące otrzymanej z ozimego ziarna pszenicy orkisz wahala się w granicach od 25,1 do 29,8% s.m. (zbiory 2005) oraz od 15,0 do 36,7% s.m. (2006) i w większości przypadków była wyższa niż w mące z ziarna pszenicy zwyczajnej odmiany Korweta (odpowiednio: 17,8 i 16,6% s.m.) (Tabele 21 i 22). Z kolei, w przypadku mąki otrzymanej z ziarna pszenicy zwyczajnej odmiany Torka (zbiory 2006) zawartość skrobi amylazoopornej była na wyższym poziomie (34,6% s.m.) niż w jarej mące orkiszowej (20,1 – 28,7% s.m.), co mogło być związane z najwyższą zawartością skrobi ogółem (Tabele 37 i 38). W kolejnym roku zbiorów (2007), mąki orkiszowe z ziarna jarego charakteryzowały się wyższą zawartością skrobi opornej (19,5 – 24,0% s.m.), niż mąka z pszenicy zwyczajnej odmiany Torka (18,5% s.m.).

Zawartość błonnika i jego frakcji prezentowane w niniejszej pracy są zgodne z tymi spotykanymi w literaturze. Niektórzy badacze podają, że mąka orkiszowa jest lepszym źródłem błonnika ogółem, frakcji nierozpuszczalnej, bądź rozpuszczalnej (Ranhotra i in., 1996; Marconi i in., 1999; Moudrý, Dvořáček, 1999; Bonafaccia i in. 2000; Marques i in., 2007). Nie można jednak jednoznacznie tego stwierdzić na podstawie wyników prezentowanych w niniejszej pracy. Jest to raczej zależne od odmiany, formy odmianowej, warunków pogodowych, sposobu uprawy i przemiału pszenicy na mąkę.

5.3-Wartość technologiczna ziarna orkiszu oraz otrzymanej z niego mąki

5.3.1. Właściwości fizyczne i wartość przemiałowa ziarna orkiszu

Uzysk ziarna

Pszenica orkisz, jak już wcześniej wspomniano, należy do zbóż niewymłacalnych. Tym samym, pierwszym badanym parametrem było określenie udziału plew i plewek w ziarnie, tj. uzysku ziarna orkiszu z omłotu materiału oplewionego.

Z prezentowanych poniżej danych wynika (Tabele 23 i 24), że najniższym uzyskiem ziarna w pierwszym roku zbiorów cechowały się odmiany orkisz Oberkulmer Rotkorn i Ceralio, a w drugim odmiana Ceralio (wynik różnił się istotnie statystycznie od pozostałych). Z kolei, najwyższą wartość tego parametru uzyskało ziarno orkiszu odmian Frankenkorn i Schwabenspelz (zbiory 2005) oraz Schwabenspelz i Holstenkorn (zbiory 2006). Spośród ziarna jarego najwyższym uzyskiem ziarna w dwóch latach zbiorów cechował się ród hodowlany UWM – 12.

Stwierdzono również, że rok zbiorów ma zasadniczy wpływ na wartość tego parametru, tj. uzysk ziarna orkiszu ozimego w 2006 roku (ziarno było drobne i słabo wykształcone) był niższy niż
w roku 2005. Powszechnie wiadomo, że plewy i plewki w dorodnym ziarnie zazwyczaj luźniej do niego przylegają i tym samym odplewienie jest ułatwione (Tyburski, Babalski, 2006).

Tabela 23. Uzysk ziarna orkiszu z omlotu materiału oplewionego (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana orkiszu</th>
<th>Uzysk ziarna [%]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Ceralio</td>
<td>71,49 ± 0,21</td>
<td>69,81 ± 0,52</td>
<td></td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>72,72 ± 0,10</td>
<td>72,10 ± 0,72</td>
<td></td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>76,43 ± 0,45</td>
<td>73,84 ± 0,51</td>
<td></td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>74,32 ± 0,34</td>
<td>74,36 ± 0,54</td>
<td></td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>75,00 ± 0,41</td>
<td>74,38 ± 0,53</td>
<td></td>
</tr>
<tr>
<td>Ostro</td>
<td>73,90 ± 0,10</td>
<td>71,02 ± 0,03</td>
<td></td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>71,03 ± 1,70</td>
<td>72,67 ± 1,63</td>
<td></td>
</tr>
</tbody>
</table>

Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Tabela 24. Uzysk ziarna orkiszu z omlotu materiału oplewionego (forma jara).

<table>
<thead>
<tr>
<th>Rody hodowlane orkiszu jarego</th>
<th>Uzysk ziarna [%]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>UWM – 10</td>
<td>71,12 ± 0,20</td>
<td>74,05 ± 0,72</td>
<td></td>
</tr>
<tr>
<td>UWM – 11</td>
<td>73,65 ± 0,20</td>
<td>69,55 ± 0,42</td>
<td></td>
</tr>
<tr>
<td>UWM – 12</td>
<td>75,97 ± 0,86</td>
<td>75,52 ± 0,61</td>
<td></td>
</tr>
</tbody>
</table>

Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Prezentowane w niniejszej pracy wyniki są zgodne z danymi spotykanymi w literaturze (Huel i in.,1995; Abdel – Aal i in., 1996; Abdel – Aal i in., 1998b; Lacko – Bartošová i in., 2007). Lacko – Bartošová i in. (2007) dodatkowo zauważyli, że uzysk ziarna zwiększa się wraz ze wzrostem wydajności z hektara, co jest również zależne od wielkości ziarniaków (im wyższa masa 1000 ziaren, tym wyższa wydajność i wyższy uzysk ziarna). Markowski i in. (2007) badali te same ozime odmiany orkiszu, co w niniejszej pracy (próbki pochodziły z certyfikowanego ekologicznego gospodarstwa z Niemiec). Jak okazało się najlepiej odplewaniu poddawał się orkisz odmiany Frankenkorn (76,4%), a najsłabiej ziarno orkiszu odmiany Oberkulmer Rotkorn (70,7%).

Wartość przemiłowa ziarna

Analiza właściwości fizycznych ziarna, daje obraz przydatności ziarna do przemiału. Wiadomo, że im dorodniejsze ziarniaki, tym wyższa wydajność mąki podczas przemiału. Wyrównanie ziarna, tj. % udział ziarna o grubości większej od 2,5 mm, to parametr, który określono w pierwszej kolejności.

Jak wynika z prezentowanych w tabelach danych (**Tabele 25 i 26**), najwyższym udziałem dorodnego ziarna (zbiory 2005 i 2006) charakteryzował się orkisz odmiany Ostro (odpowiednio: 96,4% i 93,3%) i ziarno pszenicy zwyczajnej odmiany Korweta (94,0% – zbiory 2006). W obydwu latach (2005 i 2006) ziarno orkiszu odmiany Ceralio cechowało się najniższym udziałem ziarna.
o grubości powyżej 2,5 mm. Z kolei, orkisze odmian Frankenkorn, Holstenkorn oraz Oberkulmer Rotkorn okazały się najbardziej stabilne pod względem wartości tego parametru. Zauważono również, że ziarno orkiszu formy jarej, w porównaniu z formą ozimą, cechowało się zdecydowanie niższym udziałem ziarna >2,5 mm, co sugeruje, że zemiaiki te były drobniejsze. Wśród formy jarej najkorzystniejszym wyrównaniem ziarna w 2006 roku cechował się orkisz rodu hodowlanego UWM – 11 (64,2%), a w 2007 UWM – 10 (75,8%). Ten ostatni uzyskał dodatkowo wyższą wartość tego parametru w porównaniu z ziemniakiem pszenicy zwyczajnej odmiany Torka (53,4%).

Tabela 25. Charakterystyka ziarna użytego do otrzymania wysokowyciągowej mąki (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Wyrównanie ziarna [%] X >2,5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rok</td>
</tr>
<tr>
<td>Korweta</td>
<td>94,0 ± 0,7</td>
</tr>
<tr>
<td>Ceralio</td>
<td>81,4 ± 0,7</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>82,6 ± 0,9</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>89,7 ± 0,8</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>90,3 ± 0,4</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>79,2 ± 0,8</td>
</tr>
<tr>
<td>Ostro</td>
<td>96,4 ± 0,7</td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>87,9 ± 0,5</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Wyrównanie ziarna [%] X >2,5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rok</td>
</tr>
<tr>
<td>Torka</td>
<td>79,8 ± 0,6</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>29,4 ± 0,8</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>64,2 ± 2,4</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>29,9 ± 1,4</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Analiza porównawcza masy 1000 ziaren oraz gęstości w stanie szypnym (zbiory 2005 i 2006) badanego ziarna wykazała, że najwyższymi wartościami tych parametrów cechowało się ziarno orkiszu odmiany Oberkulmer Rotkorn (wyjątek stanowią zbiory 2005 – gęstość ziarna w stanie szypnym) oraz Ostro (Tabele 27 i 28). Zauważono również, że ziarno tej drugiej odmiany (spośród ziarna orkiszu ozimego) uzyskało dodatkowo najwyższe wartości średniej pracy W_s potrzebnej do deformacji jednego ziarniaka (odpowiednio w badanych latach: 1,16 kJ/g; 1,66 kJ/g), podczas gdy dla ziarna pszenicy wzorcowej odmiany Korweta odnotowano wartości na poziomie: 1,92 kJ/g i 0,94 kJ/g.

Z kolei, analizując właściwości fizyczne ziarna form jarych nie wyłoniono najlepszej odmiany. Zauważono jedynie, że cechowało się ono istotnie mniejszą masą 1000 ziaren oraz gęstością ziarna w stanie szypnym w porównaniu z formami ozymi. Dodatkowo, w większości przypadków, średnia praca W_s potrzebna do odkształcenia jednego ziarniaka orkiszu była na niższym poziomie niż...
dla ziarna pszenicy zwyczajnej odmian Korweta i Torka. Daje to tym samym możliwość sklasyfikowania ziarna orkiszu jako bardziej miękkiego niż ziarno pszenicy zwyczajnej. Należy jednak podkreślić, że w przypadku ziarna orkiszu jarego największy wpływ na wartość tego parametru miał rok uprawy. Trudne warunki pogodowe w 2006 roku spowodowały znaczne obniżenie twarości ziarna, w porównaniu z rezultatami otrzymanymi w następnym roku analiz.

Prezentowane w niniejszej pracy wartości parametrów cech fizycznych ziarna w większości przypadków były zgodne z danymi literaturowymi (Hucl i in., 1995; Abdel – Aal i in., 1996; Pałys, Łabuda, 1997; Capouchová, 2001; Lacko – Bartošová, Otepka, 2001; Marconi i in., 2002; Sulewska, 2004; Lacko – Bartošová i in., 2007; Krawczyk i in., 2008a; Zieliński i in., 2008). Z kolei, wszelkie różnice mogły wynikać z różnych warunków glebowych i pogodowych, systemu uprawy oraz doboru badanych odmian, form odmianowych i hybryd. Mimo to, cytowani autorzy zauważyli, że ziarno orkiszu w większości przypadków było drobniejsze i trudniej poddawało się przemiałowi w porównaniu do innych odmian i gatunków pszenic (pszenicy zwyczajnej, pszenicy durum). Marconi i in. (2002) zauważyli dodatkowo, że orkisze o wyższej zawartości białka ogółem cechowały się bardziej miękkim ziemniem i gorzej poddawały się przemiałowi, niż ziarniaki orkiszu o mniejszej koncentracji tego składnika.
Tabela 27. Wybrane właściwości fizyczne ziarna badanych odmian pszenicy zwyczajnej i orkisz, z których otrzymano wysokowyciągową mąkę (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Masa 1000 ziaren</th>
<th>Gęstość ziarna w stanie zsypnym</th>
<th>Twardość ziarna W_s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>kg /hl</td>
<td>kJ/g</td>
</tr>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
<tr>
<td>Korweta</td>
<td>41,2 ± 0,3</td>
<td>36,7 ± 0,7</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>42,1 ± 0,7</td>
<td>35,2 ± 0,6</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>66,5 ± 0,1</td>
<td>60,9 ± 0,2</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>0,68 ± 0,4</td>
<td>0,60 ± 0,5</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>1,92 ± 0,56</td>
<td>0,94 ± 0,49</td>
<td></td>
</tr>
<tr>
<td>Ceralio</td>
<td>44,5 ± 0,8</td>
<td>35,4 ± 0,7</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>67,7 ± 0,3</td>
<td>61,8 ± 0,3</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>0,96 ± 0,36</td>
<td>0,52 ± 0,49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,04 ± 0,42</td>
<td>0,62 ± 0,37</td>
<td></td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>42,5 ± 1,1</td>
<td>39,5 ± 0,6</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>67,0 ± 0,5</td>
<td>61,4 ± 0,2</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>0,99 ± 0,41</td>
<td>1,10 ± 0,64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,68 ± 0,2</td>
<td>0,79 ± 0,40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,86 ± 0,55</td>
<td>1,46 ± 0,37</td>
<td></td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>41,9 ± 0,8</td>
<td>36,0 ± 0,9</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>66,6 ± 0,2</td>
<td>59,6 ± 0,1</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>0,79 ± 0,40</td>
<td>1,16 ± 0,52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,86 ± 0,55</td>
<td>1,46 ± 0,37</td>
<td></td>
</tr>
<tr>
<td>Schwabenpelz</td>
<td>41,0 ± 0,6</td>
<td>38,7 ± 0,4</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>66,8 ± 0,2</td>
<td>62,5 ± 0,4</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>0,79 ± 0,40</td>
<td>1,16 ± 0,52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,86 ± 0,55</td>
<td>1,46 ± 0,37</td>
<td></td>
</tr>
<tr>
<td>Ostro</td>
<td>45,8 ± 0,7</td>
<td>35,3 ± 0,7</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>68,6 ± 0,2</td>
<td>60,9 ± 0,2</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>1,16 ± 0,52</td>
<td>1,66 ± 0,71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,86 ± 0,55</td>
<td>1,46 ± 0,37</td>
<td></td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>50,0 ± 1,0</td>
<td>42,9 ± 0,9</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>68,1 ± 0,2</td>
<td>62,0 ± 0,5</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>1,06 ± 0,42</td>
<td>0,48 ± 0,37</td>
<td></td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Tabela 28. Wybrane właściwości fizyczne ziarna badanych odmian pszenicy zwyczajnej i orkisz, z których otrzymano wysokowyciągową mąkę (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ ród hodowlany</th>
<th>Masa 1000 ziaren</th>
<th>Gęstość ziarna w stanie zsypnym</th>
<th>Twardość ziarna W_s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>kg /hl</td>
<td>J/g</td>
</tr>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
<tr>
<td>Torka</td>
<td>31,4 ± 0,5</td>
<td>26,0 ± 0,7</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>28,5 ± 0,7</td>
<td>34,7 ± 0,7</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>63,4 ± 0,1</td>
<td>62,2 ± 0,5</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>0,87 ± 0,41</td>
<td>2,06 ± 0,78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,43 ± 0,28</td>
<td>1,83 ± 0,80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,83 ± 0,80</td>
<td>1,83 ± 0,80</td>
<td></td>
</tr>
<tr>
<td>UWM – 10</td>
<td>32,9 ± 0,7</td>
<td>26,7 ± 0,5</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>64,9 ± 0,3</td>
<td>61,5 ± 0,4</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>0,43 ± 0,28</td>
<td>1,83 ± 0,80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,83 ± 0,80</td>
<td>1,83 ± 0,80</td>
<td></td>
</tr>
<tr>
<td>UWM – 11</td>
<td>26,9 ± 0,4</td>
<td>27,2 ± 0,5</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>65,8 ± 0,3</td>
<td>60,6 ± 0,1</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>0,32 ± 0,33</td>
<td>2,92 ± 0,62</td>
<td></td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Tabela 29. Wyróżniki wartości przemiałowej ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Kompleksowe kryterium efektywności przemiału E%</th>
<th>rok</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korweta</td>
<td>26,13 ± 0,22</td>
<td></td>
<td></td>
<td>31,32 ± 1,56</td>
</tr>
<tr>
<td>Ceralio</td>
<td>22,59 ± 0,79</td>
<td></td>
<td></td>
<td>33,87 ± 0,07</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>19,61 ± 1,15</td>
<td></td>
<td></td>
<td>35,49 ± 0,78</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>27,62 ± 0,12</td>
<td></td>
<td></td>
<td>32,54 ± 1,19</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>10,77 ± 0,37</td>
<td></td>
<td></td>
<td>41,35 ± 0,26</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>9,92 ± 0,09</td>
<td></td>
<td></td>
<td>41,43 ± 0,30</td>
</tr>
<tr>
<td>Ostro</td>
<td>13,96 ± 0,23</td>
<td></td>
<td></td>
<td>41,69 ± 1,24</td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>13,70 ± 0,09</td>
<td></td>
<td></td>
<td>37,31 ± 0,15</td>
</tr>
</tbody>
</table>

Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Tabela 30. Wyróżniki wartości przemiałowej ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ ród hodowlany</th>
<th>Kompleksowe kryterium efektywności przemiału E%</th>
<th>rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torka</td>
<td>40,69 ± 0,11</td>
<td>2006</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>38,84 ± 0,36</td>
<td>2007</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>32,36 ± 0,57</td>
<td>2006</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>35,32 ± 0,07</td>
<td>2007</td>
</tr>
</tbody>
</table>

Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Jak wynika z danych literaturowych im wyższa twardość ziarna poddawanego przemiałowi, tym większa wydajność przemiału (Ceglińska, 2003; Jurga, 2006a,c; Zieliński i in., 2008), choć Marconi i in. (2002) w przypadku orkiszu tego nie potwierdzili. Przeprowadzona dodatkowo przez autorkę analiza związków korelacyjnych, jedynie w przypadku orkiszu ziarna jarego wykazała
istotną ujemną korelacją \((r = -0,60; \ p < 0,05)\) pomiędzy wytrzymałością ziarna na ściskanie a wartością kompleksowego kryterium efektywności przemiału \(E\%\). Natomiast w ziarnie orkisu ozimego nie potwierdzono takiej zależności. Zauważono również, że wartość tego parametru zależy od twardości ziarna. W 2006 roku ziarno ozime było bardziej miękkie, co spowodowało obniżenie wyciągu mąki i jednocześnie wzrost kompleksowego kryterium efektywności przemiału \(E\%\) względem wyników z 2005 roku. Jednak ten ostatni parametr nie jest wykazuje ścisłej korelacji z wyciągiem mąki (Jurga, 2006b). Dodatkowo, przeprowadzona analiza związków pomiędzy zawartością popiołu w ziarnie i mące orkiszowej oraz wartością kompleksowego kryterium efektywności przemiału, nie wykazała istotnej korelacji liniowej.

Wyciąg mąki a zawartość popiołu całkowitego

Średnia zawartość popiołu w mąkach orkiszowych otrzymanych z ziarna ozimego mieściła się w zakresie od 1,17 do 1,57% s.m. w roku 2005, a od 1,06 do 1,21% s.m. w drugim roku zbiorów (Wykresy 4, 5, 6 i 7; Załącznik 1). Mąki orkiszowe otrzymane z ziarna jarego cechowały się popiołowością w granicach od 1,15 do 1,35% s.m. Odpowiadało to wyciągowi mąki powyżej 87%. W większości przypadków mąki orkiszowe cechowały się wyższą zawartością popiołu w porównaniu do mąk otrzymanych z ziarna pszenicy zwyczajnej odmian Korweta i Torka, co jest zgodne z tendencją spotykaną w literaturze (Grela, 1996; Piergiovanni i in., 1996; Pałys, Łabuda, 1997; Moudrý, Dvořáček, 1999; Bonafaccia i in., 2000; Capouchová 2001; Marconi i in. 2002; Ruibal – Mendieta i in., 2005; Krawczyk i in., 2008a; Zieliński i in., 2008). Uzyskane wartości popiołowości świadczyły o tym, że były to mąki ciemne, odpowiadające typowi 1050 i 1400 (PN – A – 74022) i były one zróżnicowane w zależności od odmiany/ rodu hodowlanego ziarna pszenicy oraz roku zbiorów. Z kolei, wyższa zawartość popiołu ogółem w mąkach orkiszowych może wynikać z wyższej koncentracji związków mineralnych w ziarnie orkisu w porównaniu do pszenicy zwyczajnej (Capouchová, 2001; Zieliński i in., 2008).

Wykres 4. Zależność zawartości popiołu całkowitego w badanych mąkach od stopnia ich wyciągu (zbior 2005).
Zauważono również wyraźnie niższą zawartość popiołu w mąkach otrzymanych z ziarna orkiszu ozimego pochodzącego ze zbiorów z 2006 roku. Podobną zależność stwierdzono w mąkach z ziarna jarego. Ziarno to było mniej dorodne, procentowy udział bielma w stosunku do okrywy owocowo – nasiennej był mniejszy niż w przypadku ziarna dobrze wykształconego, co sugeruje, że mąki te powinny raczej cechować się wyższym udziałem składników mineralnych. Nie mniej
jednak, ziaro z 2006 roku było bardzo miękkie (w porównaniu z rokiem 2005 i 2007 – Tabele 27 i 28). Logicznym jest więc, że zachowywało się inaczej podczas przemiału. Ziarniaki były bardzo elastyczne, bielmo przemiełalo się na mniejsze cząstki, podczas gdy okrywa owocowo – nasienna dzieliła się na większe fragmenty (cząstki). Mąka na sicie odsiewacza młyna trudnej poddawała się oddzielaniu, stąd mniej cząstek otrębiastych przeszło do mąki, czego efektem był jednocześnie niższy wyciąg mąki i udział większych cząstek \(x > 265 \ \mu\text{m} \) w mące (rozkład granulometryczny mąki – porównanie z Wykresami 8 – 19).

Z kolei, Bojňanská, Frančáková (2002) oraz Jankiewicz (2008a) podali, że w przypadku lat słonecznych i upalnych, otrzymuje się ziaro o lepszych cechach jakościowych, ale jednocześnie o wyższej popiołowości w porównaniu do lat chłodnych i deszczowych. Autorka jednak sugeruje, że jest to raczej zależne od miesiąca (dana faza rozwojowa zboża), w którym panują upały i susza.

Granulacja mąki

Kolejnym parametrem, który oznaczała była granulacja mąki. Rozkład granulometryczny w sposób pośredni może wpływać na wartość wypiekową mąki. Jak okazuje się najlepszymi właściwościami wypiekowymi i użytkowymi cechuje się mąka o najbardziej wyrównanych cząstkach (wyrównana granulacja). Wskaźanym jest tym samym przeprowadzanie analizy sitowej mąki (Jurga, 2005). Spośród sześciu analizowanych frakcji mąki, dominującą w większości badanych mąk orkiszowych, otrzymanych z ziarna ozimego i jarego (z dwóch lat zbiorów), okazała się frakcja o wielkości cząstek z zakresu 95 – 104 \(\mu\text{m} \) (Wykresy 8 – 19, Załącznik 2). W mąkach z ziarna ozimego, w drugiej kolejności dominowała frakcja \(> 265 \ \mu\text{m} \) i w zakresie 150 – 265 \(\mu\text{m} \), co było zależne od odmiany ziarna, z którego otrzymano mąkę. W najmniejszej ilości występowała frakcja o wielkości cząstek w zakresie 104 – 120 \(\mu\text{m} \). Wyjątek jednak stanowiły mąki z ziarna orkisu odmian Oberkulmer Rotkorn i Schwabenspelz, w których udział frakcji najdrobniejszej był najmniejszy. Z kolei, w mąkach otrzymanych z ziarna jarego rodów hodowlanych orkisu cząstki z zakresu 104 – 120 \(\mu\text{m} \) stanowiły najmniejszy udział. Dodatkowo zauważono, że mąki z ziarna pszenicy zwyczajnej odmian Korweta i Torka oraz orkisu odmiany Ceralio wykazały dużą zmienność (ponad 10% różnicy pomiędzy pierwszym a drugim rokiem zbiorów) w procentowym udziale cząstek z przedziałów 95 – 104 i 0 – 95 \(\mu\text{m} \). Z kolei frakcja 150 – 265 \(\mu\text{m} \) była najbardziej stabilna w większości badanych mąk.
Wykresy 8 – 11. Rozkład granulometryczny wysokowyciągowej mąki otrzymanej z ziarna badanych odmian pszenicy.
Następnym oznaczeniem, które wykonano było określenie parametrów barwy wysokowyciągowej mąki. Oznaczenie barwy mąki pozwala w przybliżony sposób określić w niej pozostałość okrywy owocowo – nasienną, co pośrednio wiąże się z zawartością w niej popiołu i błonnika ogółem oraz jego frakcji. Wiadomo, że barwa mąki zależy od jej wyciągu (im wyższy wyciąg mąki, tym mąka jest ciemniejsza), barwy samego ziarna, stopnia zanieczyszczenia użytego surowca, wilgotności i stopnia rozdrobnienia mąki. Mąka uzyskana z twardego ziarna, podczas przemiału rozdrabnia się na większe cząstki, natomiast ziarno pszenic miękkich daje mąkę o drobniejszej granulacji (Oliver i in., 1992; Jurga, 2005; Jurga 2006b,c). Ma to istotny wpływ na późniejszą barwę mąki. Mąka o grubszej granulacji jest ciemniejsza w porównaniu z mąką o drobnej granulacji, co jest bezpośrednio związane z innym kątem odbicia światła na powierzchni mąki. Z tego względu parametrem służącym w ocenie ziarna oraz efektywności jego przemiału jest barwa uzyskiwanej z niego mąki.

Pierwszym oznaczonym parametrem była jasność mąki L^*. Jak już wcześniej wspomniano miarą jasności L^* jest skala od 0 (powierzchnia czarna) do 100 (powierzchnia biała). Analiza porównawcza wyników wykazała, że najwyższym stopniem jasności (sposób badanych mąk) cechowały się mąki otrzymane z ziarna orkiszu odmian Frankenkorn, Ceralio i Oberkulmer Rotkorn (zbiorze 2005) oraz Ceralio i Schwabenspelz (zbiorze 2006) (Tabele 31 i 32). Najbardziej stabilnymi pod względem stopnia jasności (na przestrzeni dwóch lat) okazały się mąki z ziarna orkiszu odmiany Oberkulmer Rotkorn (89,4 i 89,7) oraz pszenicy zwyczajnej odmiany Korweta (87,7 i 87,6). Warto podkreślić, że mąka orkiszowa uzyskana zarówno z ziarna form ozimych jak i jarych, w porównaniu do mąk z ziarna pszenic wzorcowych, cechowała się wyższymi wartościami jasności L^*. Kolejnymi parametrami składającymi się na barwę mąki są dwie współczynniki chromatyczności a^* i b^*. Najwyższym stopniem czerwoności a^* (odpowiednio: 1,2 i 1,0) oraz żółtości b^* (odpowiednio: 9,1 i 9,2) spośród mąk orkiszowych w dwóch latach zbiorów (2005 i 2006) cechowała się mąka z ziarna odmiany Ostro, choć wartość parametru b^* dla mąki z żarna pszenicy zwyczajnej odmiany Korweta była na wyższym poziomie (Tabele 31 i 32). Z kolei, w przypadku mąki z żarna jarego najwyższym stopniem czerwoności a^* uzyskała mąka z żarna pszenicy zwyczajnej odmiany Torka (odpowiednio: 0,9 i 1,6), która również cechowała się najwyższą wartością współczynnika b^* (odpowiednio: 9,6 i 12,6). Należy jednak dodać, że mąka z ziarna orkiszu rodu hodowlanego UWM – 11 (w 2006 roku) wartość parametru a^* miała na tym samym poziomie, co mąka z pszenicy zwyczajnej odmiany Torka.

Określając barwę mąki obliczono również całkowitą różnicę barwy ΔE^*, przyjmując za wzorzec mąkę z żarna pszenicy zwyczajnej. Obliczając bezwzględną różnicę barwy przyjmuje się, że wartość ΔE^* między 0 – 1 jest różnicą normalnie niezauważalną. Wartość od 1 do 2 może być zauważona przez doświadczonego obserwatora, a powyżej 2 jest to różnica zauważalna nawet przez niedoświadченego obserwatora (Barwa….1999).
Tabela 31. Składowe L*a*b* oraz ΔE* barwy wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Jasność L*</th>
<th>Współczynniki chromatyczności</th>
<th>Całkowita różnica barwy ΔE*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2005</td>
<td>2006</td>
<td>2005</td>
</tr>
<tr>
<td>Korweta</td>
<td>87,7±0,2</td>
<td>87,6±0,2</td>
<td>0,9±0,1</td>
</tr>
<tr>
<td></td>
<td>9,7±0,2</td>
<td>10,0±0,3</td>
<td>2,5±0,2</td>
</tr>
<tr>
<td>Ceralio</td>
<td>89,4±0,3</td>
<td>91,4±0,3</td>
<td>1,0±0,1</td>
</tr>
<tr>
<td></td>
<td>7,9±0,2</td>
<td>7,9±0,2</td>
<td>2,5±0,2</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>89,2±0,3</td>
<td>90,0±0,2</td>
<td>1,0±0,1</td>
</tr>
<tr>
<td></td>
<td>8,6±0,1</td>
<td>8,7±0,2</td>
<td>3,0±0,2</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>90,1±0,2</td>
<td>90,8±0,2</td>
<td>0,8±0,1</td>
</tr>
<tr>
<td></td>
<td>8,0±0,2</td>
<td>8,2±0,2</td>
<td>3,0±0,2</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>89,4±0,2</td>
<td>89,1±0,2</td>
<td>1,0±0,1</td>
</tr>
<tr>
<td></td>
<td>8,9±0,2</td>
<td>9,1±0,2</td>
<td>2,1±0,2</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>89,1±0,3</td>
<td>91,0±0,2</td>
<td>0,9±0,1</td>
</tr>
<tr>
<td></td>
<td>7,9±0,3</td>
<td>7,6±0,2</td>
<td>2,3±0,3</td>
</tr>
<tr>
<td>Ostro</td>
<td>88,1±0,4</td>
<td>89,7±0,3</td>
<td>1,2±0,1</td>
</tr>
<tr>
<td></td>
<td>9,1±0,3</td>
<td>9,2±0,2</td>
<td>2,9±0,2</td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>89,4±0,3</td>
<td>89,7±0,4</td>
<td>1,0±0,1</td>
</tr>
<tr>
<td></td>
<td>8,5±0,1</td>
<td>8,7±0,2</td>
<td>3,1±0,2</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Tabela 32. Składowe L*a*b* oraz ΔE* barwy wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ród hodowlany</th>
<th>Jasność L*</th>
<th>Współczynniki chromatyczności</th>
<th>Całkowita różnica barwy ΔE*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>2007</td>
<td>2006</td>
</tr>
<tr>
<td>Torka</td>
<td>86,2±0,4</td>
<td>85,9±0,2</td>
<td>0,9±0,1</td>
</tr>
<tr>
<td></td>
<td>9,6±0,2</td>
<td>12,6±0,2</td>
<td>3,3±0,2</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>89,1±0,2</td>
<td>89,2±0,2</td>
<td>0,7±0,1</td>
</tr>
<tr>
<td></td>
<td>7,9±0,2</td>
<td>9,7±0,2</td>
<td>2,9±0,2</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>88,9±0,2</td>
<td>89,4±0,4</td>
<td>0,9±0,1</td>
</tr>
<tr>
<td></td>
<td>8,6±0,1</td>
<td>9,7±0,3</td>
<td>2,9±0,2</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>88,9±0,2</td>
<td>88,2±0,3</td>
<td>0,8±0,1</td>
</tr>
<tr>
<td></td>
<td>8,5±0,2</td>
<td>9,9±0,2</td>
<td>2,9±0,3</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).
Tabela 33. Indeksy WI, Z% i YI barwy wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Indeks bieli WI</th>
<th>Indeks jasności Z%</th>
<th>Indeks żółtości YI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korweta</td>
<td>24.5 ± 1.4</td>
<td>22.8 ± 1.6</td>
<td>60.4 ± 0.6</td>
</tr>
<tr>
<td>Ceralio</td>
<td>37.4 ± 1.2</td>
<td>42.5 ± 0.9</td>
<td>65.6 ± 0.5</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>33.6 ± 1.2</td>
<td>35.1 ± 1.1</td>
<td>64.5 ± 0.6</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>38.7 ± 1.1</td>
<td>39.3 ± 1.3</td>
<td>66.9 ± 0.5</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>30.2 ± 1.2</td>
<td>30.7 ± 1.2</td>
<td>62.6 ± 1.0</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>36.9 ± 1.8</td>
<td>42.8 ± 0.9</td>
<td>65.1 ± 0.9</td>
</tr>
<tr>
<td>Ostro</td>
<td>28.6 ± 2.0</td>
<td>31.9 ± 1.5</td>
<td>61.9 ± 0.9</td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>34.6 ± 1.1</td>
<td>34.6 ± 1.7</td>
<td>65.0 ± 0.6</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Tabela 34. Indeksy WI, Z% i YI barwy wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ród hodowlany</th>
<th>Indeks bieli WI</th>
<th>Indeks jasności Z%</th>
<th>Indeks żółtości YI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torka</td>
<td>21.4 ± 1.5</td>
<td>20.6 ± 1.2</td>
<td>57.9 ± 0.8</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>36.3 ± 1.2</td>
<td>28.3 ± 1.0</td>
<td>65.0 ± 0.5</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>33.0 ± 1.1</td>
<td>28.9 ± 1.4</td>
<td>64.0 ± 0.5</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>33.4 ± 1.4</td>
<td>24.7 ± 1.2</td>
<td>64.0 ± 0.6</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).
Jak okazało się, najwyższą różnicę w barwie zanotowano dla mąki z ziarna orkiszu ozimego odmian *Frankenkorn* (3,0 – zbiory 2005) oraz *Ceralio* i *Schwabenspelz* (odpowiednio: 4,4 i 4,2 – zbiory 2006). Największą różnicę w barwie mąki z ziarna orkiszu jarego oznaczono w przypadku mąki z rodzów hodowlanych *UWM–11* i *UWM–10* (odpowiednio: 4,6 i 4,5 – zbiory 2007). Jest to bezpośrednio związane z wyższymi wartościami jasności oraz niższymi wartościami współczynników chromatyczności *a* i *b*.

W celu uzyskania dodatkowych informacji o chromatyczności i odcieniu barwy mąki obliczano również indeksy *WI*, *YI* i *Z%*. Analiza porównawcza wyników wykazała, że mąki otrzymane z ziarna pszenic wzorcowych, tj. pszenicy zwyczajnej odmian *Korweta* i *Torka* uzyskały najniższe wartości indeksu bieli *WI* (*Tabel 33* i *34*). Z kolei, najwyższymi wartościami tego parametru w 2005 roku cechowała się mąka orkiszowa otrzymana z ziarna odmian *Frankenkorn* i *Ceralio*, w kolejnym roku analiz mąka orkiszowa z ziarna odmian *Schwabenspelz* i *Ceralio* oraz rodu hodowlanego *UWM–10*, natomiast w 2007 roku mąka orkiszowa z ziarna odmian *UWM–10* i *UWM–11*. Ponadto, wszystkie badane mąki orkiszowe uzyskały wyższe wartości indeksu jasności (*Z%*) i równocześnie niższe wartości indeksu żółtości (*YI*) w porównaniu do mąki otrzymanej z ziarna pszenicy zwyczajnej odmian *Korweta* i *Torka*.

Natomiaś dwa współczynniki chromatywności uzyskały inne wartości (parametr b^* była na wyższym, a a^* na niższym poziomie). Jak już podkreślano, wszelkie różnice, mogły wynikać z różnej popiołowości i granulacji mąki.

Kwasowość mąki

Jak wspomniano we wcześniejszej części pracy, wyróżnikiem określającym jakość mąki jest jej kwasowość. Najczęściej spotykanymi metodami określającymi przydatność mąki do spożycia jest oznaczenie kwasowości ogólnej wyrażonej w stopniach oraz kwasowości tłuszczowej mąki. Szczególnie ta ostatnia jest bardzo istotna, ponieważ rozkład substancji tłuszczowych rozpoczyna się najwcześniej, co pozwala rozpoznać początkową fazę psucia się produktu. Należy jednak dodać, że kwasowość tłuszczowa określa ilość niezestryfikowanych kwasów tłuszczowych, uwolnionych w wyniku działania lipazy (Szafrańska, 2007). Kwasowość ogólna (miareczkowa) badanej mąki orkiszowej (formy ozime) wahała się w granicach od 3,7° do 5,4° (zbiory 2005) i od 2,7° do 4,6° (zbiory 2006), podczas gdy w mące z ziarna formy jarej wartość tego parametru była na poziomie od 3,3° do 4,0° (zbiory 2006) oraz od 4,2° do 5,0° (zbiory 2007) (Tabele 35 i 36). Mąka z orkiszu odmiany Schwabenspelz (zbiory 2006), jako jedyna uzyskała niższą kwasowość niż przyjęta mąka wzorcowa. W pozostałych przypadkach mąka orkiszowa cechowała się wyższą wartość kwasowości ogólnej niż mąka z pszenicy zwyczajnej. Dopuszczalny poziom kwasowości w zawiesinie wodnej dla mąki jasnej o typie 850 nie powinien przekroczyć wartości 5°, a dla mąki ciemnej o typie 1400 – nie powinien wynosić więcej niż 7° (Horubałowa, Haber, 1994). Wynika z tego, że kwasowość ogólna wszystkich badanych mąk z dwóch lat zbiorów nie przekroczyła dopuszczalnego poziomu (nie więcej niż 7°).

Tabela 35. Kwasowość ogólna i kwasowość tłuszczowa wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (formy ozime).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Kwasowość ogólna</th>
<th>Kwasowość tłuszczowa KOH A<sub>K</sub></th>
<th>mg KOH na 100g s.m.</th>
<th>rok</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korweta</td>
<td>3,6<sup>a</sup>± 0,0</td>
<td>2,9<sup>b</sup>± 0,1</td>
<td>54,6<sup>b</sup>± 1,3</td>
<td>53,3<sup>ab</sup>± 2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceralio</td>
<td>3,7<sup>a,b</sup>± 0,1</td>
<td>3,3<sup>b</sup>± 0,1</td>
<td>60,5<sup>c</sup>± 1,3</td>
<td>77,1<sup>c</sup>± 2,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>3,9<sup>a,b</sup>± 0,1</td>
<td>4,0<sup>c</sup>± 0,0</td>
<td>51,3<sup>cd</sup>± 1,1</td>
<td>79,1<sup>c</sup>± 2,8</td>
<td>53,3<sup>ab</sup>± 2,5</td>
<td></td>
</tr>
<tr>
<td>Frankenkor</td>
<td>5,1<sup>c</sup>± 0,1</td>
<td>4,6<sup>d</sup>± 0,0</td>
<td>52,9<sup>ab,c</sup>± 1,3</td>
<td>49,6<sup>d</sup>± 0,0</td>
<td></td>
<td>53,3<sup>ab</sup>± 2,5</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>5,0<sup>c</sup>± 0,0</td>
<td>4,0<sup>c</sup>± 0,0</td>
<td>54,8<sup>bc</sup>± 0,9</td>
<td>66,2<sup>c</sup>± 1,2</td>
<td>53,3<sup>ab</sup>± 2,5</td>
<td></td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>4,1<sup>b,c</sup>± 0,1</td>
<td>2,7<sup>d</sup>± 0,1</td>
<td>49,8<sup>d</sup>± 0,1</td>
<td>61,3<sup>b</sup>± 2,8</td>
<td>53,3<sup>ab</sup>± 2,5</td>
<td></td>
</tr>
<tr>
<td>Ostro</td>
<td>5,4<sup>d</sup>± 0,0</td>
<td>4,6<sup>d</sup>± 0,0</td>
<td>60,8<sup>c</sup>± 1,1</td>
<td>99,6<sup>e</sup>± 2,2</td>
<td>53,3<sup>ab</sup>± 2,5</td>
<td></td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>4,5<sup>d</sup>± 0,1</td>
<td>3,8<sup>c</sup>± 0,0</td>
<td>66,3<sup>d</sup>± 1,2</td>
<td>132,1<sup>f</sup>± 2,7</td>
<td>53,3<sup>ab</sup>± 2,5</td>
<td></td>
</tr>
</tbody>
</table>

Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).
Tabela 36. Kwasowość ogólna i kwasowość tłuszczowa w wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ród hodowlany</th>
<th>Kwasowość ogólna</th>
<th>Kwasowość tłuszczowa KOH A<sub>k</sub></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg KOH na 100 g s.m.</td>
<td>mg KOH na 100 g s.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torka</td>
<td>2,9 ± 0,1</td>
<td>3,4 ± 0,0</td>
<td>156,5 ± 2,84</td>
<td>38,8 ± 0,0</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>3,3<sup>a,b</sup> ± 0,1</td>
<td>5,0<sup>b</sup> ± 0,0</td>
<td>128,1<sup>b</sup> ± 2,6</td>
<td>73,6<sup>b</sup> ± 0,0</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>4,0<sup>c</sup> ± 0,1</td>
<td>5,4<sup>c</sup> ± 0,0</td>
<td>72,9<sup>c</sup> ± 2,7</td>
<td>77,5<sup>c</sup> ± 0,0</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>3,5<sup>b</sup> ± 0,1</td>
<td>4,2<sup>d</sup> ± 0,0</td>
<td>53,4<sup>d</sup> ± 2,5</td>
<td>56,0<sup>d</sup> ± 0,0</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Z kolei, wartość kwasowości tłuszczowej mąki otrzymanej z ziarna ozimego orkiszu mieściła się w granicach od 49,8 mg KOH/100 g s.m. do 66,3 mg KOH/100 g s.m. (zbiory 2006) oraz od 49,6 mg KOH/100 g s.m. do 132,1 mg KOH/100 g s.m., podczas gdy kwasowość mąki otrzymanej z ziarna pszenicy zwyczajnej odmiany Korweta była na niższym poziomie (odpowiednio: 54,6 i 53,3 mg KOH/100 g s.m.) (Tabele 35 i 36). Wyjątek stanowiła mąka z ziarna odmiany Franknkorn (ze zbiorów 2006). Z kolei, w przypadku mąki z ziarna formy jarej, najwyższą wartość tego parametru oznaczono dla mąki z pszenicy zwyczajnej odmiany Torka (156,5 mg KOH/100 g s.m. – zbiory 2006) oraz rodu hodowlanego UWM – 10 (128,1 mg KOH/100 g s.m. – zbiory 2006). Wg PN – A – 74022 dopuszczalny poziom kwasowości tłuszczowej nie powinien przekroczyć wartości 50 w przeliczeniu na mg KOH/100 g s.m. dla wszystkich typów mąki. Na tej podstawie stwierdzono, że kwasowość tłuszczowa większości badanych mąk orkiszowych oraz z pszenicy zwyczajnej (z trzech lat zbiorów) przekraczała określony w normie poziom. Jak wcześniej wspomniano, mąka orkiszowa charakteryzowała się wyższą od mąki z pszenicy zwyczajnej popiołowością i związaną z tym zawartością tłuszczu (Tabele 19 i 20, Wykresy 4, 5, 6 i 7), który mógł szybko ulec częściowemu utlenieniu. Nie mniej jednak Szafranska (2007) podała, że zaraz po opublikowaniu ww. normy, polskie jednostki kontrolne, w przeprowadzonych przez siebie analizach kwasowości tłuszczowej wykazały, że nawet w próbkach mąki pobieranej zaraz po przemiale, obserwowano wielokrotnie przekroczenie dopuszczalnej przez normę wartości, a dotyczyło to przeważnie mąki o popiołowości powyżej 0,75% s.m. Sugieruje to tym samym konieczność zmodyfikowania zalecanych w normie dopuszczalnych wartości granicznych tego parametru jakości.

5.3.2. Wartość wypiekowa wysokowyciągowej mąki orkiszowej

Właściwości skrobi

Analiza porównawcza otrzymanych wyników wykazała, że zawartość skrobi ogółem w badanych mąkach orkiszowych była zróżnicowana w zależności od odmiany i formy odmianowej ziarna, z którego otrzymywano mąkę. Wartość tego parametru w mące z ziarna orkiszu ozimego ze zbiorów 2005 mieściła się w granicach od 52,6% s.m. (Ostro) do 61,2% s.m. (Schwabenkorn), a w roku następnym najwięcej skrobi było w mące z ziarna orkiszu odmiany Ceralio (69,4% s.m.), a najmniej w mące z ziarna odmiany Holstenkorn (57,1% s.m.) (Tabele 37 i 38).
Tabela 37. Ilość i jakość skrobi wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma oziema).

<table>
<thead>
<tr>
<th>Odmianna pszenicy</th>
<th>Zawartość skrobi w mące</th>
<th>Stopień uszczodzenia skrobi</th>
<th>Liczba opadania w mące</th>
<th>Ocena amylograficzna</th>
<th>Początkowa temperatura kleikowania T_{pk}</th>
<th>Końcowa temperatura kleikowania T_{ik}</th>
<th>Maksymalna lepkość kleiku skrobiowego η_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% s.m.</td>
<td>UCD</td>
<td>s</td>
<td></td>
<td>°C</td>
<td>°C</td>
<td>j.B.</td>
</tr>
<tr>
<td>Karweta</td>
<td>55.9 ± 0.1</td>
<td>60.9 ± 0.2</td>
<td>1.5 ± 0.0</td>
<td>0.6 ± 0.0</td>
<td>285 ± 3</td>
<td>262 ± 4</td>
<td>61.3 ± 0.4</td>
</tr>
<tr>
<td>Ceralio</td>
<td>55.6 ± 0.0</td>
<td>69.4 ± 0.1</td>
<td>4.3 ± 0.0</td>
<td>4.5 ± 0.0</td>
<td>228 ± 10</td>
<td>130 ± 1</td>
<td>61.0 ± 1.4</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>61.2 ± 0.0</td>
<td>59.3 ± 0.1</td>
<td>0.0 ± 0.0</td>
<td>3.4 ± 0.0</td>
<td>323 ± 16</td>
<td>111 ± 2</td>
<td>61.3 ± 1.1</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>60.0 ± 0.1</td>
<td>58.3 ± 0.1</td>
<td>2.2 ± 0.0</td>
<td>4.9 ± 0.0</td>
<td>337 ± 14</td>
<td>87 ± 1</td>
<td>62.1 ± 0.2</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>57.7 ± 0.0</td>
<td>57.1 ± 0.2</td>
<td>0.0 ± 0.0</td>
<td>1.3 ± 0.0</td>
<td>354 ± 10</td>
<td>209 ± 4</td>
<td>66.8 ± 4.2</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>59.3 ± 0.1</td>
<td>58.2 ± 0.0</td>
<td>3.1 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td>246 ± 6</td>
<td>194 ± 4</td>
<td>64.1 ± 0.5</td>
</tr>
<tr>
<td>Ostro</td>
<td>52.6 ± 0.1</td>
<td>59.4 ± 0.1</td>
<td>0.0 ± 0.0</td>
<td>2.7 ± 0.0</td>
<td>281 ± 14</td>
<td>106 ± 1</td>
<td>64.9 ± 3.7</td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>55.0 ± 0.1</td>
<td>61.8 ± 0.0</td>
<td>2.2 ± 0.0</td>
<td>3.0 ± 0.0</td>
<td>292 ± 4</td>
<td>91 ± 1</td>
<td>64.5 ± 0.0</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0.05).

Tabela 38. Ilość i jakość skrobi wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmianna pszenicy/rod hodowlany</th>
<th>Zawartość skrobi w mące</th>
<th>Stopień uszczodzenia skrobi</th>
<th>Liczba opadania w mące</th>
<th>Ocena amylograficzna</th>
<th>Początkowa temperatura kleikowania T_{pk}</th>
<th>Końcowa temperatura kleikowania T_{ik}</th>
<th>Maksymalna lepkość kleiku skrobiowego η_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% s.m.</td>
<td>UCD</td>
<td>s</td>
<td></td>
<td>°C</td>
<td>°C</td>
<td>j.B.</td>
</tr>
<tr>
<td>Torka</td>
<td>66.3 ± 0.2</td>
<td>56.4 ± 0.4</td>
<td>3.8 ± 0.0</td>
<td>4.7 ± 0.0</td>
<td>170 ± 2</td>
<td>342 ± 4</td>
<td>62.6 ± 0.5</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>52.4 ± 0.0</td>
<td>61.1 ± 0.1</td>
<td>4.2 ± 0.0</td>
<td>4.6 ± 0.0</td>
<td>244 ± 5</td>
<td>341 ± 8</td>
<td>64.5 ± 0.0</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>55.5 ± 0.1</td>
<td>56.0 ± 0.0</td>
<td>2.5 ± 0.0</td>
<td>4.6 ± 0.0</td>
<td>265 ± 2</td>
<td>369 ± 10</td>
<td>63.8 ± 2.1</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>62.9 ± 0.1</td>
<td>63.7 ± 0.0</td>
<td>4.2 ± 0.0</td>
<td>4.7 ± 0.0</td>
<td>110 ± 4</td>
<td>348 ± 12</td>
<td>61.9 ± 1.6</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0.05).

Zauważono jednak, że nie można jednoznacznie stwierdzić, że stopień uszkodzenia skrobi jest skorelowany z twardością ziarna. Przeprowadzona dodatkowo analiza związków korelacyjnych (na arkuszu scalonym) wykazała, że stopień uszkodzenia skrobi w mące ozimych odmian orkiszu jest istotnie, ujemnie skorelowany z wyrównaniem ziarna (r = -0,50), gęstością ziarna w stanie zsypnym (r = -0,41) i twardością ziarna Ws (r = -0,44). W przypadku stopnia uszkodzenia skrobi mąki z ziarna odmian jarych, stwierdzono istotną ujemną korelację jedynie z gęstością ziarna w stanie zsypnym (r = -0,65).

Niezależnie od tego Górniak (2006) stwierdził wysoką korelację stopnia uszkodzenia skrobi z granulacją mąki. Jednak cytowana zależność, była wykazana dla mąki handlowej z ziarna pszenicy zwyczajnej przemielonej w młynie przemysłowym. Nikt jak dotąd nie sprawdził tego dla mąki orkiszowej. Stąd, autorka w niniejszej pracy przeprowadziła podobną analizę. Jak okazało się, zawartość frakcji: x > 265 µm oraz 95 – 104 µm mąk orkiszowych otrzymanych z ziarna ozimego była istotnie ujemnie skorelowane ze stopniem uszkodzenia skrobi (wsparczenie korelacji r odpowiednio: -0,57 i -0,41). Z kolei, stopnień uszkodzenia skrobi mąk orkiszowych otrzymanych z ziarna jarego wykazywał istotną ujemną korelację z frakcją mąki 120 – 150 µm oraz 104 – 120 µm (r = -0,74 i r = -0,60).

Liczba opadania jest parametrem wskazującym na aktywność enzymów amyloidalnych w mące i w pośredni sposób mówi o jej przydatności do wypieku. Wyniki liczby opadania średnio się w granicach od 228 s w przypadku mąki z orkiszu odmiany Ceralio do 354 s dla mąki z orkiszu odmiany Holstenkorn (zbiory 2005), a w kolejnym roku wartość tego parametru wahała się w zakresie od 87 s (Frankenkorn) do 262 s (Korweta) (Tabele 37 i 38). Z kolei, w przypadku mąk z ziarna jarego

111
liczba opadania w pierwszym roku zbiorów była na poziomie od 110 s do 265 s oraz od 341 do 369 s w drugim roku badań. Według PN – A – 74022 wartość tego parametru dla mąki pszennej o typie 1050 powinna być wyższa od 220 s, natomiast w przypadku mąki sitkowej (typ 1400), wartość ta powinna uzyskać wynik nie mniejszy niż 180 s. Nie mniej jednak Ambroziaik (1988) jako prawidłowy poziom wartości tego parametru podaje zakres 200 – 400 s. Na tej podstawie stwierdzono, że (w większości przypadków) badane mąki z ziarna ozimego i jarego uzyskały optymalny poziom aktywności amylolitycznej. Wyjątek stanowią mąki ze zbiorów 2006 otrzymane z ziarna orkiszu ozimego odmian Ceralio, Schwabenkorn, Frankenkorn oraz Ostro i Oberkulmer, Rotkorn oraz jarego ziarna pszenicy zwyczajnej odmiany Torka i orkiszu rodu hodowanego UWM – 12, dla których wartości liczby opadania były poniżej zalecanego poziomu.

Aktywność enzymów amylolitycznych zawartych w mące oraz zdolność do kleikowania zawartej w mące skrobi można również określić przy pomocy amylografu. Mąki o podwyższonej aktywności amylolitycznej dają niskie amylogramy, a ciasto z takiej mąki jest kłopotliwe w obróbce ze względu na nadmierną lepkość, a w pieczywie mogą wystąpić wady (odstawanie skórki, zakałec). Jednak zdarza się w przypadku mąki pszennej, że mimo niskich wykresów amylograficznych wypieczoną z niej pieczywo jest dobre jakości, choć z nieco wilgotnym miękiszem i ciemniejszą skórką. Wynika to z tego, że struktura ciasta pszennego (pieczywa) uzależniona jest przede wszystkim od właściwości frakcji glutenowej (Rothkaehl, 2003). Według danych literaturowych skrobia pszenna zaczyna kleikować w przedziale temperatur od 59 do 61°C, natomiast końcowa temperatura kleikowania powinna mieścić się w granicach od 80 do 98°C (Horubałowa, Haber, 1994).

Początkowa temperatura kleikowania skrobi w badanych mąkach otrzymanych z ziarna ozimego ze zbiorów 2005 wahała się w granicach od 61,0 do 66,8°C, podczas gdy w kolejnym roku zbiorów temperatura ta uzyskała nieco wyższe wartości (63,0 – 65,5°C) (Tabela 37 i 38). Natomiast w mąkach otrzymanych z ziarna jarego początkowa temperatura kleikowania skrobi mieściła się w zakresie od 61,9 do 64,5°C (zbiorzy 2006), a w roku 2007 była na nieco niższym poziomie (59,6 – 63,0°C). W większości przypadków uzyskane wyniki nie różniły się istotnie statystycznie, a wartości tego parametru były nieco wyższe od podawanych w literaturze.

Końcowa temperatura kleikowania oznacza spadek lepkości kleiku po rozłożeniu całej ilości skrobi (Horubałowa, Haber 1994). W badanych mąkach wartość tego parametru była bardziej zróżnicowana i zależała w dużym stopniu od odmiany ziarna, z którego otrzymano mąkę. Najniższą wartość końcowej temperatury kleikowania skrobi (zbiorzy 2005) oznaczono w mące z ziarna orkiszu ozimego odmiany Ceralio (73,4°C), a najwyższą w mące z ziarna orkiszu odmiany Holstenkorn (89,6°C). Natomiast w kolejnym roku zbiorów (2006) końcowa temperatura kleikowania skrobi mieściła się w zakresie od 67,1°C (Frankenkorn) do 82,5°C (Korweta). Z kolei, w mące otrzymanej z ziarna orkiszu rodu hodowanego UWM – 12 oznaczono najniższą temperaturę kleikowania skrobi, a dla UWM – 11 najwyższą (zbiorzy 2006), podczas gdy w kolejnym sezonie wartość tego parametru była na wyższym poziomie (87,8 – 90,8°C). Jednocześnie zauważono, że niższej wartości liczby opadania odpowiadały niższe wartości końcowej temperatury kleikowania skrobi. Otrzymane dane były zgodne z tymi podawanymi w literaturze.

Analizując wyniki z oceny amylograficznej stwierdzono istotny wpływ warunków podczas wegetacji na wartość poszczególnych parametrów. Dla próbek mąki ze zbiorów z 2006 roku zauważono wzrost początkowej temperatury kleikowania skrobi, a obniżenie końcowej temperatury kleikowania i maksymalnej lepkości kleiku skrobiowego. Było to szczególnie zauważalne w formach ozimych. Odmiany jare (orkiszu i pszenicy zwyczajnej) wykazywały zdecydowanie większą stabilność tych parametrów i tym samym odporność na niesprzyjające warunki pogodowe.

Zauważono również, że mąka z ziarna orkiszu ozimego (zbiory 2005) odmiany *Holstenkorn*, która nie miała uszkodzonej skrobi, uzyskała jednocześnie wysoką wartość liczby opadania, początkowej i końcowej temperatury kleikowania skrobi oraz wysoką wartość maksymalnej lepkości kleiku skrobiowego. Natomiast mąka z ziarna orkiszu odmiany *Ceralio* cechowała się najwyższym stopniem uszkodzenia skrobi i jednocześnie najniższą liczbą opadania, początkową i końcową temperaturą kleikowania oraz maksymalną lepkością kleiku skrobiowego. Podobną zależność stwierdzono w przypadku mąki z ziarna orkiszu ze zbiorów z 2006 dla odmiany *Frankenkorn* i rodu hodowlanego *UWM – 11*. Wiadomo, że istnieje zależność pomiędzy stopniem uszkodzenia skrobi, a natężeniem procesów fermentacyjnych, a w sytuacji nadmiernie uszkodzonej skrobi, ciasto otrzymane z takiej mąki, zachowuje się podobnie jak z mąki z ziarna porośniętego (Jurga, 2000; Gąsiorowski, 2004a; Ceglińska i in., 2007).

Ponadto, przeprowadzona analiza związków korelacyjnych dla mąki z ziarna orkiszu ozimego i jarego wykazała bardzo wysokie istotne dodatnie korelace między wartościami liczby opadania, a temperaturą końcową kleikowania i maksymalną lepkością kleiku skrobiowego (*Tabele 51 i 56*), co jest zgodne z danymi spotykanymi w literaturze dla mąki z ziarna pszenicy zwyczajnej (Ambroziak, 1988; Reński, 1998).

Ilość i jakość białka

Zawartość białka ogółem w badanych mąkach ze zbiorów 2005 mieściła się w granicach od 12,1% s.m. dla mąki z orkiszu odmiany *Frankenkorn* do 13,8% s.m. dla mąki z orkiszu odmiany *Ostro*, natomiast w kolejnym roku zbiorów wartość tego parametru w mąkach orkszowych mieściła

113
się w zakresie od 11,7 % s.m. (Ceralio) do 14,8% s.m. (Oberkulmer Rotkorn) (Tabela 39). Z kolei, w przypadku mąk z ziarna jarego najwyższą zawartością białka ogółem charakteryzowała się mąka z ziarna orkisz rodu hodowlanego UWM – 10, a w roku następnym UWM – 12 (Tabela 40). We wszystkich przypadkach zawartość białka ogółem w mąkach orkiszowych była istotnie wyższa niż w mące uzyskanej z ziarna pszenicy zwyczajnej, co jest zgodne z danymi prezentowanymi w literaturze (Abdel – Aal i in., 1996; Marconi i in., 1999; Moudrý, Dvořáček, 1999; Bonafaccia i in., 2000; Chrenko, 2001; Gállová, Knoblochová, 2001; Skrabanja i in., 2001; Waga, 2002; Ceglińska, 2003; Waga, 2003; Kohajdová i Korovičová, 2007; Majewska i in., 2007b; Marques i in., 2007; Radomski i in., 2007; Pruska – Kędzior i in. 2008; Dąbkowska i in., 2008; Krawczyk i in. 2008b; Zieliński i in., 2008).

Tabela 39. Charakterystyka ilości i jakości białka wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkisz i pszenicy zwyczajnej (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Zawartość białka ogółem w mące</th>
<th>Wydajność glutenu mokrego w mące</th>
<th>Liczba sedymencacji wg Zeleny’ego**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% s.m.</td>
<td>%</td>
<td>cm³</td>
</tr>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
<tr>
<td>Korweta</td>
<td>11,5 ±0,1</td>
<td>11,1±0,01</td>
<td>23,2±0,1</td>
</tr>
<tr>
<td>Ceralio</td>
<td>12,5 ±0,1</td>
<td>11,7 ±0,01</td>
<td>32,5±0,4</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>13,6 ±0,1</td>
<td>14,0 ±0,01</td>
<td>32,6±0,4</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>12,1 ±0,1</td>
<td>14,2±0,01</td>
<td>29,7±0,2</td>
</tr>
<tr>
<td>Holštěnkorn</td>
<td>13,2 ±0,1</td>
<td>14,3±0,01</td>
<td>31,6±0,2</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>12,7 ±0,1</td>
<td>14,1±0,01</td>
<td>31,2±0,3</td>
</tr>
<tr>
<td>Östro</td>
<td>13,8 ±0,1</td>
<td>14,5±0,01</td>
<td>36,3±0,4</td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>13,7 ±0,1</td>
<td>14,8±0,01</td>
<td>33,8±0,3</td>
</tr>
</tbody>
</table>

** Analiza przeprowadzona dla mąk typ 500/550, uzyskanej z tego samego ziarna.
*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Tabela 40. Charakterystyka ilości i jakości białka wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkisz i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/rod hodowlany</th>
<th>Zawartość białka ogółem w mące</th>
<th>Wydajność glutenu mokrego w mące</th>
<th>Liczba sedymencacji wg Zeleny’ego**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% s.m.</td>
<td>%</td>
<td>cm³</td>
</tr>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
<tr>
<td>Torka</td>
<td>9,7 ±0,01</td>
<td>13,3 ±0,1</td>
<td>13,5±0,3</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>14,0 ±0,1</td>
<td>15,4 ±0,1</td>
<td>32,3±0,3</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>13,7 ±0,1</td>
<td>15,2 ±0,1</td>
<td>34,1±0,4</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>12,3 ±0,1</td>
<td>15,8 ±0,1</td>
<td>29,6±0,3</td>
</tr>
</tbody>
</table>

** Analiza przeprowadzona dla mąk typ 500/550, uzyskanej z tego samego ziarna.
*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Zauważono, że na zawartość białka ogółem w mące ziarna orkisz ozimego w dużym stopniu zależy od warunków pogodowych, o czym świadczy wyższa zawartość białka ogółem w mące ze zbiorów 2006 (w porównaniu do wcześniejszego roku zbiorów). Najprawdopodobniej gorący i suchy lipiec w 2006 roku wpłynął na zwiększenie koncentracji białka w mące, co potwierdza wcześniejsze spostrzeżenia Bojňanskiej i Frančákovej (2002). Dodatkowo zauważono, że mąka trzech rodów hodowlanych orkisz z 2007 roku, cechowała się najwyższą koncentracją tego składnika,
(15,2 – 15,8% s.m.), spośród wszystkich badanych próbek, co z punktu żywieniowego można uznać za cechę korzystną.

Wydajność glutenu mokrego jest wskaźnikiem silnie związanym z wartością wypiekową (Bojňanská, Frančáková, 2002). Gluten mokry odgrywa decydującą rolę w tworzeniu ciasta i procesie wypieku chleba, stanowiąc szkielet ciasta pszennego, który łączy pozostałe składniki mąki oraz substancje dodawane do ciasta (Gąsiorowski, 2004a). Dla wszystkich badanych mąk orkiszowych wartość tego parametru była istotnie wyższa od wydajności glutenu mokrego z mąki z ziarna pszenicy zwyczajnej (Tabele 39 i 40). Powyższa prawidłowość jest zgodna z danymi podawanymi w literaturze (Abdel – Aal i in., 1996; Jurga, 1996; Chrenková i in., 2000; Capouchová 2001; Gálová, Knoblochová, 2001; Skrabanja i in., 2001; Bojňanská, Frančáková, 2002; Ceglińska, 2003; Tyburcy, 2005; Lacko – Bartošová, Rédlová, 2007; Majewska i in., 2007b; Marques i in., 2007; Dąbkowska i in., 2008; Ráčová i in., 2008). Najbardziej stabilna okazała się odmiana Oberkulmer Rotkorn. Z kolei, stresy środowiskowe w 2006 roku, w przypadku mąki z rodów hodowlanych orkisu, spowodowały obniżenie wydajności glutenu mokrego, czego nie można jednoznacznie stwierdzić w przypadku mąk orkiszowych z ziarna ozimego.

Według PN – A – 74022, w przypadku mąki o typie 1400, wydajność glutenu mokrego powinna wynosić nie mniej niż 24%, natomiast dla mąki o typie 1050, uzyskana wartość powinna być równa lub wyższa od 25%, co stanowi minimum w przypadku mąki o dobrej wartości wypiekowej. Na tej podstawie można stwierdzić, że wydajność glutenu mokrego dla mąk otrzymanych z ziarna pszenicy zwyczajnej (odmiany Korweta i Torka) była niższa (szczególnie dla mąki z odmiany Torka) od kryteriów podanych w ww. normie. Natomiast w przypadku wszystkich mąk orkiszowych wartość ta była znacznie wyższa od stawianych wymagań jakościowych w powyższej normie (dotyczącej pszenicy zwyczajnej).

Liczba sedymentacji jest miernikiem jakości i ilości substancji strukturotwórczych pieczywa. Wynik analizy jest tym wyższy, im wyższa jest zawartość białek glutenowych w mące, szczególnie wysokocząsteczkowej gluteniny, odznaczającej się dobrą zdolnością pęcznienia i warunkującej dobrą wartość wypiekową mąki (Jurga, 1994; Janiak, Laskowski, 1994).

Należy jednak podkreślić, że kryteria jakościowe podawane we wcześniej cytowanej normie opracowano dla mąki z pszenicy zwyczajnej. Przyjęte w normie graniczne wartości parametrów nie

115
do końca trafnie określają przydatność mąki orkiszowej do wypieku. Mimo wyższej wydajności glutenu mokrego i zawartości białka ogółem dla mąki orkiszowej, zdolność jej układu białkowego do pęcznienia (z wyjątkiem mąki z orkiszu odmiany Schwabenspelz – zbiory 2006) była mniejsza. Świadczy to o tym, że gluten mąki z pszenicy zwyczajnej cechował się lepszą jakością niż gluten większości mąk orkiszowych. Nie znaczy to jednak, że z mąk orkiszowych nie można otrzymać pieczywa dobrej jakości, co będzie przedstawione w dalszej części pracy.

Bojňanská i Frančáková (2002) stwierdziły, że w mące orkiszowej w roku ekstremalnie suchym nastąpił wzrost zawartości białka ogółem, wydajności glutenu mokrego i wartości liczby sedymencacji SDS, w porównaniu do lat umiarkowanych temperaturach. Natomiast inni badacze zauważyli, że wraz ze wzrostem zawartości białka i glutenu mokrego obserwuje się pogarszenie jego jakości, co ma wpływ na późniejsze wykorzystanie mąki (Peterson i in., 1998; Reński, 1998; Capouchová 2001; Cecak – Pietrzak i in., 2004). Nadmierna aktywność proteolityczna, do której może dojść w czasie porastania ziarna, prowadzi do dezagregacji białek, w tym glutenowych, pogorszając właściwości reologiczne ciasta. Wzrasta tym samym zawartość azotu niskobiałkowego, zwiększa się rozpuszczalność prolamin i glutenin. Następnstwem tego jest ta sama zawartość białka ogółem (przy oznaczaniu faktycznie określa się zawartość azotu), przy jednoczesnym pogorszeniu cech reologicznych ciasta (Dojczew i in., 2004).

Cechy reologiczne ciasta

Cechy reologiczne ciasta otrzymanego z mąki orkiszowej oraz porównawczo ciasta uzyskanego z mąki z ziarna pszenicy zwyczajnej odmian Korweta i Torka zostały przedstawione w tabelach 41 i 42. Do badania cech reologicznych ciasta przygotowano próbki o zakładanej wydajności 165%. Wytrzymałość ciasta na ściskanie (odmiany ozeitne orkiszu i pszenicy zwyczajnej) wahała się w granicach od 26,6 N (Frankenkorn) do 65,4 N (Oberkulmer Rotkorn) (zbiory 2005), a w kolejnym roku zbiorów wartość tego parametru mieściła się w zakresie od 35,3 N (Schwabenkorn) do 54,4 N (Oberkulmer Rotkorn) (zbiory 2006). Z kolei, w przypadku ciasta otrzymanego z mąki z ziarna jarego, wartość tego parametru była na poziomie: 39,6 – 92,2 N (na przestrzeni dwóch lat). Najniższą wartość zwięzłości uzyskało ciasto z mąki orkiszu odmiany Frankenken (zbiory 2005), a w kolejnym roku zbiorów ciasto z mąki odmiany Schwabenkorn oraz ciasto z mąki pszenicy zwyczajnej odmiany Torka. Z kolei, w roku 2007 najniższą wartością tego parametru cechowało się ciasto z mąki rodu hodowlanego UWM – 11. Najlepszymi cechami reaologicznymi charakteryzowało się ciasto z orkiszu odmiany Oberkulmer Rotkorn.
Analizując wyniki stwierdzono również, że wartości poszczególnych parametrów były zróżnicowane w zależności od odmiany lub rodu hodowlanego. Ciasto otrzymane z mąki z ziarna ożimego z 2006 roku, w większości przypadków, cechowało się większą wytrzymałością na ściskanie i zwięzłością w porównaniu do wartości tych parametrów w 2005 roku. Ponadto, ciasto uzyskane z mąki orkiszu jarego uzyskało (w większości przypadków) wyższe wartości poszczególnych parametrów cech reologicznych w porównaniu z ciastem z mąki orkiszu ożimego. Największe różnice wartości wytrzymałości ciasta na ściskanie, zwięzłości ciasta i maksymalnej siły wytłaczania (na przestrzeni dwóch lat) zauważono w przypadku ciasta z mąki z ziarna rodu hodowlanego UWM – 11. Natomiast, najbardziej stabilne pod względem wartości maksymalnej siły wytłaczania ciasta i energii wytłaczania okazało się ciasto z odmian Holstenkorn i Oberkulmer Rotkorn, co jest pośrednio odzwierciedleniem poziomu liczby sedimentacji wg Zeleny’ego (Tabele 39 i 40).

Literatura podaje, że ciasto orkiszowe jest wrażliwe na intensywną obróbkę mechaniczną podczas miesienia (gluten o słabych cechach reologicznych). Jednak, na podstawie wyżej omówionych wyników cech reologicznych ciasta z ciennej mąki orkiszowej, nie można jednoznacznie tego stwierdzić, bo istnieją wyjątki. Jest to raczej bardziej zależne od odmiany oraz formy odmianowej badanego orkiszu (Abdel – Aal i in., 1997; Schober i in., 2002; Bonafácia i in., 2000; Schober i in., 2006; Kohajdová, Korovičová; 2007; Majewska i in., 2007b; Pruska – Kędzior i in., 2008).

Należy jednak podkreślić, że badanie cech reologicznych ciasta z wykorzystaniem wysokowyciągowej mąki orkiszowej nie było jak dotąd przeprowadzone, szczególnie stosowaną w pracy metodą instrumentalną (komora ekstruzyjna OTMS). Jedynie dostępne dane dotyczyły jasnej mąki orkiszowej, ale ciasto przygotowane do analizy miało niższą wydajność (150%) (Majewska i in., 2007a). Warto jednak dodać, że ciasto z ciennej mąki niektórych badanych odmian orkiszu ma optymalne cechy reologiczne. Takie ciasto uzyskano z mąki orkiszu odmian Oberkulmer Rotkorn i Holstenkorn oraz rodów hodowlanych UWM – 10 i UWM – 11.
Tabela 41. Cechy reologiczne ciasta z wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Wytrzymałość ciasta na ściskanie F_w (N)</th>
<th>Zwięzłość ciasta F_w/d_w (N/mm)</th>
<th>Maksymalna siła wytłaczania ciasta F_{max} (N)</th>
<th>Energia wytłaczania ciasta E_{max} (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korweta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceralio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankenkorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holstenkorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schabenspelz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberkulmer Roikorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Tabela 42. Cechy reologiczne ciasta z wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ród hodowlany</th>
<th>Wytrzymałość ciasta na ściskanie F_w (N)</th>
<th>Zwięzłość ciasta F_w/d_w (N/mm)</th>
<th>Maksymalna siła wytłaczania ciasta F_{max} (N)</th>
<th>Energia wytłaczania ciasta E_{max} (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UWM – 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UWM – 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UWM – 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).
Próby wypieku laboratoryjny

Powszechnie wiadomo, że ciasto z wyższym udziałem wody, czyli o wyższej wydajności ma luźniejszą konsystencję. W produkcji jednak, nie zawsze ta zależność jest zachowana, ponieważ decyduje o tym jakość glutenu. Mąka zawierająca tzw. gluten „mocny” może wchłonąć więcej wody. Ciasto przygotowane z takiego surowca jest tym samym gęste i cechuje się wysoką wydajnością (Reński, 1998).

Zakładana wydajność ciasta, podczas przeprowadzania laboratoryjnego wypieku pieczywa, wynosiła 165%. Jak wynika z poniższych wykresów w większości przypadków rzeczywista wydajność ciasta była wyższa (Wykresy 20 i 21). Jednak na wartość tego parametru, szczególnie w przypadku ciasta z orkiszu ozimego, istotny wpływ miał rok uprawy, tzn. ciasto otrzymane z mąki z ziarna ozimego (ze zbiorów z 2006 roku) uzyskało niższą wydajność od założonej. Wiadomo, że obecne w mące glutenina i gliadyna w zetknięciu z wodą pochłaniają ją i pęcznieją, tworząc strukturę glutenu. Niestety zarówno gluten z ziarna miękkiej pszenicy, jak i z porośniętej (ukryty porost) wchłania mniej wody niż gluten z pszenicy dobrej jakości (Reński, 1998).

Wydajność ciasta [%]

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korwena</td>
<td>161</td>
<td>162</td>
</tr>
<tr>
<td>Cerallo</td>
<td>167</td>
<td>162</td>
</tr>
<tr>
<td>Schwaberkorn</td>
<td>172</td>
<td>162</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>170</td>
<td>169</td>
</tr>
<tr>
<td>Holsteinkorn</td>
<td>172</td>
<td>172</td>
</tr>
<tr>
<td>Schwabenspitz</td>
<td>160</td>
<td>169</td>
</tr>
<tr>
<td>Oстро</td>
<td>158</td>
<td>162</td>
</tr>
</tbody>
</table>

*Wartości powyżej słupków (na wykresie) oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

*Wartości powyżej słupków (na wykresie) oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Wiadomo jednak, że zdolność fermentacyjna w cieście zależy przede wszystkim od ilości cukrów prostych, czyli tych rozkładających się na dwutlenek węgla i alkohol. W mące otrzymanej z ziarna o niższej liczbie opadania, ilość cukrów redukujących jest wyższa. Tym samym fermentacja ciasta zachodzi znacznie szybciej, co tłumaczy skrócenie czasu rozrostu końcowego kęsów ciasta otrzymanego z niektórych odmian orkisu z 2006 roku.
Wykres 22. Wybrane rezultaty laboratoryjnego wypieku pieczywa z wysokowyciągowej mąki – czas rozrostu końcowego kęsa (pszenice oziome).

*Wartości powyżej słupków (na wykresie) oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

*Wartości powyżej słupków (na wykresie) oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Upiek jest różnicą między masą kęsa ciasta a masą otrzymanego pieczywa po ostudzeniu. Wielkość tego parametru zależy od rodzaju, kształtu, masy kęsa i parametrów wypieku. Jest to jedna z podstawowych strat technologicznych i dąży się do jej zmniejszenia. Nie mniej jednak, bez odpowiedniego ubytku, niemożliwe jest dobre wypieczenie i wykształcenie skórki. Wiadomo, że przy tej samej wielkości kęsów całkowita strata piecową wzrasta wraz ze wzrostem powierzchni właściwej pieczywa (Ambroziak, 1999).

Uzyskane wartości całkowitej straty piecowej chlebków (zbiory 2005) mieściły się w granicach od 13,9% (Schwabenspelz) do 17,1% (Ceralio) oraz od 12,2% (Schwabenspelz) do 18,1% (Frankenkorner) dla kolejnego roku badań. Wypiecone chleby z mąki pszenicy zwyczajnej odmiany Korweta uzyskały wartość tego parametru na poziomie odpowiednio: 17,0 i 17,3% (Tabele 43 i 44). Z kolei, chleby otrzymane z mąki pszenicy zwyczajnej odmiany Torka (mąki z ziarna jarego), cechowały się najwyższą stratą piecową (w dwóch kolejnych latach badań). Wartość tego parametru jest jednak zależna od powierzchni parowania. Chleby z 2006 roku były bardziej kuliste.
w porównaniu do chlebów z poprzedniego roku. Powierzchnia parowania tym samym była większa, co tłumaczy wyższą stratę piecową. Nie mniej jednak, chleby orkiszowe (w większości przypadków) cechowały niższą całkowitą stratę piecową niż pieczywo z mąki pszenicy zwyczajnej, co jest zgodne z literaturą (Ranhotra i in., 1995; Abdel – Aal i in., 1997; Bojňanská, Frančáková, 2002; Bonačacca i in, 2000; Krawczyk i in., 2008b; Pruska – Kędzior i in., 2008; Zieliński i in., 2008). Dało to tym samym wrażenie większej wilgotności miękiszu i tym samym świeżości pieczywa.

Wydajność badanego pieczywa otrzymanego z mąki z pszenicy zwyczajnej odmiany Korweta (zbiory 2005) wyniosła 140,6%, natomiast chleby orkiszowe uzyskały wyższe wartości tego parametru (139,1% – 147,9%). Wyjątek stanowił chleb mąki odmiany Ceralio (139,1%). W 2006 roku najniższą wydajność pieczywa uzyskał chleb z mąki orkiszu z odmiany Oberkulmer Rotkorn, a najwyższą z odmiany Schwabenspelz. W przypadku chlebów wypieczonych z mąki ziarna oziemego, wyraźnie widać istotny wpływ warunków uprawy na wartość tego parametru. Wydajność pieczywa otrzymanego w drugim roku zbiorów była niższa (130,8 – 134,6%), podczas gdy rok wcześniej parametry te były na poziomie od 139,1 do 147,9%.

Z kolei, pieczywo z trzech rodów hodowlanych cechowało się wyższą wydajnością niż chleb z mąki wzorcowej, a w przypadku próbek z orkiszu jarego UWM – 10 i UWM – 11 (w dwóch kolejnych latach analiz) wartość tego parametru była na zbliżonym poziomie. Wiadomo jednak, że do określenia wydajności pieczywa bierze się pod uwagę masę pieczywa ostudzonego, wydajność ciasta oraz masę kęsa. W związku z tym, że wydajność ciasta w 2006 roku była niższa, uzyskano zdecydowanie niższą wydajność pieczywa.

Wskazańkiem wartości wypiekowej o szczególnym znaczeniu jest objętość bochenka, która jest ważna szczególnie z punktu widzenia konsumenta. W większości przypadków chleby orkiszowe uzyskały istotnie niższą objętość pieczywa ze 100 g mąki niż chleby z pszenicy zwyczajnej odmian Korweta i Torka, co jest zgodne z danymi spotykanymi w literaturze (Ranhotra i in., 1995; Abdel – Aal i in., 1997; Bojňanská, Frančáková, 2002; Bonačacca i in, 2000; Krawczyk i in., 2008b; Pruska – Kędzior i in., 2008; Zieliński i in., 2008; Krawczyk i in., 2009). Wyjątek stanowi pieczywo z mąki orkiszu odmian Schwabenkorn, Frankenkorn i Ceralio (zbiory 2006) oraz rodu hodowlanego UWM – 12 (zbiory 2006).

Ponadto zauważono, że pieczywo otrzymane w 2006 roku w większości przypadków uzyskało wyższą objętość w przeliczeniu na 100 g mąki, niż chleby z 2005 i 2007 roku. Mąka orkiszowa w 2006 roku cechowała się podwyższoną aktywnością amylolityczną, tym samym fermentacja w cieście (z takiego surowca) przebiegała szybciej. Z reguły ciasto otrzymane z takiej mąki, ma mniejszą zdolność do zatrzymania gazu, a pieczywo mniej wyrasta. Nie mniej jednak, w przypadku orkiszu, zwiększone zdolność fermentacyjna mąki wpłynęła na skrócenie czasu fermentacji końcowej kęsa ciasta oraz zwiększenie objętości pieczywa, co można uznać za cechę korzystną. Poza tym mąka otrzymana w 2006 roku cechowała się niższą popiołowością, a wiadomo, że wraz ze spadkiem zawartości otrąb w mące zwiększa się objętość chlebów.
Tabela 43. Rezultaty próbnego wypieku pieczywa z wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Całkowita strata piecowa</th>
<th>Wydajność pieczywa</th>
<th>Objętość pieczywa ze 100g mąki</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>cm³</td>
</tr>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
<tr>
<td>2005</td>
<td>2006</td>
<td>2005</td>
<td>2006</td>
</tr>
<tr>
<td>Korweta</td>
<td>17,0 ± 1,5</td>
<td>17,3 ab ± 1,2</td>
<td>140,6 ± 2,2</td>
</tr>
<tr>
<td>Ceralio</td>
<td>17,1 ± 1,6</td>
<td>17,6 ab ± 0,5</td>
<td>139,1 ± 3,7</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>16,6 ab ± 2,7</td>
<td>14,5 ab ± 4,4</td>
<td>143,4 ab ± 3,0</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>15,6 ab ± 2,7</td>
<td>18,1 ± 0,6</td>
<td>143,4 ab ± 4,1</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>15,1 ab ± 1,7</td>
<td>14,5 ab ± 4,6</td>
<td>143,7 ab ± 2,6</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>13,9 ab ± 1,1</td>
<td>12,2 ± 4,9</td>
<td>147,9 ± 2,3</td>
</tr>
<tr>
<td>Ostro</td>
<td>14,4 ab ± 0,8</td>
<td>14,9 ab ± 3,3</td>
<td>142,9 ab ± 0,8</td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>15,4 ab ± 1,6</td>
<td>14,3 ab ± 4,2</td>
<td>143,2 ab ± 2,7</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Tabela 44. Rezultaty próbnego wypieku pieczywa z wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ród hodowlany</th>
<th>Całkowita strata piecowa</th>
<th>Wydajność pieczywa</th>
<th>Objętość pieczywa ze 100g mąki</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>cm³</td>
</tr>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
<tr>
<td>2006</td>
<td>2007</td>
<td>2006</td>
<td>2007</td>
</tr>
<tr>
<td>Torka</td>
<td>18,1 ab ± 0,5</td>
<td>16,2 ± 1,9</td>
<td>131,0 ± 0,7</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>15,8 b ± 1,3</td>
<td>15,3 ab ± 0,9</td>
<td>141,3 b ± 1,9</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>13,4 ± 0,1</td>
<td>13,9 b ± 0,8</td>
<td>144,9 b ± 2,1</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>16,0 b ± 0,9</td>
<td>14,4 ab ± 0,7</td>
<td>137,0 ± 1,8</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).
Porowatość pieczywa jest stosunkiem objętości zajmowanej przez porę do ogólnej objętości pieczywa. Porowatość wskazuje na przebieg fermentacji ciasta oraz na właściwości wypiekowe mąki, w tym na jakość glutenu. Idealna porowatość powinna być równomierna, o drobnych cienkościennych porach, które nadają miękisowi pulchność (Horubałowa, Haber, 1994).

Najwyższą porowatością wg Dallmana, spośród badanych w 2005 roku próbek, cechował się miękisz chleba z orkiszu odmian Oberkulmer Rotkorn, Schwabenkorn i Frankenkorn, a w roku 2006 – miękisz chleba z orkiszu odmian Ceralio (Wykresy 24 i 25). W przypadku mąki z ziarna jarego najlepsze wartości porowatości uzyskały miękkie chlebów z orkiszu rodów hodowlanych UWM – 10 i UWM – 11, a największe różnice na przestrzeni dwóch lat stwierdzono w przypadku miękiszu chleba odmian Ceralio i Oberkulmer Rotkorn oraz rodu hodowlanego UWM – 12. Z kolei miękisz chleba z pszenicy zwyczajnej odmiany Torka cechował się najlepszą stabilnością (poziom porowatości był porównywalny na przestrzeni dwóch lat).

Nie mniej jednak, miękisze chlebów (z 2006 roku) z mąki z ozimego ziarna cechowały się zdecydowanie niższymi wartościami tego parametru. Widać wyraźnie, że nadmierna aktywność amylolityczna i proteolityczna, choć korzystnie wpłynęła na ostateczną objętość i wygląd pieczywa, to niesie pogorszyła jego porowatość.

Warto dodać, że objętość chlebów orkiszowych jest zdecydowanie mniejsza w porównaniu do chlebów z mąki z pszenicy zwyczajnej. Ponadto, miękisz pieczywa orkiszowego jest bardziej zbity i często cechuje go nier egularność porów. Niestety, konieczność porównywania wartości tych parametrów z kryteriami przeznaczonymi dla chlebów z mąki z pszenicy zwyczajnej, wpływa na obniżenie wyników oceny punktowej pieczywa orkiszowego. Tym samym, w przyszłości należałooby się zastanowić nad określeniem optymalnych zakresów objętości i porowatości dla chlebów uzyskanych z mąki orkiszowej, w celu przeprowadzenia obiektywnej analizy.

*Wartości powyżej słupków (na wykresie) oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

*Wartości powyżej słupków (na wykresie) oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Wilgotność miękiszu chlebów orkiszowych ze zbiorów 2005, z wyjątkiem chleba z odmian Ceralio i Frankenkorn była wyższa niż wilgotność miękiszu chleba z pszenicy zwyczajnej odmiany Korweta, ale nie były to różnice istotne statystycznie (Tabele 45 i 46). Jedynie w przypadku chleba z orkiszu odmian Ceralio i Schwabenkorn z kolejnego roku zbiorów, wartość tego parametru była istotnie wyższa niż dla chleba z pszenicy wzorcowej. W pozostałych przypadkach wilgotność miękiszu była na tym samym (odmiana Schwabenspelz) lub nieco niższym poziomie. Wilgotność miękiszu chleba z pszenicy odmiany Torka i orkiszu rodzów hodowlanych UWM – 10 i UWM – 11, była na zbliżonym poziomie, który był jednak wyższy od wartości tego parametru uzyskanych dla miękiszu chlebów z ziarna ozimego. Zgodnie z PN – A – 74108 wilgotność miękiszu nie powinna być wyższa od 50%, co oznacza, że we wszystkich przypadkach wartość tego parametru nie przekroczyła optymalnego poziomu. Majewska i in. (2007b) uzyskali niższe wyniki wilgotności miękiszu jasnych chlebów orkiszowych niż prezentowane w niniejszej pracy. Różnica oczywicie wynikają z innej popiołowości mąki i ustalonej wydajności ciasta.

Najniższą wytrzymałością miękiszu na ściskanie charakteryzował się chleb z pszenicy zwyczajnej odmiany Korweta (zbiory 2005) (Tabele 45 i 46). Z kolei, w roku 2006 wartość tego parametru, z wyjątkiem miękiszu chleba z odmiany Schwabenspelz (9,0 N), była na niższym poziomie (1,5 – 6,2 N) niż w przypadku miękiszu chleba z pszenicy zwyczajnej (6,7 N). Miękisze chlebów otrzymanych z mąki rodzów hodowlanych orkiszu jarego (z wyjątkiem chleba z rodu hodowlanego UWM – 12 – zbiory 2005), charakteryzowały się w dwóch sezonach zbiorów, istotnie wyższą wytrzymałością miękiszu na ściskanie i maksymalną energię jego ściskania w porównaniu do wartości tych parametrów uzyskanych dla odmiany Torka (odpowiednio: 5,9 i 5,9 N oraz 29,3 i 27,7 \times 10^{-3} \text{ J}). Ponadto stwierdzono, że niższym wartościom wytrzymałości miękiszu na ściskanie odpowiadają niższe wartości maksymalnej energii ściskania.

Dodatkowo zauważono, że warunki wegetacyjne w 2006 roku miały wpływ na obniżenie wytrzymałości miękiszu chleba na ściskanie i maksymalną energię ściskania, szczególnie w przypadku odmian orkiszu ozimego, w przeciwieństwie do odmian jarych. Warto dodać, że pszenice zwyczajne (Korweta i Torka) cechowały się dużą stabilnością powyższych parametrów w dwóch latach analiz.
Tabela 45. Rezultaty próbnego wypieku z wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>Wilgotność miękiszu chleba</th>
<th>Wytrzymałość miękiszu chleba na ściskanie</th>
<th>Maksymalna energia ściśkania miękiszu chleba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>N</td>
<td>10⁻³ J</td>
</tr>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>2006</td>
<td>2005</td>
</tr>
<tr>
<td>Korweta</td>
<td>45,9 ± 0,5</td>
<td>47,2 ± 0,5</td>
<td>6,2 ± 1,5</td>
</tr>
<tr>
<td>Ceralio</td>
<td>45,6 ± 0,4</td>
<td>48,0 ± 0,1</td>
<td>8,1 ± 1,7</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>46,5 ± 0,7</td>
<td>47,9 ± 0,2</td>
<td>11,1 ± 2,1</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>45,9 ± 1,0</td>
<td>45,8 ± 1,4</td>
<td>13,7 ± 1,7</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>46,4 ± 0,5</td>
<td>46,6 ± 0,5</td>
<td>14,8 ± 3,2</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>46,8 ± 0,3</td>
<td>47,2 ± 0,2</td>
<td>12,5 ± 2,9</td>
</tr>
<tr>
<td>Ostro</td>
<td>46,4 ± 0,3</td>
<td>45,8 ± 1,0</td>
<td>9,6 ± 3,9</td>
</tr>
<tr>
<td>Oberkulmer Rotkorn</td>
<td>46,1 ± 0,2</td>
<td>46,3 ± 0,9</td>
<td>9,6 ± 1,7</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Tabela 46. Rezultaty próbnego wypieku z wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ród hodowlany</th>
<th>Wilgotność miękiszu chleba</th>
<th>Wytrzymałość miękiszu chleba na ściskanie</th>
<th>Maksymalna energia ściśkania miękiszu chleba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>N</td>
<td>10⁻³ J</td>
</tr>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>2007</td>
<td>2006</td>
</tr>
<tr>
<td>Torka</td>
<td>47,8 ± 0,5</td>
<td>47,9 ± 0,5</td>
<td>5,9 ± 1,2</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>48,2 ± 0,4</td>
<td>48,5 ± 0,3</td>
<td>10,8 ± 1,3</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>48,1 ± 0,4</td>
<td>48,4 ± 0,1</td>
<td>15,7 ± 2,0</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>46,9 ± 0,7</td>
<td>47,7 ± 0,3</td>
<td>2,8 ± 0,3</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różną się statystycznie istotnie (p<0,05).
Wytrzymałość miękiszu na ściskanie oraz maksymalna energia ściskania są bezpośrednio związane z porowatością pieczywa. Z reguły pieczywo o drobnych, regularnych porach stawia większy opór, a miękisz jest bardziej elastyczny. Natomiast miękisz pieczywa o gorszej porowatości, jest bardziej podatny na trwałe odkształcenia, co spowodowało obniżenie wartości ww. parametrów.

Biorąc pod uwagę sumaryczną ocenę punktową za cechy organoleptyczne i badane wyróżniki fizykochemiczne najlepszą jakością cechowało się pieczywo z orkiszu odmian Ceralio i Schwabenspelz (II poziom jakości pieczywa) oraz Schwabenkorn (III i II poziom jakości pieczywa) (Wykresy 26 i 27; Załącznik 4a,b). Ponadto, obiecującym surowcem okazała się mąka z orkiszu odmiany Holstenkorn. Biorąc pod uwagę rody hodowlane orkiszu, najkorzystniejszymi cechami charakteryzował się chleb z mąki z ziarna rodów hodowlanych UWM – 10 i UWM – 12, a w następnej kolejności UWM – 11.

Autorka podkreśla jednak, że przydatność ziarna do produkcji mąki chlebowej o pożądanej jakości, choć związana jest z warunkami pogodowymi panującymi w danym roku wegetacyjnym, to wydaje się być bardziej zależna od odmiany orkiszu.

W związku z tym, że pieczywo uzyskane w 2006 roku wykazywało specyficzne właściwości, trudne do sprecyzowania za pomocą określen ze standardowej oceny organoleptycznej, podjęto decyzję o pokazaniu tych cech. Poniższe tabele (Tabele 47 i 48, Załącznik 4a i b) prezentują wybrane wyróżniki jakości, ważne zdaniem autorki.

Powszechnie wiadomo, że pieczywo pszenne otrzymane z mąki z porośniętego ziarna jest płaskie i ma mocno skoloryzowaną skórkę. Ponadto, miękisz takiego chleba jest lepki i cechują go duże, nierównomierne pory, a skórka (często) odstaje od miękiszu (Haber, Horubałowa, 1994; Ambroziak, 1999).

Porównując przedstawione w tabelach 47 i 48 spostrzeżenia uzupełniające ocenę organoleptyczną badanego pieczywa (z 2006 roku) z wartościami liczby opadania i rezultatami oceny amylograficznej mąk użytych do wypieku tego pieczywa, okazało się, że miały one podwyższoną aktywność amylolityczną, która istotnie wpłynęła na cechy jego jakości.
Tabela 47. Zestawienie rezultatów oceny organoleptycznej pieczywa z wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (zbiory 2006).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wygląd zewnętrzny (kształt)</td>
<td>Kulisty</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plaski</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kulisto – płaski</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plasko - kulisty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barwa skórki</td>
<td>Złocisto - brązowa</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jasno brązowa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blada, beżowa</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miękisz</td>
<td>Pory drobne, dosyć równomierne, cienkościenne</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pory duże, nierównomierne, grubościenne</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barwa</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>miękisz o najciemniejszej barwie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pozostałe cechy</td>
<td>miękisz lekko odstaje od skórki, przykleja się do noża podczas krojenia</td>
<td>miękisz sprawia wrażenie miękkiego i wilgotnego</td>
<td>miękisz lekko odstaje od skórki</td>
<td>miękisz sprawia wrażenie wilgotnego, przykleja się do noża podczas krojenia</td>
<td>miękisz klei się do noża</td>
<td>miękisz klei się do noża</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Słabo krojący się, gumowaty</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smak</td>
<td>Obecność posmaku orzechowego</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Pozostałe</td>
<td>wrażenie drapeania w gardle przy przełykaniu</td>
<td>smak lekko słodkawy, przyjemny</td>
<td>smak mało wyraźny, obojętny</td>
<td>wrażenie największej świeżości</td>
<td>wrażenie drapeania w gardle przy przełykaniu</td>
<td>wrażenie świeżości</td>
<td>wrażenie świeżości</td>
<td></td>
</tr>
</tbody>
</table>

*+**" - pojawienie się danej cechy w pieczywie; **"-" - brak danej cechy w pieczywie.
Tabela 48. Zestawienie rezultatów oceny organoleptycznej pieczywa z wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (zbiory 2006).

<table>
<thead>
<tr>
<th>Wyróżnik jakości pieczywa</th>
<th>Właściwości</th>
<th>Torka 2006</th>
<th>UMW - 10 2006</th>
<th>UWM - 11 2006</th>
<th>UWM - 12 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wygląd Zewnętrzny (kształt)</td>
<td>Kulisty</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Plaski</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Kulisto – płaski</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Plasko - kulisty</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Pozostałe cechy</td>
<td>-</td>
<td>pieczewo słabo wyrośnięte</td>
<td>pieczewo słabo wyrośnięte</td>
<td>pieczewo dobrze wyrośnięte</td>
</tr>
<tr>
<td>Barwa skórki</td>
<td>Złocisto - brązowa</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Jasno brązowa</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Jasno - złocista</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Połysk</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Porowatość miękiszu</td>
<td>Pory drobne, równomierne, cienkościenne</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Pory duże, nierównomierne, grubościenne</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Miękisz</td>
<td>O równomiernym zabarwieniu, suchy w dotyku, bardzo dobrze krojący się</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Pozostałe cechy miękiszu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Smak</td>
<td>Obecność posmaku orzechowego</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Pozostałe cechy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* „+” - pojawienie się danej cechy w pieczywie; „-” – brak danej cechy w pieczywie.

Warto się również zastanowić, czy chleb orkiszowy, z miękiszem o dużych, nierównomiernych porach powinien uzyskiwać w ocenie porowatości niższą notę punktową sugerującą wadę tego miękiszu. W trakcie przeprowadzania oceny organoleptycznej okazało się, że właśnie chleby orkiszowe o najniższej porowatości miękiszu wg Dallmana (40 punktów) były jednocześnie najlepiej ocenione pod względem smaku i zapachu.

Warto dodać jeszcze jedno stwierdzenie. Jak wynika z badań Flaczyk i in. (2007) najważniejszymi czynnikami decydującymi o wyborze pieczywa przez konsumentów jest smak i zapach, chrupkość skórki oraz dopiero w następnej kolejności porowatość i elastyczność miękiszu. Istotny jest również termin przydatności do spożycia. Z kolei, wielkość jednostkowa i kształt chleba mają drugorzędne znaczenie. Powyższe wyniki sugerują, że to odczucia smakowo – zapachowe i wygląd zewnętrzny pieczywa (kolor skóry) decydują o wyborze chleba i są ważniejsze od jego objętości i wyglądu miękiszu w opinii konsumenta.
5.4. Rezultaty analizy statystycznej wybranych parametrów

5.4.1. Analiza związków korelacyjnych

W pracy określono również siłę związków pomiędzy poszczególnymi parametrami. Ponieważ, w założonym układzie badawczym na jedną zmienną oddziałuje więcej niż jedna zmienna, w celu wyeliminowania wpływu pozostałych czynników wyliczono współczynniki korelacji cząstkowej. Innymi słowy, przeprowadzając analizę, zdefiniowano współczynnik korelacji liniowej, przy wyłączeniu wpływu pozostałych zmiennych. Współczynnik korelacji cząstkowej przyjmuje wartości od -1 do 1 i interpretuje się go podobnie jak współczynnik korelacji liniowej Pearsona (Stanisz, 2006a,b).

Przy interpretacji otrzymanych wyników posłużono się kryteriami opisanymi w części dotyczącej obróbki statystycznej danych. W tabelach umieszczono jedynie istotne korelacje (nawet wysoka korelacja nie jest ważna, jeśli nie jest ona istotna) (Stanisz, 2006a,b). Ponadto, w pracy zostały umieszczone te wartości współczynników korelacji, które zdaniem autorki były ciekawe i ważne przy interpretacji wyników.

Ozime pszenice orkisz

W pierwszej kolejności przeprowadzono analizę związków korelacyjnych wybranych cech fizycznych ziarna orkiszu oznego z parametrami określającymi wartość przemiłową. Analiza wykazała wysoką dodatnią korelację między masą 1000 ziaren i gęstości ziarna w stanie zsypnym a zawartością popiołu w mące i jednocześnie wysoką ujemną korelację tych dwóch parametrów z kompleksowym kryterium efektywności przemiału E% (*Tabela 49*). Z kolei, twardość ziarna była istotnie przeciętnie skorelowana z wyrównaniem ziarna (r = 0,47).

Tabela 49. Wybrane istotne współczynniki korelacji otrzymane dla analizowanych parametrów jakości ziarna ozimego orkiszu i uzyskanej z niego mąki (zbiory 2005 i 2006).

<table>
<thead>
<tr>
<th>Parametr jakości</th>
<th>Wyrównanie ziarna</th>
<th>Zawartość popiołu całkowitego w mące</th>
<th>Kompleksowe kryterium efektywności przemiału E%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa 1000 ziaren</td>
<td>-</td>
<td>0,62</td>
<td>-0,69</td>
</tr>
<tr>
<td>Gęstość ziarna w stanie zsypnym</td>
<td>-</td>
<td>0,77</td>
<td>-0,89</td>
</tr>
<tr>
<td>Twardość ziarna</td>
<td>0,47</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

korelacje istotne przy p < 0,05.

Wysokie lub bardzo wysokie ujemne korelacje zauważono między zawartością popiołu całkowitego w mące a parametrami barwy mąki (jasnością *L*, indeksem bieli *WI*, żółtości *YI* i jasności *Z%*) (*Tabela 50*). Stwierdzono również, że frakcja mąki o wielkości cząstek z zakresu 150 – 265 µm była silniej skorelowana z parametrami barwy mąki niż frakcja drobniejsza (104 – 120 µm). Jak się okazało im wyższy udział frakcji z zakresu 150 – 265 µm, tym mąka ciemniejsza (bardzo wysoka korelacja ujemna), natomiast zwiększenie w mące zawartości frakcji o wielkości cząstek z zakresu 104 – 120 µm, wpłynęło na pojaśnienie mąki (przeciętna korelacja dodatnia).
Tabela 50. Wybrane istotne współczynniki korelacji otrzymane dla analizowanych parametrów jakości mąki z ziarna ozimego orkisz (zbiory 2005 i 2006).

<table>
<thead>
<tr>
<th>Parametr jakości</th>
<th>Gęstość ziarna w stanie zsypnym</th>
<th>Zawartość popiołu całkowitego w mące</th>
<th>Granulacja mąki – zakres wielkości cząstek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X > 265 µm</td>
</tr>
<tr>
<td>L*</td>
<td>-0,63</td>
<td>-0,84</td>
<td>-0,76</td>
</tr>
<tr>
<td>a*</td>
<td>0,57</td>
<td>0,63</td>
<td>0,68</td>
</tr>
<tr>
<td>b*</td>
<td>-</td>
<td>-</td>
<td>0,60</td>
</tr>
<tr>
<td>W’</td>
<td>-</td>
<td>-0,80</td>
<td>-0,54</td>
</tr>
<tr>
<td>Z%</td>
<td>-0,51</td>
<td>-0,65</td>
<td>-0,68</td>
</tr>
<tr>
<td>YI</td>
<td>-</td>
<td>-0,78</td>
<td>0,68</td>
</tr>
</tbody>
</table>

* korelacje istotne przy p < 0,05.

Następnie analizowano związki korelacyjne pomiędzy parametrami określającymi wartość wypiekową mąki orkiszowej. Analiza właściwości skrobi wykazała, że temperatura końcowa kleikowania i maksymalna lepkość kleiku skrobiowego były wysoko ujemnie skorelowane ze stopniem uszkodzenia skrobi oraz bardzo wysoko dodatnio skorelowane z liczbą opadania w mące (Tabela 51).

Tabela 51. Wybrane istotne współczynniki korelacji otrzymane dla analizowanych parametrów jakości mąki z ziarna ozimego orkisz (zbiory 2005 i 2006).

<table>
<thead>
<tr>
<th>Parametr jakości</th>
<th>Stopień uszkodzenia skrobi</th>
<th>Temperatura końcowa kleikowania T_łk</th>
<th>Maksymalna lepkość kleiku skrobiowego η_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopień uszkodzenia skrobi</td>
<td>-</td>
<td>-0,61</td>
<td>-0,52</td>
</tr>
<tr>
<td>Zawartość skrobi ogółem</td>
<td>0,37</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Liczba opadania</td>
<td>-0,63</td>
<td>0,95</td>
<td>0,87</td>
</tr>
</tbody>
</table>

* korelacje istotne przy p < 0,05.

Szczególnie ważne jest jednak poniższe stwierdzenie, które zostało sformułowane na podstawie tabeli 52. Okazało się, że analiza zależności między właściwościami białka mąki orkiszowej oraz wybranymi parametrami cech reologicznych ciasta i laboratoryjnego wypieku pieczywa, wykazała istotne korelacje pomiędzy tymi czynnikami, ale zależności te nie przyjęły wysokich wartości. Tym samym, na postawie jedynie pośrednich wyróżników wartości wypiekowej mąki nie można jednoznacznie wnioskować o potencjalnej przydatności mąki z ziarna orkisu ozimego do wypieku.

Tabela 52. Wybrane istotne współczynniki korelacji otrzymane dla analizowanych parametrów jakości mąki z ziarna ozimego orkisz (zbiory 2005 i 2006).

<table>
<thead>
<tr>
<th>Parametr jakości</th>
<th>Maksymalna siła wytłaczania ciasta</th>
<th>Energia wytłaczania ciasta</th>
<th>Wydajność ciasta</th>
<th>Całkowita strata piecowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wydajność glutenu mokrego</td>
<td>0,43</td>
<td>0,38</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zawartość białka ogółem</td>
<td>0,39</td>
<td>-</td>
<td>-0,49</td>
<td>-0,62</td>
</tr>
<tr>
<td>Liczba sedymentacji</td>
<td>-</td>
<td>-</td>
<td>0,52</td>
<td>-</td>
</tr>
</tbody>
</table>

* korelacje istotne przy p < 0,05.
Z kolei, na podstawie wydajności ciasta obliczonej podczas wykonywania laboratoryjnego wypieku pieczywa, można wnioskować o wydajności pieczywa i wytrzymałości jego miękkisu na ściskanie (bardzo wysoka dodatnia korelacja) (Tabela 53).

Tabela 53. Wybrane istotne współczynniki korelacji otrzymane dla analizowanych parametrów jakości mąki z ziarna ozymego orkiszu (zbiory 2005 i 2006).

<table>
<thead>
<tr>
<th>Parametr jakości</th>
<th>Wydajność pieczywa</th>
<th>Objetość pieczywa ze 100 g mąki</th>
<th>Porowatość miękiszu wg Dallmana</th>
<th>Wytrzymałość miękiszu na ściskanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wydajność ciasta</td>
<td>0,73</td>
<td>-0,39</td>
<td>0,52</td>
<td>0,73</td>
</tr>
</tbody>
</table>

*korelacje istotne przy p < 0,05.

Jare pszenice orkisz

Z kolei, analiza związków korelacyjnych badanych parametrów przeprowadzona dla ziarna jarego orkiszu i otrzymanej z niego mąki wykazała, że w niektórych przypadkach występują inne zależności niż dla orkiszu ozymego, co prezentują poniższe tabele.

Jak należało się spodziewać, masa 1000 ziaren była silnie dodatnio skorelowana z wyrównaniem ziarna. Natomiast, wraz ze wzrostem twardości ziarna zmniejszała się wartość kompleksowego kryterium efektywności przemiłu E% (r = -0,60) (Tabela 54).

Tabela 54. Wybrane istotne współczynniki korelacji otrzymane dla analizowanych parametrów jakości mąki z ziarna jarego orkiszu i uzyskanej z niego mąki (zbiory 2006 i 2007).

<table>
<thead>
<tr>
<th>Parametr jakości</th>
<th>Wyrównanie ziarna</th>
<th>Kompleksowe kryterium efektywności przemiłu E%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa 1000 ziaren</td>
<td>0,81</td>
<td>-</td>
</tr>
<tr>
<td>Wytrzymałość ziarniaków na ściskanie</td>
<td>-</td>
<td>-0,60</td>
</tr>
</tbody>
</table>

*korelacje istotne przy p < 0,05.

Analiza związków korelacyjnych parametrów barwy mąki wykazała bardzo wysoką zależność z gęstością ziarna w stanie zsypnym, co prezentuje Tabela 55.

Tabela 55. Wybrane istotne współczynniki korelacji otrzymane dla analizowanych parametrów jakości mąki z ziarna jarego orkiszu (zbiory 2006 i 2007).

<table>
<thead>
<tr>
<th>Parametr jakości</th>
<th>Gęstość ziarna w stanie zsypnym</th>
<th>Zawartość popiołu całkowitego w mące</th>
<th>Granulacja mąki – zakres wielkości cząstek</th>
</tr>
</thead>
<tbody>
<tr>
<td>L*</td>
<td>-</td>
<td>-</td>
<td>X > 265 µm</td>
</tr>
<tr>
<td>a*</td>
<td>-0,83</td>
<td>-</td>
<td>95 – 104 µm</td>
</tr>
<tr>
<td>b*</td>
<td>-0,71</td>
<td>0,66</td>
<td>95 – 104 µm</td>
</tr>
<tr>
<td>WI</td>
<td>0,76</td>
<td>-0,62</td>
<td>95 – 104 µm</td>
</tr>
<tr>
<td>Z%</td>
<td>0,72</td>
<td>-0,83</td>
<td>95 – 104 µm</td>
</tr>
<tr>
<td>YI</td>
<td>-0,74</td>
<td>0,65</td>
<td>95 – 104 µm</td>
</tr>
</tbody>
</table>

*korelacje istotne przy p < 0,05.

Ponadto, wraz ze wzrostem wielkości ziarniaków zwiększała się wartość indeksu bieli WI i jasności Z%, a obniżały stopień czerwoności a* i żółtości b*. Tym samym, w celu otrzymania wysokowyciągowej mąki o jaśniejszej barwie, do przemiłu powinno przesnać się ziarno...
dorodniejsze, ponieważ zmniejsza się w niej udział okrywy owocowo – nasiennej. Nie mniej jednak, nie wyklucza to wykorzystania drobniejszego ziarna do otrzymania tego typu mąki.

Stwierdzono również bardzo wysokie (dodatnie i ujemne) istotne zależności pomiędzy parametrami barwy, a wybranymi frakcjami analizy sitowej mąki, tj. o wielkości cząstek > 265 µm i 95 – 104 µm. Wyższy udział frakcji o grubszej granulacji powoduje ciemnienie mąki (zwiększała zawartość okrywy owocowo – nasiennej), w przeciwieństwie do frakcji drobniejszej (rozdrobnione bielmo). Pozostałe frakcje analizy sitowej mąki nie wykazywały istotnych korelacji z parametrami barwy mąki.

Jak sygnalizowano we wcześniejszej części pracy, również w przypadku mąki z orkiszu jarego, zauważono bardzo wysokie dodatnie istotne korelacje między wartością liczby opadania, a temperaturą końcową kleikowania i maksymalną lepkością kleiku skrobiowego, co jest zgodne z danymi spotykanymi w literaturze dla mąki z pszenicy zwyczajnej (Tabla 56) (Ambroziak, 1988; Reński, 1998).

Tabla 56. Wybrane istotne współczynniki korelacji otrzymane dla analizowanych parametrów jakości mąki z ziarna jarego orkiszu (zbiory 2006 i 2007).

<table>
<thead>
<tr>
<th>Parametr jakości</th>
<th>Stopień uszkodzenia skrobi</th>
<th>Temperatura końcowa kleikowania T_{tk}</th>
<th>Maksymalna siła kleiku skrobiowego η_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba opadania</td>
<td>-</td>
<td>0,97</td>
<td>0,86</td>
</tr>
</tbody>
</table>

*korelacje istotne przy $p < 0,05$.

Analiza zależności między wybranymi parametrami opisującymi cechy reologiczne ciasta orkiszowego a pośrednimi wyróżnikami wartości wypiekowej wykazała, że wytrzymałość ciasta na ściskanie zwiększa się wraz ze wzrostem zawartości białka ogółem w mące i wartości liczby sedymentacji wg Zeleny’ego (Tabla 57). Jednak wyższej wydajności glutenu mokrego towarzyszy obniżenie wartości tej cechy reologicznej ciasta ($r = -0,87$).

Tabla 57. Wybrane istotne współczynniki korelacji otrzymane dla analizowanych parametrów jakości mąki z ziarna jarego orkiszu (zbiory 2006 i 2007).

<table>
<thead>
<tr>
<th>Parametr jakości</th>
<th>Wydajność glutenu mokrego</th>
<th>Zawartość białka ogółem</th>
<th>Liczba sedymentacji</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wytrzymałość ciasta na ściskanie</td>
<td>-0,87</td>
<td>0,93</td>
<td>0,82</td>
</tr>
</tbody>
</table>

*korelacje istotne przy $p < 0,05$.

Zauważono również, że wzrost wydajności ciasta (zwiększenie uwodnienia ciasta), wpływa na obniżenie objętości pieczywa, ale polepsza porowatość i wytrzymałość miękiszu na ściskanie (Tabla 58). To znaczy, że pieczywo, choć jest mniej wyróżnione, ma miękisz cechujący się regularnymi, cienkościennymi porami, bardziej odpornymi na odkształcenia. Stwierdzoną zależność potwierdziły wyniki punktowej oceny organoleptycznej pieczywa. Chleby orkiszowe o większej objętości cechowały się miękiszem o mniej regularnych porach, niżej punktowanym w skali Dallmana.
Tabela 58. Wybrane istotne współczynniki korelacji otrzymane dla analizowanych parametrów jakości mąki z ziarna jarego orkiszu (zbiory 2006 i 2007).

<table>
<thead>
<tr>
<th>Parametr jakości</th>
<th>Objętość pieczywa ze 100 g mąki</th>
<th>Porowatość wg Dallmana</th>
<th>Wytrzymałość miękkisu na ściskanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wydajność ciasta</td>
<td>-0,72</td>
<td>0,75</td>
<td>0,71</td>
</tr>
</tbody>
</table>

*korelacje istotne przy p < 0,05.

Jak wynika z kompleksowej analizy związków korelacyjnych między badanymi parametrami jakości, nie wszystkie zależności wykazane dla ziarna ozimego orkiszu i otrzymanej z niego mąki, stwierdzono w przypadku próbek z orkiszu jarego. Ponadto, forma odmianowa orkiszu miała wpływ na siłę analizowanych związków korelacyjnych. Wskazuje to na fakt, że przy przeprowadzaniu w przyszłości podobnej analizy z wykorzystaniem dużej liczby odmian orkiszu, należy dokonać wcześniej podziału pod względem formy odmianowej. Jedynie wtedy będzie można rzetelnie analizować zależności pomiędzy poszczególnymi parametrami. Każdorazowo jednak należy z tej analizy wyłączyć pszenicę zwyczajną, jeśli jest ona brana, jako wzorzec. Często wyniki otrzymane dla parametrów jakości pszenicy zwyczajnej wpływają na zmianę poziomu związków korelacyjnych typowych dla parametrów jakości orkiszu, co uniemożliwia właściwą interpretację wyników.

5.4.2. Analiza skupień

Jak wcześniej sygnalizowano celem analizy skupień jest podział obiektów na pewną liczbę grup (skupień), tak aby obiekty należące do jednej z grup były jak najbardziej podobne do siebie, pod względem przyjętych do opisu badanych zjawisk. Innymi słowy, celem było pogrupowanie odmian badanych pszenic w jednorodne podzbiory pod względem przydatności ziarna do przemiału, a mąki do wypieku.

W związku z tym, że w 2006 roku część parametrów określających przydatność ziarna do przemiału oraz wykorzystanie mąki do wypieku nie była na optymalnym poziomie (co wcześniej wielokrotnie sygnalizowano), do przeprowadzenia tej analizy wybrano jedynie wartości średnie poszczególnych parametrów otrzymane dla ziarna i mąki ciennej z 2005 roku (formy ozime) oraz 2007 roku (formy jare) tworząc jeden zbiór danych. Dodatkowo poszczególne parametry sklasyfikowano do czterech grup, co wcześniej zostało już dokładnie opisane (fragment dotyczący analizy statystycznej danych). Oczywiście analiza skupień była poprzedzona analizą związków korelacyjnych pomiędzy wartościami średnimi poszczególnych parametrów. Na tej podstawie wybrano parametry, które istotnie wpływały na daną cechę (przydatność ziarna do przemiału, przydatność mąki do wypieku), ale nie były ze sobą silnie skorelowane.

Zbiór pierwszy obejmował cechy ziarna, które w pośredni sposób mówią o wartości przemialowej, tj. masę 1000 ziaren, wyciąg mąki i kompleksowe kryterium efektywności przemiału E%. Otrzymane w analizie drzewko połączeń (dendrogram) ilustruje kolejne połączenia skupień coraz wyższego rzędu, co ilustruje wykres 28.
Analizując wartości średnie w poszczególnych grupach, można zauważyć, że pszenica zwyczajna odmiany Korweta wyraźnie odbiega od pozostałych pszenic, szczególnie pod względem niższego wyciągu mąki, ale jednocześnie wyższego kryterium efektywności przemiału E%, stanowiąc tym samym punkt odstający.

Z kolei, pozostałe odmiany pszenic można podzielić na następujące grupy:
Grupa 1: pszenica zwyczajna odmiany Torka i rodu hodowlanego UWM – 12,
Grupa 2: pszenica zwyczajna odmian Ceralio i Frankenkorn,
Grupa 3: pszenice orkisz rodów hodowlanych UWM – 10 i UWM – 11,
Grupa 4: pszenice orkisz odmian Ostro, Oberkulmer Rotkorn, Holstenkorn, Schwabenspelz i Schwabenkorn.

Istotnym jest jednak fakt, że bardziej ogólny podział wyznacza jedynie dwa skupienia:
– skupienie 1: pszenice odmian Ostro, Oberkulmer Rotkorn, Holstenkorn, Schwabenspelz i Schwabenkorn,

Kolejny zbiór (zbiór II) dotyczył parametrów barwy mąki: a^*, b^*, WI, $Z\%$. Analiza wartości średnich w poszczególnych grupach wykazała, że w przypadku parametrów barwy wystąpiły dwa punkty odstające (Wykres 29).

Jak okazało się, mąka z ziarna pszenicy zwyczajnej odmiany Torka cechowała się wyższą wartością parametrów a^* i b^* (najwyższy stopień czerwoności i żółtości) oraz wyraźnie niższymi wartościami indeksów bieli (WI) i jasności ($Z\%$). Z kolei, mąka z ziarna orkiszu odmiany Ceralio charakteryzowała się niższą wartością współczynnika chromatyczności b^* oraz wyższym stopniem bieli (WI) i jasności ($Z\%$), w porównaniu do pozostałych badanych mąk, co spowodowało odrębność od pozostałych skupień.

Zbiór III analizy skupień uwzględniał pośrednie wyróżniki wartości wypiekowej mąki i obejmował takie parametry, jak: zawartość skrobi ogółem, stopień uszkodzenia skrobi, liczbę opadania, początkową temperaturę kleikowania skrobi T_{pk}, zawartość białka ogółem, wydajność glutenu mokrego oraz liczbę sedymentacji wg Zeleny’ego. Wyniki analiz skupień prezentuje wykres 30.

Wykres 30. Wyniki analizy skupień metodą średnich połączeń dla odległości euklidesowej (zbiór III).

![Wykres 30](image-url)
Jak okazało się analiza wartości średnich pośrednich wyróżników wartości wypiekowej mąki wskazała dwa punkty odstające. Były nimi mąka z ziarna pszenicy zwyczajnej odmiany Torka i pszenicy orkisz odmiany Ceralio. Pierwsze skupienie łączyło trzy rody hodowlane, natomiast do drugiej większej grupy (skupienie silne) zaliczono mąkę z ziarna orkiszu odmiany Oberkulmer Rotkorn, Ostro, Holstenkorn, Schwabenspelz, Frankenkorn, Schwabenkorn oraz mąkę z ziarna pszenicy zwyczajnej odmiany Korweta.

Mąka z ziarna pszenicy zwyczajnej odmiany Torka cechowała się najniższą wydajnością glutenu mokrego, przy najwyższej wartości liczby sedymantacji wg Zeleny’ego w porównaniu do wartości tych parametrów w pozostałych mąkach. Natomiast mąka z ziarna orkiszu odmiany Ceralio, uzyskała najniższą wartość liczby opadania oraz cechowała się niską zawartością białka ogółem, co tłumaczy utworzenie odrębnego skupienia.

Z kolei, zbiór IV wielowymiarowej analizy porównawczej zawierał wybrane średnie wartości charakteryzujące cechy reologiczne ciasta oraz parametry wypieku laboratoryjnego, takie jak: zwięzłość ciasta, wydajność ciasta, czas rozrostu końcowego ciasta, całkowita stratę piecową, wydajność pieczywa, objętość pieczywa ze 100 g mąki, wilgotność miękiszu chleba, wytrzymałość miękiszu na ściskanie oraz maksymalną energię ściskania miękiszu chleba. Wyniki tej analizy prezentuje wykres 31.

Wykres 31. Wyniki analizy skupień metodą średnich połączeń dla odległości euklidesowej (zbiór IV).

![Wykres analizy skupień metodą średnich połączeń dla odległości euklidesowej (zbiór IV).](image)

Jak wynika z powyższych wykresów, pod względem parametrów opisujących potencjalną wartość przemiałową najbardziej oddaloną próbką jest pszenica zwyczajna odmiany Korweta. Z kolei, w przypadku parametrów opisujących barwę mąki i jej wartość wypiekową, mąki otrzymane z ziarna pszenicy odmian Torka i Ceralio były najdalej położone na wykresach.

Dodatkowo wykonano kompleksową analizę skupień. W tym celu wykorzystano wszystkie powyższe parametry, nie dokonując podziału na poszczególne grupy pod względem określonej przydatności ziarna i mąki. Analizę tę prezentuje wykres 32.

Wykres 32. Wyniki kompleksowej analizy skupień metodą średnich połączeń dla odległości euklidesowej.

Z przeprowadzonej analizy wynika, że w zależności od wybranych parametrów poszczególne odmiany są grupowane w odmienny sposób. Taki rezultat grupowania zależy wyraźnie od gatunku pszenicy (pszenica zwyczajna i orkisz). Wynika to m.in. z tego, że wzorcowe odmiany pszenicy zwyczajnej (Korweta, Torka) w klasyfikacji COBORU (Centralny Ośrodek Badania Odmian Roślin Uprawnionych) należały lub należą do grupy pszenic jakościowych i elitarnych. Z kolei, badane odmiany orkisu z reguły (choć nie zawsze) charakteryzują się nieco gorszą jakością technologiczną, biorąc pod uwagę wartość przemiałową ziarna i potencjalną wartość wypiekową mąki. Warto zwrócić również uwagę na pszenicę orkisz odmiany Ceralio, która z reguły tworzy skupienie razem z pszenicą zwyczajną odmiany Korweta. Badane parametry jakości ziarna i mąki tych dwóch pszenic są
porównywalne i to właśnie dlatego pojawia się przypuszczenie, że orkisz odmiany *Ceralio* nie jest w 100% czysty gatunkowo.

Ponadto, analiza porównawcza na poziomie wyodrębnionych grup danych wskazuje na spore zróżnicowanie badanych odmian orkiszu pod względem przydatności ziarna do przemiału i przydatności wypiekowej mąki. Wielowymiarowa analiza porównawcza umożliwia wybranie najbardziej zbliżonych pod względem jakości grup odmian/rodów hodowlanych orkiszu, z uwzględnieniem podziału na wartość przemiałową ziarna i przydatność mąki do wypieku.
6. Spostrzeżenia

Szeroka analiza wszystkich danych liczbowych wykazała, że warunki wegetacyjne szczególnie w 2006 roku miały istotny wpływ na parametry odpowiedzialne za wartość wypiekową mąki, najbardziej tej z ziarna orkiszu ozimego. Ziarniaki, zarówno orkiszu ozimego jak i jarego, ze zbiorów 2006, były drobniejsze, cechowały się zdecydowanie wyższą koncentracją białka i glutenu mokrego. Nie mniej jednak, najprawdopodobniej deszczowy sierpień zapoczątkował w ziarnie orkiszu wzrost aktywności amylobilicycznej oraz proteolitycznej, co w konsekwencji spowodowało w niektórych badanych próbkach częściowe rozłożenie skrobi oraz białka i mimo wyższej zawartości tego ostatniego składnika – pogorszenie jego jakości.

Jak wiadomo, że wzrost aktywności amylobilicycznej ziarna ma istotny wpływ na zachowanie się ciasta podczas obróbki. Choć powszechnie uważa się, że ziarno, w którym nadmiernie zadziałała α – amylaza nie nadaje się produkcji mąki piekarskiej, to w przypadku orkiszu należy rozważyć możliwość wykorzystania właśnie tego zjawiska. Rezultaty wypieku laboratoryjnego wskazują, że mimo pogorszenia wyglądu miękiszu chleba orkiszowego, jednocześnie nastąpiło skrócenie czasu rozrostu końcowego kęsa ciasta oraz zwiększenie objętości pieczywa. Dodatkowo, z powodu wyższej zawartości cukrów prostych skórka otrzymanych chlebów była ładniej zabarwiona. Biorąc pod uwagę fakt, że chleb orkiszowy jest pieczewym specjalnym, zdaniem autorki poziom porowatości jego miękiszu nie powinien mieć decydującego znaczenia przy sumarycznej ocenie jego jakości. Chleby orkiszowe otrzymane z mąki o lekko podwyższonej aktywności amylobilicycznej cechowały się słodkawym posmakiem, dawały wrażenie, że ich miękisz był wilgotny (przy prawidłowym poziomie zawartości wody w miękiszu) i długo zachowywały świeżość.

Po przeanalizowaniu wszystkich danych dotyczących wartości wypiekowej mąki orkiszowej stwierdzono, że przyjęte dla mąki z ziarna pszenicy zwyczajnej kryteria jakościowe, nie do końca trafnie określają przydatność mąki orkiszowej do wypieku. Dotyczy to w szczególności wartości liczby opadania, wydajności glutenu mokrego, zawartości białka ogółem i liczby sedymentacji (wg Zeleny’ego i SDS).
7. Wnioski

1. Parametry charakteryzujące wartość odżywczą, przemiłową i wypiekową badanych odmian orkiszu i pszenicy zwyczajnej, w większości przypadków istotnie różnią się między sobą.

2. Wykazane istotne różnice wartości średnich poszczególnych parametrów jakości badanych pszenic zależą od: gatunku pszenicy, jej formy odmianowej, odmiany oraz od warunków pogodowych w roku uprawy.

3. Mąka z ziarna pszenicy orkisz w porównaniu z mąką z ziarna pszenicy zwyczajnej cechuje się wyższą popiołością (więcej związków mineralnych), koncentracją białka i tłuszczu ogółem, kwasu oleinowego oraz (w większości przypadków) wyższą zawartością skrobi amylazoopornej.

4. Twardość ziarna orkiszu determinują warunki wegetacyjne w danym roku uprawy, zaś znaczący wpływ na wartość tego parametru mają odmiana i forma odmianowa. Jednak, pszenica orkisz cechuje się mniejszą twardością ziarna w porównaniu do pszenicy zwyczajnej.

5. Ziarno badanych odmian orkiszu ma gorszą wartość przemiłową niż ziarno wzorcowych odmian pszenicy zwyczajnej, co może pośrednio wynikać z niskiej twardości ziańików orkiszu. Spośród oziomowych orkiszy najlepszą wartość przemiłową ma ziarno odmian Holstenkorn i Ostro. Natomiast ziarno orkiszu jarego cechuje większą stabilność współczynnika efektywności przemiłowej E% w dwóch badanych latach.

6. Analiza sitowa mąki wykazała, że w przeważającej większości próbek badanych pszenic dominującą frakcją była ta o wielkości cząstek z zakresu 95 – 104 µm, a w najmniejszej ilości występowała frakcja o wielkości cząstek z zakresu 104 – 120 µm. Mąki orkiszowe mają większy udział tej drobniejszej frakcji, co może być spowodowane niską twardością ziarna i ma wpływ na jaśniejszą barwę mąki orkiszowej.

7. Zmienne warunki pogodowe w danym roku uprawy mają wpływ na wartość parametrów opisujących przydatność mąki orkiszowej do wypieku. Jednak wartości tych parametrów uzyskane dla jarych orkisy są bardziej stabilne w latach w porównaniu z orkiszem oziym. Stanowi to argument do rozpowszechniania tej pierwszej formy odmianowej orkiszu w uprawach w Polsce.

8. Wysokowyciągowa mąka orkiszowa stanowi dobry surowiec do produkcji pieczywa, ale jest to ściśle związane z odmianą i formą odmianową ziarna orkiszu, które wykorzystuje się do jej produkcji.

11. Mąka z orkisu odmiany Ceralio ma wartość wypiekową najbardziej zbliżoną do mąki z pszenicy zwyczajnej odmiany Korweta, z kolei mąka orkiszowa z rodu hodowlanego UWM-10, ma cechy wypiekowe zbliżone do tych, którymi charakteryzuje się mąka z pszenicy zwyczajnej odmiany Torka.

12. Nie występuje ścisła korelacja pomiędzy pośrednimi i bezpośrednimi wyróżnikami wartości wypiekowej mąki orkiszowej, co stwarza konieczność przeprowadzania każdorazowo próbnego wypieku laboratoryjnego lub ustalenia odrębnych kryteriów jakościowych dla mąki orkiszowej, z uwzględnieniem podziału na formę odmianową.
8. Literatura

151

265. Normy i opracowania metodyczne:

10. Streszczenie

Celem pracy było określenie wpływu czynnika odmianowego (odmiany, formy odmianowej) na wybrane parametry jakości wysokowyciągowej mąki z orkiszu, uprawianego w krajowych warunkach wegetacyjnych.

Zakres badań obejmował ogólną charakterystykę ziarna przemielanego na mąkę ciemną, analizę składu chemicznego uzyskanej wysokowyciągowej mąki, określenie barwy mąki oraz przeprowadzenie szerokiej analizy wartości wypiekowej mąki orkiszowej, z wykorzystaniem pośrednich i bezpośrednich parametrów mówiących o przydatności mąki do wypieku.

Z przeprowadzonych badań wynika, że parametry charakteryzujące wartość odżywczą, przemiałową i wypiekową badanych odmian orkiszu i pszenicy zwyczajnej (w większości przypadków) istotnie różniły się między sobą i były zależne od gatunku pszenicy, jej formy odmianowej, odmiany oraz od warunków pogodowych w roku uprawy. Ziemno badanych odmian orkiszu cechowało się gorszą wartością przemiałową niż ziarno wzorcowych odmian pszenicy zwyczajnej. Mimo to, spośród ozimych orkiszy najlepszą wartością przemiałową charakteryzowało się ziarno odmian Holstenkorn i Ostro. Z kolei, ziarno orkiszu jarego uzyskało większą stabilność współczynnika efektywności przemiałowej E% w dwóch badanych latach. Dodatkowo, zauważono wpływ zmiennych warunków pogodowych (w danym roku uprawy) na wartości parametrów opisujących przydatność mąki orkiszowej do wypieku. Jednak, wartości tych parametrów uzyskane dla jarych orkiszy, były bardziej stabilne w latach w porównaniu z orkiszem ozimym. Stwierdzono, że wysokowyciągowa mąka orkiszowa może stanowić dobry surowiec piekarski, ale jest to ścisłe zależne od odmiany i formy odmianowej ziarna orkiszu, z którego uzyskuje się mąkę. Najlepszą wartością wypiekową cechowały się mąki z ziarna orkiszu odmian: Schwabenspelz, Schwabenkorn i Ceralio oraz rodów hodowlanych UWM – 10 i UWM – 12. Jednak, lepsze właściwości wypiekowe miała mąka orkiszowa otrzymana z ziarna formy jarej.
11. Załączniki
Załącznik 1. Zależność zawartości popiołu całkowitego w badanych mąkach od stopnia ich wyciągu.

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ród hodowlany</th>
<th>Zawartość popiołu całkowitego</th>
<th>Zawartość popiołu całkowitego</th>
<th>Zawartość popiołu całkowitego</th>
<th>Wyciąg mąki</th>
<th>Wyciąg mąki</th>
<th>Wyciąg mąki</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% s.m.</td>
<td>% s.m.</td>
<td>% s.m.</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Mąka z ziarna ozimego</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korweta</td>
<td>1,03 ± 0,01</td>
<td>87 ± 0</td>
<td>1,09 ± 0,01</td>
<td>88 b± 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceralio</td>
<td>1,17 ± 0,01</td>
<td>89 ± 0</td>
<td>1,09 ± 0,00</td>
<td>88 b± 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>1,38 ± 0,02</td>
<td>93 ± 0</td>
<td>1,08 ± 0,02</td>
<td>87 ± 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>1,18 ± 0,01</td>
<td>89 ± 0</td>
<td>1,07 ± 0,01</td>
<td>87 ± 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>1,57 ± 0,00</td>
<td>96 ± 1</td>
<td>1,21 ± 0,01</td>
<td>90 ± 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schwabenspelz</td>
<td>1,43 c± ± 0,02</td>
<td>93 ± 0</td>
<td>1,06 ± 0,01</td>
<td>87 ± 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ostro</td>
<td>1,52 d ± 0,02</td>
<td>95 c± ± 0</td>
<td>1,16 ± 0,02</td>
<td>89 b± ± 1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oberkalmer Rotkorn</td>
<td>1,56 d ± 0,02</td>
<td>94 c± ± 0</td>
<td>1,08 ± 0,00</td>
<td>87 a± ± 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mąka z ziarna jarego</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torka</td>
<td>-</td>
<td>-</td>
<td>1,03 ± 0,01</td>
<td>87 ± 0</td>
<td>1,33 ± 0,00</td>
<td>92 ± 0</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>-</td>
<td>-</td>
<td>1,15 ± 0,02</td>
<td>89 ± 0</td>
<td>1,35 ± 0,01</td>
<td>92 ± 0</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>-</td>
<td>-</td>
<td>1,34 ± 0,01</td>
<td>92 ± 0</td>
<td>1,27 ± 0,01</td>
<td>91 ± 0</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>-</td>
<td>-</td>
<td>1,27 ± 0,00</td>
<td>91 ± 0</td>
<td>1,34 ± 0,01</td>
<td>92 ± 0</td>
</tr>
</tbody>
</table>

*Wartości w kolumnach oznaczone tymi samymi literami w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).
Załącnik 2. Rozkład granulometryczny wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkisz i pszenicy zwyczajnej (forma ozima).

<table>
<thead>
<tr>
<th>Odmiana pszenicy</th>
<th>> 265 μm</th>
<th>150 – 265 μm</th>
<th>120 – 150 μm</th>
<th>104 – 120 μm</th>
<th>95 – 104 μm</th>
<th>< 95 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
<tr>
<td>Korweta</td>
<td>23,5 ± 0,8</td>
<td>22,0 ± 0,9</td>
<td>24,6 ± 0,5</td>
<td>15,2 ± 3,7</td>
<td>10,9 ± 0,0</td>
<td>14,1 ± 3,1</td>
</tr>
<tr>
<td>Ceralio</td>
<td>19,6 ± 1,3</td>
<td>15,3 ± 1,2</td>
<td>20,6 ± 1,1</td>
<td>15,1 ± 0,2</td>
<td>11,7 ± 0,2</td>
<td>8,2 ± 0,8</td>
</tr>
<tr>
<td>Schwabenkorn</td>
<td>21,5 ± 0,9</td>
<td>10,4 ± 0,1</td>
<td>18,9 ± 0,8</td>
<td>19,5 ± 0,4</td>
<td>10,3 ± 0,2</td>
<td>10,7 ± 0,1</td>
</tr>
<tr>
<td>Frankenkorn</td>
<td>17,5 ± 0,6</td>
<td>9,4 ± 0,7</td>
<td>17,6 ± 0,2</td>
<td>18,1 ± 0,4</td>
<td>10,3 ± 0,4</td>
<td>10,7 ± 0,2</td>
</tr>
<tr>
<td>Holstenkorn</td>
<td>24,3 ± 2,6</td>
<td>18,3 ± 1,2</td>
<td>22,9 ± 0,1</td>
<td>17,3 ± 0,1</td>
<td>11,0 ± 0,3</td>
<td>8,7 ± 0,2</td>
</tr>
<tr>
<td>Schwabenspeiz</td>
<td>23,5 ± 1,4</td>
<td>16,2 ± 0,5</td>
<td>18,1 ± 0,3</td>
<td>13,2 ± 1,4</td>
<td>10,9 ± 0,1</td>
<td>15,7 ± 1,8</td>
</tr>
<tr>
<td>Osto</td>
<td>27,4 ± 0,3</td>
<td>14,1 ± 0,0</td>
<td>21,5 ± 0,5</td>
<td>22,8 ± 0,7</td>
<td>10,8 ± 0,9</td>
<td>12,2 ± 0,4</td>
</tr>
<tr>
<td>Oberkulmer</td>
<td>21,6 ± 0,1</td>
<td>21,0 ± 0,7</td>
<td>20,3 ± 0,3</td>
<td>15,5 ± 0,1</td>
<td>11,1 ± 0,0</td>
<td>8,0 ± 0,1</td>
</tr>
</tbody>
</table>

Wartości w kolumnach oznaczone tym samym literem w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).

Załącnik 3. Rozkład granulometryczny wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkisz i pszenicy zwyczajnej (forma jara).

<table>
<thead>
<tr>
<th>Odmiana pszenicy/ ród hodowlany</th>
<th>> 265 μm</th>
<th>150 – 265 μm</th>
<th>120 – 150 μm</th>
<th>104 – 120 μm</th>
<th>95 – 104 μm</th>
<th>< 95 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
<td>rok</td>
</tr>
<tr>
<td>Torka</td>
<td>12,6 ± 0,9</td>
<td>18,7 ± 0,8</td>
<td>22,7 ± 1,0</td>
<td>26,9 ± 0,9</td>
<td>14,7 ± 0,3</td>
<td>13,9 ± 0,2</td>
</tr>
<tr>
<td>UWM – 10</td>
<td>8,5 ± 0,2</td>
<td>15,9 ± 0,1</td>
<td>17,8 ± 0,0</td>
<td>21,9 ± 0,2</td>
<td>11,3 ± 0,8</td>
<td>11,4 ± 0,4</td>
</tr>
<tr>
<td>UWM – 11</td>
<td>12,6 ± 0,2</td>
<td>16,4 ± 0,1</td>
<td>21,3 ± 1,0</td>
<td>20,3 ± 0,1</td>
<td>17,2 ± 7,1</td>
<td>9,7 ± 0,0</td>
</tr>
<tr>
<td>UWM – 12</td>
<td>9,1 ± 0,0</td>
<td>21,3 ± 0,1</td>
<td>19,1 ± 1,0</td>
<td>17,1 ± 0,1</td>
<td>13,6 ± 1,1</td>
<td>8,5 ± 0,1</td>
</tr>
</tbody>
</table>

Wartości w kolumnach oznaczone tym samym literem w poszczególnych latach nie różnią się statystycznie istotnie (p<0,05).
Załącznik 4a. Zdjęcia chlebów wypieczonych z wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkisz i pszenicy zwyczajnej (zbiory 2006).
Załącznik 4b. Zdjęcia chlebów wypieczonych z wysokowyciągowej mąki otrzymanej z ziarna badanych odmian orkiszu i pszenicy zwyczajnej (zbiory 2006).

Ostro
Oberkulmer Rotkorn
Torka

UWM - 10
UWM - 11
UWM - 12